Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

ceRNA Network Analysis Reveals AP-1 Transcription Factor Components as Potential Biomarkers for Alzheimer’s Disease

Author(s): Rui Wei, Qi Hu, Yanjun Lu* and Xiong Wang*

Volume 19, Issue 5, 2022

Published on: 22 July, 2022

Page: [387 - 406] Pages: 20

DOI: 10.2174/1567205019666220613142303

Price: $65

Abstract

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting the elderly, characterized by decreased cognitive function. Non-coding RNAs contribute to AD pathogenesis.

Objective: To identify potential therapeutic targets for AD, competing endogenous RNA (ceRNA) networks were constructed using the hippocampus of 6-month-old amyloid precursor protein/ presenilin 1 double transgenic (APP/PS1) and wild-type mice.

Methods: RNA-seq data (GSE158995), generated from the hippocampus of APP/PS1 and wild-type mice, were analyzed with the limma R package to identify significantly differentially expressed mRNAs and circRNAs (DEMs and DECs, respectively). DEM Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using Enrichr (https://maayanlab.cloud/Enrichr/). Correlations between DEMs and DECs were determined using the ggcorrplot R package. Main clusters and hub DEMs were selected using the STRING database and Cytoscape software. ceRNA interactions were predicted with the miRTarbase and Starbase tools and constructed with the ggalluvial R package and Cytoscape software. ceRNA networks were validated using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot.

Results: 198 DEMs and 90 DECs were differentially expressed in APP/PS1 vs. wild-type hippocampus. DEM GO analysis revealed significant enrichment in transcription regulation, which was subdivided into three main clusters: transcription regulation, synaptic plasticity, and protein refolding. Within the transcription regulation cluster, AP-1 transcription factor components serve as hub genes. The mmu_circ_0001787(circGLCE)/miR-339-5p/Junb and mmu_circ_0001899(circFAM120C)/ miR-181a-5p/Egr1 ceRNA networks were established based on qRT-PCR and Western blot analysis.

Conclusion: Two AP-1 transcription factor component-related ceRNA networks, circGLCE/miR- 339-5p/Junb and circFAM120C/miR-181a-5p/Egr1, were constructed using a mouse model of AD. These ceRNA networks may contribute to transcription regulation in AD and provide potential biomarkers for AD diagnosis and treatment.

Keywords: Alzheimer’s disease, circRNA, microRNA, transcription factor, ceRNA, gene ontology.

« Previous
[1]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement 2021; 17(3): 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[2]
Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci 2017; 40(6): 347-57.
[http://dx.doi.org/10.1016/j.tins.2017.04.002] [PMID: 28494972]
[3]
Lanoiselée HM, Nicolas G, Wallon D, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med 2017; 14(3): e1002270.
[http://dx.doi.org/10.1371/journal.pmed.1002270] [PMID: 28350801]
[4]
Lauretti E, Dabrowski K, Praticò D. The neurobiology of non-coding RNAs and Alzheimer’s disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71: 101425.
[http://dx.doi.org/10.1016/j.arr.2021.101425] [PMID: 34384901]
[5]
Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol 2021; 22(6): 425-38.
[http://dx.doi.org/10.1038/s41580-021-00354-w] [PMID: 33772227]
[6]
Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455(7209): 64-71.
[http://dx.doi.org/10.1038/nature07242] [PMID: 18668037]
[7]
Juźwik CAS, S. Drake S, Zhang Y, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182: 101664.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101664] [PMID: 31356849]
[8]
Wang X, Liu D, Huang HZ, et al. A Novel MicroRNA-124/PTPN1 Signal Pathway Mediates Synaptic and Memory Deficits in Alzheimer’s Disease. Biol Psychiatry 2018; 83(5): 395-405.
[http://dx.doi.org/10.1016/j.biopsych.2017.07.023] [PMID: 28965984]
[9]
Zheng K, Hu F, Zhou Y, et al. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat Commun 2021; 12(1): 1903.
[http://dx.doi.org/10.1038/s41467-021-22196-y] [PMID: 33771994]
[10]
Hou TY, Zhou Y, Zhu LS, et al. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer’s disease. J Neurochem 2020; 154(4): 441-57.
[http://dx.doi.org/10.1111/jnc.14961] [PMID: 31951013]
[11]
Wang X, Li H, Lu Y, Cheng L. Circular RNAs in Human Cancer. Front Oncol 2021; 10: 577118.
[http://dx.doi.org/10.3389/fonc.2020.577118] [PMID: 33537235]
[12]
Zhang N, Gao Y, Yu S, Sun X, Shen K. Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells. Life Sci 2020; 252: 117637.
[http://dx.doi.org/10.1016/j.lfs.2020.117637] [PMID: 32251633]
[13]
Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s Disease. Neurosci Bull 2019; 35(5): 877-88.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[14]
Li W, Yang S, Qiao R, Zhang J. Potential value of urinary exosome-derived LET-7C-5p in the diagnosis and progression of type II Diabetic Nephropathy. Clin Lab 2018; 64(5): 709-18.
[http://dx.doi.org/10.7754/Clin.Lab.2018.171031] [PMID: 29739042]
[15]
Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44(W1): W90-7.
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[16]
Huang HY, Lin YC, Li J, et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 2020; 48(D1): D148-54.
[PMID: 31647101]
[17]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(Database issue): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[18]
Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 2017; 35(3): 222-9.
[http://dx.doi.org/10.1038/nbt.3802] [PMID: 28244992]
[19]
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer’s disease: Challenges and perspectives. Mol Neurodegener 2021; 16(1): 76.
[http://dx.doi.org/10.1186/s13024-021-00496-7] [PMID: 34742333]
[20]
Walgrave H, Balusu S, Snoeck S, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell 2021; 28(10): 1805-1821.e8.
[http://dx.doi.org/10.1016/j.stem.2021.05.001] [PMID: 34033742]
[21]
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 2020; 21(8): 475-90.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[22]
Trejo J, Massamiri T, Deng T, Dewji NN, Bayney RM, Brown JH. A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of the Alzheimer’s beta-amyloid precursor protein gene. J Biol Chem 1994; 269(34): 21682-90.
[http://dx.doi.org/10.1016/S0021-9258(17)31860-4] [PMID: 8063812]
[23]
Huang YA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Aβ Secretion. Cell 2017; 168(3): 427-441.e21.
[http://dx.doi.org/10.1016/j.cell.2016.12.044] [PMID: 28111074]
[24]
Cheng C, Li W, Zhang Z, et al. MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 2013; 288(19): 13748-61.
[http://dx.doi.org/10.1074/jbc.M112.381392] [PMID: 23546882]
[25]
Ren RJ, Zhang YF, Dammer EB, et al. Peripheral Blood MicroRNA Expression Profiles in Alzheimer’s Disease: Screening, Validation, Association with Clinical Phenotype and Implications for Molecular Mechanism. Mol Neurobiol 2016; 53(8): 5772-81.
[http://dx.doi.org/10.1007/s12035-015-9484-8] [PMID: 26497032]
[26]
Hu YT, Chen XL, Huang SH, et al. Early growth response-1 regulates acetylcholinesterase and its relation with the course of Alzheimer’s disease. Brain Pathol 2019; 29(4): 502-12.
[http://dx.doi.org/10.1111/bpa.12688] [PMID: 30511454]
[27]
Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci 2014; 122: 89-129.
[http://dx.doi.org/10.1016/B978-0-12-420170-5.00004-0] [PMID: 24484699]
[28]
Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci 2003; 358(1432): 805-14.
[http://dx.doi.org/10.1098/rstb.2002.1224] [PMID: 12740127]
[29]
Zhu QB, Unmehopa U, Bossers K, et al. MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain 2016; 139(Pt 3): 908-21.
[http://dx.doi.org/10.1093/brain/awv383] [PMID: 26792551]
[30]
Rodriguez-Ortiz CJ, Prieto GA, Martini AC, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer’s disease. Aging Cell 2020; 19(3): e13118.
[http://dx.doi.org/10.1111/acel.13118] [PMID: 32087004]
[31]
Ansari A, Maffioletti E, Milanesi E, et al. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging 2019; 82: 102-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.06.005] [PMID: 31437718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy