Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

An Insight into the Functional Benefit of Phenolic Acids from Whole Grains: An Update

Author(s): Monika Chauhan, Jayshree Mahanty, Sudhir Kumar, Harjeet Singh and Alok Sharma*

Volume 19, Issue 9, 2023

Published on: 30 December, 2022

Page: [906 - 921] Pages: 16

DOI: 10.2174/1573401318666220610212537

Price: $65

Abstract

Plant metabolites are known for their beneficial effects on human health. Whole grains are also called as a virtuous source of staple food and phenolic acids. These acids are present in whole grains abundantly in three forms, free, conjugated, and bound. From the entire content of phenolic acids in whole grains, an abundance of bound phenolic acids is about 70-95%. The bioavailability of phenolic acids varies from simple molecules to complex molecules. However, mechanical cooking influences phenolic acid's structural and functional composition. These natural phenolic acids exhibit several pharmacological activities such as antioxidant effect, antiinflammatory, antimicrobial, and anticancer properties within the physiological system. The present review covers the research and development of crucial whole grain products and nutraceuticals by providing insights to analytical methods, bioavailability, bioaccessibility and health benefits of phenolic acids. Additionally, this review encompasses recent information on the evaluation of complete grains, including contemporary strategies for assessing the bioavailability of phenolic acid.

Keywords: Whole grains, Phenolic acids, HPLC, Bioavailability, Functional Benefits, hydroxybenzoic acid

Graphical Abstract

[1]
Thapa R, Carver BF, Horn GW, Goad CLJC. Genetic differentiation of winter wheat populations following exposure to two management systems in early inbreeding generations. Crop Sci 2010; 50(2): 591-601.
[http://dx.doi.org/10.2135/cropsci2009.05.0234]
[2]
Rebello CJ, Greenway FL, Finley JW. Whole grains and pulses: A comparison of the nutritional and health benefits. J Agric Food Chem 2014; 62(29): 7029-49.
[http://dx.doi.org/10.1021/jf500932z] [PMID: 24992700]
[3]
Viladomiu M, Hontecillas R, Lu P, Bassaganya-Riera J. Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. Evid Based Complement Alternat Med 2013; 2013: 789764.
[http://dx.doi.org/10.1155/2013/789764]
[4]
Engert N. Phenolic acids and antioxidative capacity on ancient wheat namely einkorn (T monococcum ssp), emmer (T turgidum ssp) and spelt wheat (T aestivum ssp spelta) and on germinated bread wheat (T aestivum ssp aestivum). Universitätsbibliothek 2011.
[5]
Singh B, Singh JP, Kaur A, Singh N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res Int 2017; 101: 1-16.
[http://dx.doi.org/10.1016/j.foodres.2017.09.026] [PMID: 28941672]
[6]
Méndez-Lagunas LL, Cruz-Gracida M, Barriada-Bernal LG, Rodríguez-Méndez LIJJFS. Profile of phenolic acids, antioxidant activity and total phenolic compounds during blue corn tortilla processing and its bioaccessibility. J Food Sci Technol 2020; 57(12): 4688-96.
[http://dx.doi.org/10.1007/s13197-020-04505-3] [PMID: 33087979]
[7]
Kaurinovic B, Vastag D. Flavonoids and phenolic acids as potential natural antioxidants. In: Antioxidants. London, UK: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.83731]
[8]
Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr Res Rev 2010; 23(1): 65-134.
[http://dx.doi.org/10.1017/S0954422410000041] [PMID: 20565994]
[9]
Kushi LH, Doyle C, McCullough M, et al. Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. American Cancer Society 2012; 62(1): 30-67.
[10]
Amorim-Carrilho K, Cepeda A, Fente C, Regal P. Review of methods for analysis of carotenoids. Trends Analyt Chem 2014; 56: 49-73.
[http://dx.doi.org/10.1016/j.trac.2013.12.011]
[11]
Harris KA, Kris-Etherton PM. Effects of whole grains on coronary heart disease risk. Curr Atheroscler Rep 2010; 12(6): 368-76.
[http://dx.doi.org/10.1007/s11883-010-0136-1] [PMID: 20820954]
[12]
Johnston FB, Stern H. Mass isolation of viable wheat embryos. Nature 1957; 179(4551): 160-1.
[http://dx.doi.org/10.1038/179160b0] [PMID: 13400131]
[13]
Gani A, Wani S, Masoodi F, Hameed GJJFPT. Whole-grain cereal bioactive compounds and their health benefits: A review. J Food Process Technol 2012; 3(3): 146-56.
[http://dx.doi.org/10.4172/2157-7110.1000146]
[14]
Trittinger S. Wheat (Triticum aestivum) kernel polymers as breeding targets for improved end-use quality. 2019.
[15]
Evers T, Millar SJJ. Cereal grain structure and development: Some implications for quality. J Cereal Sci 2002; 36(3): 261-84.
[http://dx.doi.org/10.1006/jcrs.2002.0435]
[16]
Beleggia R, Ficco D, Nigro FM, et al. Effect of sowing date on bioactive compounds and grain morphology of three pigmented cereal species. Agronomy 2021; 11(3): 591.
[http://dx.doi.org/10.3390/agronomy11030591]
[17]
Mir NA, Riar CS, Singh SJTFS. Technology, nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci Technol 2018; 75: 170-80.
[http://dx.doi.org/10.1016/j.tifs.2018.03.016]
[18]
Camara M, Fernandez-Ruiz V, Morales P, Sanchez-Mata MC. Fiber compounds and human health. Curr Pharm Des 2017; 23(19): 2835-49.
[http://dx.doi.org/10.2174/1381612823666170216123219] [PMID: 28215158]
[19]
Seal C, Weegels P. C&E Spring Meeting 2009-Whole Grain Global Summit. Cereal Foods World 2009; 54(2): 75.
[http://dx.doi.org/10.1094/CFW-54-2-0075]
[20]
Youssef HM, Eggert K, Koppolu R, et al. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet 2017; 49(1): 157-61.
[http://dx.doi.org/10.1038/ng.3717] [PMID: 27841879]
[21]
Călinoiu LF, Vodnar DCJN. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018; 10(11): 1615.
[http://dx.doi.org/10.3390/nu10111615] [PMID: 30388881]
[22]
Siwela M. Finger millet grain phenolics and their impact on malt and cookie quality. University of Pretoria 2009.
[23]
Lattanzio V, Kroon PA, Quideau S, Treutter DJ. Plant phenolics-secondary metabolites with diverse functions. Recent Adv Polyphenol Res 2008; 1: 1-35.
[24]
Chen O, Costa S, Carolo dos Santos K J. W g. Phenolic Acids 2019; 357-82.
[25]
Vuolo MM, Lima VS, Junior MRM. Phenolic compounds: Structure, classification, and antioxidant power Bioactive compounds. Elsevier 2019; pp. 33-50.
[http://dx.doi.org/10.1016/B978-0-12-814774-0.00002-5]
[26]
Jideani A, Silungwe H, Takalani T, Anyasi TA, Udeh H, Omolola A. Human health. In: Oguntibeju O, Ed. Croatia: Antioxidant-rich Natural Grain Products and Human Health 2014; pp. 167-87.
[27]
Palmer GH. Barley and malt Handbook of Brewing. CRC Press 2017; pp. 107-28.
[http://dx.doi.org/10.1201/9781351228336-5]
[28]
Jones JM. Mining whole grains for functional components. Food Science & Technology Bulletin: Functional Foods 2007; 4(7): 67-86.
[29]
Tullio V, Gasperi V, Catani MV, Savini I. The impact of whole grain intake on gastrointestinal tumors: A focus on colorectal, gastric, and esophageal cancers. Nutrients 2020; 13(1): 81.
[http://dx.doi.org/10.3390/nu13010081] [PMID: 33383776]
[30]
Niro S, D’Agostino A, Fratianni A, Cinquanta L, Panfili G. Gluten-free alternative grains: Nutritional evaluation and bioactive compounds. Foods 2019; 8(6): 208.
[http://dx.doi.org/10.3390/foods8060208] [PMID: 31212866]
[31]
Pang Y, Ahmed S, Xu Y, et al. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem 2018; 240: 212-21.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.095] [PMID: 28946264]
[32]
Aslam F, Khaliq A, Matloob A, Tanveer A, Hussain S, Zahir ZAJC. Allelopathy in agro-ecosystems: A critical review of wheat allelopathy-concepts and implications. Chemoecology 2017; 27(1): 1-24.
[http://dx.doi.org/10.1007/s00049-016-0225-x]
[33]
Gong ES, Luo S, Li T, et al. Phytochemical profiles and antioxidant activity of processed brown rice products. Food Chem 2017; 232: 67-78.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.148] [PMID: 28490126]
[34]
Gharibzahedi SMT, Jafari SM. Technology, the importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 2017; 62: 119-32.
[http://dx.doi.org/10.1016/j.tifs.2017.02.017]
[35]
Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr 2018; 58(15): 2531-48.
[http://dx.doi.org/10.1080/10408398.2017.1331200] [PMID: 28609142]
[36]
Liukkonen KH, Katina K, Wilhelmsson A, et al. Process-induced changes on bioactive compounds in whole grain rye. Proc Nutr Soc 2003; 62(1): 117-22.
[http://dx.doi.org/10.1079/PNS2002218] [PMID: 12740066]
[37]
Slavin JL. Whole grains, refined grains and fortified refined grains: What’s the difference? Asia Pacific J Clin Nutr 2000; 9(S1): S23-7.
[38]
Değirmencioğlu N, Gürbüz O, Herken EN, Yıldız AY. The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana. Food Chem 2016; 194: 587-94.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.065] [PMID: 26471596]
[39]
Wang T, He F, Chen GJJFF. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J Funct Foods 2014; 7: 101-11.
[http://dx.doi.org/10.1016/j.jff.2014.01.033]
[40]
Farkas J. Irradiation as a method for decontaminating food. A review. Int J Food Microbiol 1998; 44(3): 189-204.
[http://dx.doi.org/10.1016/S0168-1605(98)00132-9] [PMID: 9851599]
[41]
Jakubczyk A, Złotek U, Szymanowska U, Rybczyńska-Tkaczyk K, Jęderka K, Lewicki S. In vitro antioxidant, anti-inflammatory, anti-metabolic syndrome, antimicrobial, and anticancer effect of phenolic acids isolated from fresh lovage leaves Levisticum officinale Koch elicited with jasmonic acid and yeast extract. Antioxidants 2020; 9(6): 554.
[http://dx.doi.org/10.3390/antiox9060554] [PMID: 32630448]
[42]
Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC. Dietary anthocyanins and stroke: A review of pharmacokinetic and pharmacodynamic studies. Nutrients 2019; 11(7): 1479.
[http://dx.doi.org/10.3390/nu11071479] [PMID: 31261786]
[43]
Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharmaceutical Sci 2018; 13(1): 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[44]
Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr Rev Food Sci Food Saf 2020; 19(3): 954-94.
[http://dx.doi.org/10.1111/1541-4337.12547] [PMID: 33331687]
[45]
Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 2011; 76(1): R6-R15.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01957.x] [PMID: 21535705]
[46]
Barcelos CA, Maeda RN, Betancur GJV, Pereira NJW Jr, Valorization B. The essentialness of delignification on enzymatic hydrolysis of sugar cane bagasse cellulignin for second generation ethanol production. Waste Biomass Valoriz 2013; 4(2): 341-6.
[http://dx.doi.org/10.1007/s12649-012-9137-3]
[47]
McClements DJ, Zou L, Zhang R, et al. Enhancing nutraceutical performance using excipient foods: Designing food structures and compositions to increase bioavailability. Compr Rev Food Sci Food Saf 2015; 14(6): 824-47.
[http://dx.doi.org/10.1111/1541-4337.12170]
[48]
Arfaoui L. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 2021; 26(10): 2959.
[http://dx.doi.org/10.3390/molecules26102959] [PMID: 34065743]
[49]
Harder H, Tetens I, Let MB, Meyer AS. Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo. Eur J Nutr 2004; 43(4): 230-6.
[http://dx.doi.org/10.1007/s00394-004-0463-5] [PMID: 15309442]
[50]
Kalb V, Seewald T, Hofmann T, Granvogl M, Chemistry F. Studies on the impact of malting and mashing on the free, soluble ester-bound, and insoluble ester-bound forms of desired and undesired phenolic acids aiming at styrene mitigation during wheat beer brewing. J Agric Food Chem 2020; 68(44): 12421-32.
[http://dx.doi.org/10.1021/acs.jafc.0c04835] [PMID: 32945663]
[51]
Yeh CT, Yen GC. Effects of phenolic acids on human phenolsulfotransferases in relation to their antioxidant activity. J Agric Food Chem 2003; 51(5): 1474-9.
[http://dx.doi.org/10.1021/jf0208132] [PMID: 12590501]
[52]
Hefni ME, Amann LS, Witthöft CM. A HPLC-UV method for the quantification of phenolic acids in cereals. Food Anal Methods 2019; 12(12): 2802-12.
[http://dx.doi.org/10.1007/s12161-019-01637-x]
[53]
Ma Z, Ge L, Lee AS, Yong JW, Tan SN, Ong ES. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal Chim Acta 2008; 610(2): 274-81.
[http://dx.doi.org/10.1016/j.aca.2008.01.045] [PMID: 18291140]
[54]
Mattila P, Kumpulainen J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem 2002; 50(13): 3660-7.
[http://dx.doi.org/10.1021/jf020028p] [PMID: 12059140]
[55]
Li F, Zhang X, Zheng S, Lu K, Zhao G, Ming JJJ. The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran. J Funct Foods 2016; 22: 145-55.
[http://dx.doi.org/10.1016/j.jff.2016.01.027]
[56]
Ross K, Beta T, Arntfield SJ. A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chem 2009; 113(1): 336-44.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.064]
[57]
Mattila P, Pihlava JM, Hellström J, Chemistry F. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 2005; 53(21): 8290-5.
[http://dx.doi.org/10.1021/jf051437z] [PMID: 16218677]
[58]
Abotaleb M, Liskova A, Kubatka P, Büsselberg D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020; 10(2): 221.
[http://dx.doi.org/10.3390/biom10020221] [PMID: 32028623]
[59]
Srinivasan M, Sudheer AR, Menon VP. Ferulic Acid: Therapeutic potential through its antioxidant property. J Clin Biochem Nutr 2007; 40(2): 92-100.
[http://dx.doi.org/10.3164/jcbn.40.92] [PMID: 18188410]
[60]
Rice-Evans C, Miller N, Paganga GJT. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2(4): 152-9.
[http://dx.doi.org/10.1016/S1360-1385(97)01018-2]
[61]
Forni C, Facchiano F, Bartoli M, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res Int 2019; 2019: 16.
[http://dx.doi.org/10.1155/2019/8748253]
[62]
Mansoorian B, Combet E, Alkhaldy A, Garcia AL, Edwards CA. Impact of fermentable fibres on the colonic microbiota metabolism of dietary polyphenols rutin and quercetin. Int J Environ Res Public Health 2019; 16(2): 292.
[http://dx.doi.org/10.3390/ijerph16020292] [PMID: 30669671]
[63]
Belobrajdic DP, Bird AR. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr J 2013; 12(1): 62.
[http://dx.doi.org/10.1186/1475-2891-12-62] [PMID: 23679924]
[64]
Boo YC. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants 2019; 8(8): 275.
[http://dx.doi.org/10.3390/antiox8080275] [PMID: 31382682]
[65]
Whent M, Huang H, Xie Z, et al. Phytochemical composition, anti-inflammatory, and antiproliferative activity of whole wheat flour. J Agric Food Chem 2012; 60(9): 2129-35.
[http://dx.doi.org/10.1021/jf203807w] [PMID: 22321109]
[66]
Poudel R, Bhatta M. Review of nutraceuticals and functional properties of whole wheat. J Nutr Food Sci 2017; 7: 1.
[http://dx.doi.org/10.4172/2155-9600.1000571]
[67]
Sova M, Saso L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients 2020; 12(8): 2190.
[http://dx.doi.org/10.3390/nu12082190] [PMID: 32717940]
[68]
Huang T, Xu M, Lee A, Cho S, Qi L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med 2015; 13(1): 1-9.
[69]
Loo YT, Howell K, Chan M, Zhang P, Ng K, Safety F. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Compr Rev Food Sci Food Saf 2020; 19(4): 1268-98.
[http://dx.doi.org/10.1111/1541-4337.12563] [PMID: 33337077]
[70]
Leonard W, Zhang P, Ying D, Fang Z, Safety F. Hydroxycinnamic acids on gut microbiota and health. Compr Rev Food Sci Food Saf 2021; 20(1): 710-37.
[http://dx.doi.org/10.1111/1541-4337.12663] [PMID: 33443803]
[71]
Bolling BW. Almond polyphenols: Methods of analysis, contribution to food quality, and health promotion. Compr Rev Food Sci Food Saf 2017; 16(3): 346-68.
[http://dx.doi.org/10.1111/1541-4337.12260] [PMID: 33371558]
[72]
Pannala AS, Razaq R, Halliwell B, Singh S, Rice-Evans CA. Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: Nitration or electron donation? Free Radic Biol Med 1998; 24(4): 594-606.
[http://dx.doi.org/10.1016/S0891-5849(97)00321-3] [PMID: 9559872]
[73]
Taguri T, Tanaka T, Kouno I, Bulletin P. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol Pharm Bull 2006; 29(11): 2226-35.
[http://dx.doi.org/10.1248/bpb.29.2226] [PMID: 17077519]
[74]
Jablonský M, Škulcová A, Malvis A, Šima J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol 2018; 282: 46-66.
[http://dx.doi.org/10.1016/j.jbiotec.2018.06.349] [PMID: 29969642]
[75]
Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int J Mol Sci 2013; 14(5): 10497-538.
[http://dx.doi.org/10.3390/ijms140510497] [PMID: 23698776]
[76]
Gaesser GA. Whole grains, refined grains, and cancer risk: A systematic review of meta-analyses of observational studies. Nutrients 2020; 12(12): 3756.
[http://dx.doi.org/10.3390/nu12123756] [PMID: 33297391]
[77]
Slavin JL, Jacobs D, Marquart L, Wiemer K. The role of whole grains in disease prevention. J Am Diet Assoc 2001; 101(7): 780-5.
[http://dx.doi.org/10.1016/S0002-8223(01)00194-8] [PMID: 11478475]
[78]
Vitaglione P, Napolitano A, Fogliano V. Technology, Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 2008; 19(9): 451-63.
[http://dx.doi.org/10.1016/j.tifs.2008.02.005]
[79]
Della Pepa G, Vetrani C, Vitale M, Riccardi G. Wholegrain intake and risk of type 2 diabetes: Evidence from epidemiological and intervention studies. Nutrients 2018; 10(9): 1288.
[http://dx.doi.org/10.3390/nu10091288] [PMID: 30213062]
[80]
Misra A, Rastogi K, Joshi SR. Whole grains and health: Perspective for Asian Indians. J Assoc Physicians India 2009; 57: 155-62.
[PMID: 19582985]
[81]
Călinoiu LF, Vodnar DC. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules 2019; 10(1): 21.
[http://dx.doi.org/10.3390/biom10010021] [PMID: 31877857]
[82]
Davison KM, Temple NJ. Cereal fiber, fruit fiber, and type 2 diabetes: Explaining the paradox. J Diabetes Complications 2018; 32(2): 240-5.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.11.002] [PMID: 29191432]
[83]
O’Neil CE, Zanovec M, Cho SS, Nicklas TA. Whole grain and fiber consumption are associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999-2004. Nutr Res 2010; 30(12): 815-22.
[http://dx.doi.org/10.1016/j.nutres.2010.10.013] [PMID: 21147364]
[84]
Cioffi I, Ibrugger S, Bache J, et al. Effects on satiation, satiety and food intake of wholegrain and refined grain pasta. Appetite 2016; 107: 152-8.
[http://dx.doi.org/10.1016/j.appet.2016.08.002] [PMID: 27496788]
[85]
Dreher ML. Whole plant foods in body weight and composition regulation. In: Dietary Patterns and Whole Plant Foods in Aging and Disease. Cham: Humana Press 2018; pp. 233-56.
[http://dx.doi.org/10.1007/978-3-319-59180-3_8]
[86]
Zong G, Gao A, Hu FB, Sun Q. Whole grain intake and mortality from all causes, cardiovascular disease, and cancer: A meta-analysis of prospective cohort studies. Circulation 2016; 133(24): 2370-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.021101] [PMID: 27297341]
[87]
McRae MP. Health benefits of dietary whole grains: An umbrella review of meta-analyses. J Chiropr Med 2017; 16(1): 10-8.
[http://dx.doi.org/10.1016/j.jcm.2016.08.008] [PMID: 28228693]
[88]
Gacquin M. Historical perspectives of dietary recommendations for diabetes. Adv Nutr Diet Diab 2015; 13.
[89]
Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013; 347: f6879.
[http://dx.doi.org/10.1136/bmj.f6879] [PMID: 24355537]
[90]
Long J, Guan P, Hu X, et al. Natural polyphenols as targeted modulators in colon cancer: Molecular mechanisms and applications. Front Immunol 2021; 12: 635484.
[http://dx.doi.org/10.3389/fimmu.2021.635484] [PMID: 33664749]
[91]
Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 2016; 15(1): 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2] [PMID: 27903278]
[92]
Makarem N, Bandera EV, Lin Y, Jacques PF, Hayes RB, Parekh N. Carbohydrate nutrition and risk of adiposity-related cancers: Results from the Framingham Offspring cohort (1991-2013). Br J Nutr 2017; 117(11): 1603-14.
[http://dx.doi.org/10.1017/S0007114517001489] [PMID: 28660846]
[93]
Adom KK, Liu RH. Antioxidant activity of grains. J Agric Food Chem 2002; 50(21): 6182-7.
[http://dx.doi.org/10.1021/jf0205099] [PMID: 12358499]
[94]
Al Sharif S. Impacts of whole grain oats intake on blood pressure and vascular function; the role of phenolic acids on the renin angiotensin system. University of Reading 2018.
[95]
Bouzaiene NN, Jaziri SK, Kovacic H, Chekir-Ghedira L, Ghedira K, Luis J. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur J Pharmacol 2015; 766: 99-105.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.044] [PMID: 26432689]
[96]
Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy