Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Hepatocyte Growth Factor Delivered by Nanocomposites for Gene Therapy of Bleomycin-Induced Pulmonary Fibrosis in Rats

Author(s): Qi Guo, Yuxin Lu, Xiaochen Cheng, Fengjun Xiao, Qinglin Zhang, Peng Gao* and Li Du*

Volume 20, Issue 9, 2023

Published on: 25 August, 2022

Page: [1368 - 1379] Pages: 12

DOI: 10.2174/1567201819666220613145417

Price: $65

Abstract

Background: Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease. There is no effective treatment for PF. Hepatocyte growth factor (HGF) has anti-inflammatory and antifibrotic effects but has limited potential owing to its short half-life.

Methods: To increase the transfection efficiency of pVAX-HGF, we prepared polyethyleneiminepolyethylene glycol: polyethyleneimine/pVAX-HGF (PEG-PEI: PEI/pVAX-HGF) nanocomposite loaded with a plasmid encoding the HGF gene. The PEG-PEI:PEI/pVAX-HGF characteristics, including morphology, particle size, zeta-potential, and DNA entrapment efficiency, were investigated. The pVAX-HGF nanocomposites with low toxicity and high transfection efficiency were screened by cell viability assay and cell transfection. The antifibrotic effect of pVAX-HGF nanocomposite on PF rats induced by bleomycin (BLM) was evaluated by pulmonary function measurement, pathological examination and collagen content assay.

Results: Different nanocomposites were prepared to deliver pVAX-HGF, in which mix1 (PEGPEI: PEI/pVAX-HGF) has lower potential and better entrapment ability. PEG-PEI:PEI/pVAX-HGF (N/P=25) nanocomposite with low toxicity and high transfection efficiency was administered to PF rats. After treatment with mix 1/pVAX-HGF, the index of lung function(including EF50, MV, TV, PEF and PIF) in mix 1/pVAX-HGF group was higher than that of the PF group. The number of cells in BALF of the mix 1/pVAX-HGF group was significantly lower than that of the PF groups, and the content of hydroxyproline(HYP) and collagen Type I (Col-I) in the lung of the mix 1/pVAX-HGF group was much lower than that of the PF groups in the early stage. The result of pathological examination showed that rats in the mix1/pVAX-HGF group showed obviously reduced alveolar septal thickening, fewer infiltrated inflammatory cells and less collagen deposition.

Conclusion: The PEG-PEI:PEI/pVAX-HGF nanocomposite can ameliorate PF induced by BLM. The pVAX-HGF nanocomposite is a latent therapeutic strategy for PF.

Keywords: Pulmonary fibrosis, hepatocyte growth factor, plasmid, nanocomposite, gene therapy, PEG, PEI.

Graphical Abstract

[1]
Heukels, P.; Moor, C.C.; von der Thüsen, J.H.; Wijsenbeek, M.S.; Kool, M. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med., 2019, 147, 79-91.
[http://dx.doi.org/10.1016/j.rmed.2018.12.015] [PMID: 30704705]
[2]
Barratt, S.L.; Creamer, A.; Hayton, C.; Chaudhuri, N. Idiopathic pulmonary fibrosis (IPF): An overview. J. Clin. Med., 2018, 7(8), E201.
[http://dx.doi.org/10.3390/jcm7080201] [PMID: 30082599]
[3]
Bendstrup, E.; Wuyts, W.; Alfaro, T.; Chaudhuri, N.; Cornelissen, R.; Kreuter, M.; Melgaard Nielsen, K.; Münster, A.B.; Myllärniemi, M.; Ravaglia, C.; Vanuytsel, T.; Wijsenbeek, M. Nintedanib in idiopathic pulmonary fibrosis: Practical management recommendations for potential adverse events. Respiration, 2019, 97(2), 173-184.
[http://dx.doi.org/10.1159/000495046] [PMID: 30544129]
[4]
Ntolios, P.; Archontogeorgis, K.; Anevlavis, S.; Bonelis, K.; Paxinou, N.; Voulgaris, A.; Froudarakis, M.; Steiropoulos, P. Feasibility and safety of treatment switch from Pirfenidone to Nintedanib in patients with idiopathic pulmonary fibrosis: A real-world observational study. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(20), 6326-6332.
[PMID: 34730213]
[5]
Maulik, G.; Shrikhande, A.; Kijima, T.; Ma, P.C.; Morrison, P.T.; Salgia, R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev., 2002, 13(1), 41-59.
[http://dx.doi.org/10.1016/S1359-6101(01)00029-6] [PMID: 11750879]
[6]
Crestani, B.; Marchand-Adam, S.; Quesnel, C.; Plantier, L.; Borensztajn, K.; Marchal, J.; Mailleux, A.; Soler, P.; Dehoux, M. Hepatocyte growth factor and lung fibrosis. Proc. Am. Thorac. Soc., 2012, 9(3), 158-163.
[http://dx.doi.org/10.1513/pats.201202-018AW] [PMID: 22802291]
[7]
Chakraborty, S.; Chopra, P.; Hak, A.; Dastidar, S.G.; Ray, A. Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis. Expert Opin. Investig. Drugs, 2013, 22(4), 499-515.
[http://dx.doi.org/10.1517/13543784.2013.778972] [PMID: 23484858]
[8]
Dohi, M.; Hasegawa, T.; Yamamoto, K.; Marshall, B.C. Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2000, 162(6), 2302-2307.
[http://dx.doi.org/10.1164/ajrccm.162.6.9908097] [PMID: 11112155]
[9]
Ido, A.; Moriuchi, A.; Kim, I.; Numata, M.; Nagata-Tsubouchi, Y.; Hasuike, S.; Uto, H.; Tsubouchi, H. Pharmacokinetic study of recombinant human hepatocyte growth factor administered in a bolus intravenously or via portal vein. Hepatol. Res., 2004, 30(3), 175-181.
[http://dx.doi.org/10.1016/j.hepres.2004.09.002] [PMID: 15588784]
[10]
Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[11]
Pandey, A.P.; Sawant, K.K. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Mater. Sci. Eng. C, 2016, 68, 904-918.
[http://dx.doi.org/10.1016/j.msec.2016.07.066] [PMID: 27524093]
[12]
Morille, M.; Passirani, C.; Vonarbourg, A.; Clavreul, A.; Benoit, J.P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials, 2008, 29(24-25), 3477-3496.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.036] [PMID: 18499247]
[13]
Hu, C.; Cheng, X.; Lu, Y.; Wu, Z.; Zhang, Q. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia. Prep. Biochem. Biotechnol., 2016, 46(8), 844-849.
[http://dx.doi.org/10.1080/10826068.2016.1141302] [PMID: 26853514]
[14]
Wang, L.S.; Wang, H.; Zhang, Q.L.; Yang, Z.J.; Kong, F.X.; Wu, C.T. Hepatocyte growth factor gene therapy for ischemic diseases. Hum. Gene Ther., 2018, 29(4), 413-423.
[http://dx.doi.org/10.1089/hum.2017.217] [PMID: 29409352]
[15]
Mungunsukh, O.; McCart, E.A.; Day, R.M. Hepatocyte growth factor isoforms in tissue repair, cancer, and fibrotic remodeling. Biomedicines, 2014, 2(4), 301-326.
[http://dx.doi.org/10.3390/biomedicines2040301] [PMID: 28548073]
[16]
Correll, K.A.; Edeen, K.E.; Redente, E.F.; Zemans, R.L.; Edelman, B.L.; Danhorn, T.; Curran-Everett, D.; Mikels-Vigdal, A.; Mason, R.J. TGF beta inhibits HGF, FGF7, and FGF10 expression in normal and IPF lung fibroblasts. Physiol. Rep., 2018, 6(16), e13794.
[http://dx.doi.org/10.14814/phy2.13794] [PMID: 30155985]
[17]
Raymond, W.W.; Xu, X.; Nimishakavi, S.; Le, C.; McDonald, D.M.; Caughey, G.H. Regulation of hepatocyte growth factor in mice with pneumonia by peptidases and trans-alveolar flux. PLoS One, 2015, 10(5), e0125797.
[http://dx.doi.org/10.1371/journal.pone.0125797] [PMID: 25938594]
[18]
Przybylski, G.; Chorostowska-Wynimko, J.; Dyczek, A.; Wędrowska, E.; Jankowski, M.; Szpechciński, A.; Giżycka, A.; Golińska, J.; Kopiński, P. Studies of hepatocyte growth factor in bronchoalveolar lavage fluid in chronic interstitial lung diseases. Pol. Arch. Med. Wewn., 2015, 125(4), 260-271.
[http://dx.doi.org/10.20452/pamw.2784] [PMID: 25697336]
[19]
Marchand-Adam, S.; Marchal, J.; Cohen, M.; Soler, P.; Gerard, B.; Castier, Y.; Lesèche, G.; Valeyre, D.; Mal, H.; Aubier, M.; Dehoux, M.; Crestani, B. Defect of hepatocyte growth factor secretion by fibroblasts in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2003, 168(10), 1156-1161.
[http://dx.doi.org/10.1164/rccm.200212-1514OC] [PMID: 12947024]
[20]
Shukla, M.N.; Rose, J.L.; Ray, R.; Lathrop, K.L.; Ray, A.; Ray, P. Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via Smad7. Am. J. Respir. Cell Mol. Biol., 2009, 40(6), 643-653.
[http://dx.doi.org/10.1165/rcmb.2008-0217OC] [PMID: 18988920]
[21]
Gazdhar, A.; Temuri, A.; Knudsen, L.; Gugger, M.; Schmid, R.A.; Ochs, M.; Geiser, T. Targeted gene transfer of hepatocyte growth factor to alveolar type II epithelial cells reduces lung fibrosis in rats. Hum. Gene Ther., 2013, 24(1), 105-116.
[http://dx.doi.org/10.1089/hum.2012.098] [PMID: 23134111]
[22]
Wang, H.; Yang, Y.F.; Zhao, L.; Xiao, F.J.; Zhang, Q.W.; Wen, M.L.; Wu, C.T.; Peng, R.Y.; Wang, L.S. Hepatocyte growth factor gene-modified mesenchymal stem cells reduce radiation-induced lung injury. Hum. Gene Ther., 2013, 24(3), 343-353.
[http://dx.doi.org/10.1089/hum.2012.177] [PMID: 23458413]
[23]
Yaekashiwa, M.; Nakayama, S.; Ohnuma, K.; Sakai, T.; Abe, T.; Satoh, K.; Matsumoto, K.; Nakamura, T.; Takahashi, T.; Nukiwa, T. Simultaneous or delayed administration of hepatocyte growth factor equally represses the fibrotic changes in murine lung injury induced by bleomycin. A morphologic study. Am. J. Respir. Crit. Care Med., 1997, 156(6), 1937-1944.
[http://dx.doi.org/10.1164/ajrccm.156.6.9611057] [PMID: 9412578]
[24]
Chanda, D.; Otoupalova, E.; Smith, S.R.; Volckaert, T.; De Langhe, S.P.; Thannickal, V.J. Developmental pathways in the pathogenesis of lung fibrosis. Mol. Aspects Med., 2019, 65, 56-69.
[http://dx.doi.org/10.1016/j.mam.2018.08.004] [PMID: 30130563]
[25]
Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 298(6), L715-L731.
[http://dx.doi.org/10.1152/ajplung.00361.2009] [PMID: 20363851]
[26]
Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science, 2018, 359(6372), eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[27]
Zhao, X.; Cui, H.; Chen, W.; Wang, Y.; Cui, B.; Sun, C.; Meng, Z.; Liu, G. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One, 2014, 9(6), e98919.
[http://dx.doi.org/10.1371/journal.pone.0098919] [PMID: 24911360]
[28]
Ke, X.; Wei, Z.; Wang, Y.; Shen, S.; Ren, Y.; Williford, J.M.; Luijten, E.; Mao, H.Q. Subtle changes in surface-tethered groups on PEGylated DNA nanoparticles significantly influence gene transfection and cellular uptake. Nanomedicine, 2019, 19, 126-135.
[http://dx.doi.org/10.1016/j.nano.2019.04.004] [PMID: 31048082]
[29]
Liu, C.; Liu, F.; Feng, L.; Li, M.; Zhang, J.; Zhang, N. The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles. Biomaterials, 2013, 34(10), 2547-2564.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.038] [PMID: 23332321]
[30]
Osman, G.; Rodriguez, J.; Chan, S.Y.; Chisholm, J.; Duncan, G.; Kim, N.; Tatler, A.L.; Shakesheff, K.M.; Hanes, J.; Suk, J.S.; Dixon, J.E. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J. Control. Release, 2018, 285, 35-45.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.001] [PMID: 30004000]
[31]
Liu, T.; De Los Santos, F.G.; Phan, S.H. The bleomycin model of pulmonary fibrosis. Methods Mol. Biol., 2017, 1627, 27-42.
[http://dx.doi.org/10.1007/978-1-4939-7113-8_2] [PMID: 28836192]
[32]
Duncan, G.A.; Jung, J.; Hanes, J.; Suk, J.S. The mucus barrier to inhaled gene therapy. Mol. Ther., 2016, 24(12), 2043-2053.
[http://dx.doi.org/10.1038/mt.2016.182] [PMID: 27646604]
[33]
Ernst, N.; Ulrichskötter, S.; Schmalix, W.A.; Rädler, J.; Galneder, R.; Mayer, E.; Gersting, S.; Plank, C.; Reinhardt, D.; Rosenecker, J. Interaction of liposomal and polycationic transfection complexes with pulmonary surfactant. J. Gene Med., 1999, 1(5), 331-340.
[http://dx.doi.org/10.1002/(SICI)1521-2254(199909/10)1:5<331:AID-JGM60>3.0.CO;2-8] [PMID: 10738550]
[34]
Schuster, B.S.; Kim, A.J.; Kays, J.C.; Kanzawa, M.M.; Guggino, W.B.; Boyle, M.P.; Rowe, S.M.; Muzyczka, N.; Suk, J.S.; Hanes, J. Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors. Mol. Ther., 2014, 22(8), 1484-1493.
[http://dx.doi.org/10.1038/mt.2014.89] [PMID: 24869933]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy