Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

General Review Article

Nano-Based Drug Delivery of Anticancer Chemotherapeutic Drugs Targeting Breast Cancer

Author(s): Akanksha Behl and Anil K. Chhillar*

Volume 18, Issue 3, 2023

Published on: 17 October, 2022

Page: [325 - 342] Pages: 18

DOI: 10.2174/157489281703220610170559

Price: $65

Abstract

Background: Chemotherapeutic drugs are principally intended to treat breast cancer. However, sooner or later, tumor drug resistance developed. These chemo drugs are effective but with numerous side effects. Breast cancer care may be extremely difficult since recurring cancer is frequently pre-treated with powerful agents. Cancer cells acquire high resistance to earlier therapies, necessitating alternative and more powerful drugs. Nanoparticles (NPs) as a medication delivery technology can overcome medication resistance in breast cancer and significantly reduce the effective dose. The off-targeted nature of chemo drugs can be resolved by encapsulating or attaching chemo drugs in nanocarriers, specifically targeting breast cancer cells.

Objectives: This review highlights various chemo drugs for breast cancer and their encapsulation or bioconjugation with nanoparticles for its targeted delivery.

Conclusion: Nanoparticles may subsist valuable abet in breast cancer management in this regard. Given that traditional chemotherapy approaches have been demonstrated to have several side effects and defects during treatment, the NPs-mediated drug delivery mechanism is a possible contender for replacement as a new technique.

Keywords: Chemotherapeutic drugs, Breast Cancer, Targeted delivery, Nanoparticles

[1]
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends: an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578 ] [PMID: 26667886]
[2]
Hassan MSU, Ansari J, Spooner D, Hussain SA. Chemotherapy for breast cancer. (Review) Oncol Rep 2010; 24(5): 1121-31.
[http://dx.doi.org/10.3892/or_00000963] [PMID: 20878101]
[3]
Chew HK. Adjuvant therapy for breast cancer: who should get what? West J Med 2001; 174(4): 284-7.
[http://dx.doi.org/10.1136/ewjm.174.4.284 ] [PMID: 11290691]
[4]
Untch M, Konecny GE, Paepke S, von Minckwitz G. Current and future role of neoadjuvant therapy for breast cancer. Breast 2014; 23(5): 526-37.
[http://dx.doi.org/10.1016/j.breast.2014.06.004 ] [PMID: 25034931]
[5]
Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. (Review) Int J Oncol 2019; 54(2): 407-19.
[PMID: 30570109]
[6]
Liu FS. Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review. Taiwan J Obstet Gynecol 2009; 48(3): 239-44.
[http://dx.doi.org/10.1016/S1028-4559(09)60296-5 ] [PMID: 19797012]
[7]
Mu Q, Kievit FM, Kant RJ, Lin G, Jeon M, Zhang M. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale 2015; 7(43): 18010-4.
[http://dx.doi.org/10.1039/C5NR04867B ] [PMID: 26469772]
[8]
Dao KL, Hanson RN. Targeting the estrogen receptor using steroid-therapeutic drug conjugates (hybrids). Bioconjug Chem 2012; 23(11): 2139-58.
[http://dx.doi.org/10.1021/bc300378e ] [PMID: 23036054]
[9]
Saulite L, Pleiko K, Popena I, Dapkute D, Rotomskis R, Riekstina U. Nanoparticle delivery to metastatic breast cancer cells by nanoengi-neered mesenchymal stem cells. Beilstein J Nanotechnol 2018; 9: 321-32.
[http://dx.doi.org/10.3762/bjnano.9.32 ] [PMID: 29515946]
[10]
Feng T, Ai X, Ong H, Zhao Y. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl Mater Interfaces 2016; 8(29): 18732-40.
[http://dx.doi.org/10.1021/acsami.6b06695 ] [PMID: 27367152]
[11]
Truffi M, Colombo M, Sorrentino L. et al. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep 2018; 8(1): 6563-73.
[http://dx.doi.org/10.1038/s41598-018-24968-x ] [PMID: 29700387]
[12]
Rathinaraj P, Al-Jumaily AM, Huh DS. Internalization: acute apoptosis of breast cancer cells using herceptin-immobilized gold nanoparticles. Breast Cancer (Dove Med Press) 2015; 7: 51-8.
[http://dx.doi.org/10.2147/BCTT.S69834 ] [PMID: 25709498]
[13]
Karahaliloğlu Z, Kilicay E, Alpaslan P, Hazer B, Denkbas EB. Enhanced antitumor activity of epigallocatechin gallate–conjugated dual-drug-loaded polystyrene–polysoyaoil–diethanol amine nanoparticles for breast cancer therapy. J Bioact Compat Polym 2018; 33(1): 38-62.
[http://dx.doi.org/10.1177/0883911517710811]
[14]
Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 2013; 7(11): 9571-84.
[http://dx.doi.org/10.1021/nn4047925 ] [PMID: 24144228]
[15]
You Y, Xu Z, Chen Y. Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer. Drug Deliv 2018; 25(1): 448-60.
[http://dx.doi.org/10.1080/10717544.2018.1435746 ] [PMID: 29405790]
[16]
Singh SK, Singh S, Lillard JW Jr, Singh R. Drug delivery approaches for breast cancer. Int J Nanomedicine 2017; 12: 6205-18.
[http://dx.doi.org/10.2147/IJN.S140325 ] [PMID: 28883730]
[17]
Montemurro F, Nuzzolese I, Ponzone R. Neoadjuvant or adjuvant chemotherapy in early breast cancer? Expert Opin Pharmacother 2020; 21(9): 1071-82.
[http://dx.doi.org/10.1080/14656566.2020.1746273 ] [PMID: 32237920]
[18]
Bredin P, Walshe JM, Denduluri N. Systemic therapy for metastatic HER2-positive breast cancer. Semin Oncol 2020; 47(5): 259-69.
[http://dx.doi.org/10.1053/j.seminoncol.2020.07.008 ] [PMID: 32896428]
[19]
Azim HA, Ghosn M, Oualla K, Kassem L. Personalized treatment in metastatic triple-negative breast cancer: The outlook in 2020. Breast J 2020; 26(1): 69-80.
[http://dx.doi.org/10.1111/tbj.13713 ] [PMID: 31872557]
[20]
Li Y, Zhou Y, Mao F. et al. Adjuvant addition of capecitabine to early-stage triple-negative breast cancer patients receiving standard chemotherapy: a meta-analysis. Breast Cancer Res Treat 2020; 179(3): 533-42.
[http://dx.doi.org/10.1007/s10549-019-05513-4 ] [PMID: 31865475]
[21]
Tan AR, Im SA, Mattar A. et al. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDeriCa): A randomised, open-label, multicentre, non-inferiority, phase 3 study. Lancet Oncol 2021; 22(1): 85-97.
[http://dx.doi.org/10.1016/S1470-2045(20)30536-2 ] [PMID: 33357420]
[22]
Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 2018; 35(4): 309-18.
[http://dx.doi.org/10.1007/s10585-018-9903-0 ] [PMID: 29799080]
[23]
Harbeck N, Gnant M. Breast cancer. Lancet 2017; 389(10074): 1134-50.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8 ] [PMID: 27865536]
[24]
Lage H. Drug resistance in breast cancer. Cancer Ther 2003; 1: 81-91.
[25]
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53(1): 615-27.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929 ] [PMID: 11818492]
[26]
Pluen A, Boucher Y, Ramanujan S. et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 2001; 98(8): 4628-33.
[http://dx.doi.org/10.1073/pnas.081626898 ] [PMID: 11274375]
[27]
Green SK, Frankel A, Kerbel RS. Adhesion-dependent multicellular drug resistance. Anticancer Drug Des 1999; 14(2): 153-68.
[PMID: 10405642]
[28]
Longo-Sorbello GS, Bertino JR. Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica 2001; 86(2): 121-7.
[PMID: 11224479]
[29]
Gottesman MM, Ambudkar SV, Ni B. et al. Exploiting multidrug resistance to treat cancer. Cold Spring Harb Symp Quant Biol 1994; 59(0): 677-83.
[http://dx.doi.org/10.1101/SQB.1994.059.01.078 ] [PMID: 7587130]
[30]
Liu YY, Han TY, Giuliano AE, Cabot MC. Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 2001; 15(3): 719-30.
[http://dx.doi.org/10.1096/fj.00-0223com ] [PMID: 11259390]
[31]
Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74(6): 957-67.
[http://dx.doi.org/10.1016/0092-8674(93)90719-7 ] [PMID: 8402885]
[32]
Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001; 7(5): 584-90.
[http://dx.doi.org/10.1038/87912 ] [PMID: 11329060]
[33]
Partridge AH, Burstein HJ, Winer EP. Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women With Early-Stage Breast Cancer. J J Natl Cancer Inst Monogr 2001; 2001(30): 135-42.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003451]
[34]
Scully OJ, Bay BH, Yip G, Yu Y. Breast cancer metastasis. Cancer Genomics Proteomics 2012; 9(5): 311-20.
[PMID: 22990110]
[35]
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1866-79.
[http://dx.doi.org/10.1016/j.addr.2013.09.019 ] [PMID: 24120656]
[36]
Patra JK, Das G, Fraceto LF. et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8 ] [PMID: 30231877]
[37]
Litman T, Brangi M, Hudson E. et al. The multidrug-resistant phenotype associated with overexpression of the new ABC halftransporter, MXR (ABCG2). J Cell Sci 2000; 113(Pt 11): 2011-21.
[http://dx.doi.org/10.1242/jcs.113.11.2011 ] [PMID: 10806112]
[38]
Chintamani, Singh JP, Mittal MK, Saxena S, Bansal A, Bhatia A. Role of p-glycoprotein expression in predicting response to neoadjuvant chemotherapy in breast cancer–a prospective clinical study. World J Surg Oncol 2005; 3: 61.
[39]
Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 2003; 3(7): 502-16.
[http://dx.doi.org/10.1038/nrc1123 ] [PMID: 12835670]
[40]
Murakami M, Cabral H, Matsumoto Y. et al. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 2011; 3(64): 64ra2.
[http://dx.doi.org/10.1126/scitranslmed.3001385 ] [PMID: 21209412]
[41]
Choi KY, Correa S, Min J. et al. Binary targeting of siRNA to hematologic cancer cells in vivo using layer-by-layer nanoparticles. Adv Funct Mater 2019; 29(20), 1900018.
[http://dx.doi.org/10.1002/adfm.201900018 ] [PMID: 31839764]
[42]
Giordano C, La Camera G, Gelsomino L. et al. The Biology of Exosomes in Breast Cancer Progression: Dissemination, Immune Evasion and Metastatic Colonization. Cancers (Basel) 2020; 12(8): 2179.
[http://dx.doi.org/10.3390/cancers12082179 ] [PMID: 32764376]
[43]
Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol 2012; 6(2): 140-6.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010 ] [PMID: 22356776]
[44]
Slamon DJ, Leyland-Jones B, Shak S. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11): 783-92.
[http://dx.doi.org/10.1056/NEJM200103153441101 ] [PMID: 11248153]
[45]
Lin K, Lipsitz R, Miller T, Janakiraman S. Force, U.S.P.S.T. Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update for the U.S. Preventive Services Task Force. Ann Intern Med 2008; 149(3): 192-9.
[http://dx.doi.org/10.7326/0003-4819-149-3-200808050-00009 ] [PMID: 18678846]
[46]
van de Vijver MJ, He YD, van’t Veer LJ. et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347(25): 1999-2009.
[http://dx.doi.org/10.1056/NEJMoa021967 ] [PMID: 12490681]
[47]
Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26.
[http://dx.doi.org/10.1016/j.addr.2008.08.005 ] [PMID: 18840489]
[48]
Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010; 62(2): 90-9.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005 ] [PMID: 20380880]
[49]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2012; 64: 206-12.
[http://dx.doi.org/10.1016/j.addr.2012.09.033 ] [PMID: 15350294]
[50]
Prakash JS, Rajamanickam K. Aptamers and their significant role in cancer therapy and diagnosis. Biomedicines 2015; 3(3): 248-69.
[http://dx.doi.org/10.3390/biomedicines3030248 ] [PMID: 28536411]
[51]
Valetti S, Mura S, Noiray M. et al. Peptide conjugation: before or after nanoparticle formation? Bioconjug Chem 2014; 25(11): 1971-83.
[http://dx.doi.org/10.1021/bc5003423 ] [PMID: 25313527]
[52]
Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 2012; 3(1): 18496.
[http://dx.doi.org/10.3402/nano.v3i0.18496 ] [PMID: 23240070]
[53]
Society AC. Breast cancer facts & figures 2017-2018. American Vancer Socity Inc 2017.
[54]
Jin S, Ye K. Targeted drug delivery for breast cancer treatment. Recent Patents Anticancer Drug Discov 2013; 8(2): 143-53.
[http://dx.doi.org/10.2174/1574892811308020003 ] [PMID: 23394116]
[55]
Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 2010; 146(3): 264-75.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.009 ] [PMID: 20385184]
[56]
Jensen EV, Jacobson HI, Walf AA, Frye CA. Estrogen action: a historic perspective on the implications of considering alternative ap-proaches. Physiol Behav 2010; 99(2): 151-62.
[http://dx.doi.org/10.1016/j.physbeh.2009.08.013 ] [PMID: 19737574]
[57]
Li L, Xiao B, Tong H, Xie F, Zhang Z, Xiao GG. Regulation of breast cancer tumorigenesis and metastasis by miRNAs. Expert Rev Proteomics 2012; 9(6): 615-25.
[http://dx.doi.org/10.1586/epr.12.64 ] [PMID: 23256672]
[58]
Iorio MV, Ferracin M, Liu CG. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65(16): 7065-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1783 ] [PMID: 16103053]
[59]
Ding X, Zhu L, Ji T. et al. Long intergenic non-coding RNAs (LincRNAs) identified by RNA-seq in breast cancer. PLoS One 2014; 9(8), e103270.
[http://dx.doi.org/10.1371/journal.pone.0103270 ] [PMID: 25084155]
[60]
Rasool M, Malik A, Zahid S. et al. Non-coding RNAs in cancer diagnosis and therapy. Noncoding RNA Res 2016; 1(1): 69-76.
[http://dx.doi.org/10.1016/j.ncrna.2016.11.001 ] [PMID: 30159413]
[61]
Zhang J, Zhang P, Zou Q. et al. Co-Delivery of Gemcitabine and Paclitaxel in cRGD-Modified Long Circulating Nanoparticles with Asym-metric Lipid Layers for Breast Cancer Treatment. Molecules 2018; 23(11): 2906.
[http://dx.doi.org/10.3390/molecules23112906 ] [PMID: 30405089]
[62]
Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater 2013; 12(11): 958-62.
[http://dx.doi.org/10.1038/nmat3792 ] [PMID: 24150413]
[63]
Carboni E, Tschudi K, Nam J, Lu X, Ma AWK. Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech 2014; 15(3): 762-71.
[http://dx.doi.org/10.1208/s12249-014-0099-6 ] [PMID: 24687242]
[64]
von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BYS. Breaking Down the Barriers to Precision Cancer Nanomedicine. Trends Biotechnol 2017; 35(2): 159-71.
[http://dx.doi.org/10.1016/j.tibtech.2016.07.006 ] [PMID: 27492049]
[65]
Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine 2016; 12(1): 81-103.
[http://dx.doi.org/10.1016/j.nano.2015.08.006 ] [PMID: 26370707]
[66]
Setyawati MI, Tay CY, Bay BH, Leong DT. Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin. ACS Nano 2017; 11(5): 5020-30.
[http://dx.doi.org/10.1021/acsnano.7b01744 ] [PMID: 28422481]
[67]
Wang J, Zhang L, Peng F, Shi X, Leong DT. Targeting Endothelial Cell Junctions with Negatively Charged Gold Nanoparticles. Chem Mater 2018; 30(11): 3759-67.
[http://dx.doi.org/10.1021/acs.chemmater.8b00840]
[68]
Tang Y, Soroush F, Tong Z, Kiani MF, Wang B. Targeted multidrug delivery system to overcome chemoresistance in breast cancer. Int J Nanomedicine 2017; 12: 671-81.
[http://dx.doi.org/10.2147/IJN.S124770 ] [PMID: 28176940]
[69]
Mamot C, Ritschard R, Wicki A. et al. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells. J Drug Target 2012; 20(5): 422-32.
[http://dx.doi.org/10.3109/1061186X.2012.680960 ] [PMID: 22519893]
[70]
Gener P, Gouveia LP, Sabat GR. et al. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine 2015; 11(8): 1883-92.
[http://dx.doi.org/10.1016/j.nano.2015.07.009 ] [PMID: 26238079]
[71]
Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 2016; 143: 532-46.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.075 ] [PMID: 27045981]
[72]
Wang H, Agarwal P, Zhao S. et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials 2015; 72: 74-89.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048 ] [PMID: 26344365]
[73]
Rao W, Wang H, Han J. et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 2015; 9(6): 5725-40.
[http://dx.doi.org/10.1021/nn506928p ] [PMID: 26004286]
[74]
Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 2013; 171(3): 280-7.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.014 ] [PMID: 23871962]
[75]
Pramanik P, Halder D, Jana SS, Ghosh S. pH-Triggered Sustained Drug Delivery from a Polymer Micelle having the β-Thiopropionate Linkage. Macromol Rapid Commun 2016; 37(18): 1499-506.
[http://dx.doi.org/10.1002/marc.201600260 ] [PMID: 27448089]
[76]
Cheng B, Lu B, Liu X. et al. A pH-responsive glycolipid-like nanocarrier for optimising the time-dependent distribution of free chemical drugs in focal cells. Int J Pharm 2017; 522(1-2): 210-21.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.068 ] [PMID: 28259679]
[77]
Monteiro LOF, Malachias Â, Pound-Lana G. et al. Paclitaxel-Loaded pH-Sensitive Liposome: New Insights on Structural and Physico-chemical Characterization. Langmuir 2018; 34(20): 5728-37.
[http://dx.doi.org/10.1021/acs.langmuir.8b00411 ] [PMID: 29676924]
[78]
Ng KE, Amin MCIM, Katas H. et al. pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery. Nanoscale Res Lett 2016; 11(1): 539.
[http://dx.doi.org/10.1186/s11671-016-1755-4 ] [PMID: 27921280]
[79]
Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm 2016; 13(6): 1833-42.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00987 ] [PMID: 27074028]
[80]
Cullis J, Siolas D, Avanzi A, Barui S, Maitra A, Bar-Sagi D. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol Res 2017; 5(3): 182-90.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0125 ] [PMID: 28108630]
[81]
Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li SD. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J Control Release 2012; 162(3): 575-81.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.043 ] [PMID: 22967490]
[82]
Murakami M, Ernsting MJ, Undzys E, Holwell N, Foltz WD, Li SD. Docetaxel conjugate nanoparticles that target α-smooth muscle actin-expressing stromal cells suppress breast cancer metastasis. Cancer Res 2013; 73(15): 4862-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0062 ] [PMID: 23907638]
[83]
Qin C, He B, Dai W. et al. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. Mol Pharm 2014; 11(10): 3233-41.
[http://dx.doi.org/10.1021/mp400691z ] [PMID: 24559485]
[84]
Yang D, Feng L, Dougherty CA. et al. In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 2016; 104: 361-71.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.029 ] [PMID: 27490486]
[85]
Wang Z, Yu Y, Dai W. et al. A specific peptide ligand-modified lipid nanoparticle carrier for the inhibition of tumor metastasis growth. Biomaterials 2013; 34(3): 756-64.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.018 ] [PMID: 23117217]
[86]
Li M, Tang Z, Zhang D. et al. Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 2015; 51: 161-72.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.002 ] [PMID: 25771007]
[87]
Al Faraj A, Shaik AP, Shaik AS. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomedicine 2014; 10: 157-68.
[http://dx.doi.org/10.2147/IJN.S75074 ] [PMID: 25565811]
[88]
Chow EK, Zhang XQ, Chen M. et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 2011; 3(73), 73ra21.
[http://dx.doi.org/10.1126/scitranslmed.3001713 ] [PMID: 21389265]
[89]
Gao ZG, Tian L, Hu J, Park IS, Bae YH. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release 2011; 152(1): 84-9.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.021 ] [PMID: 21295088]
[90]
Cheng X, Li D, Sun M. et al. Co-delivery of DOX and PDTC by pH-sensitive nanoparticles to overcome multidrug resistance in breast cancer. Colloids Surf B Biointerfaces 2019; 181: 185-97.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.042 ] [PMID: 31132609]
[91]
Piehler S, Dähring H, Grandke J. et al. Iron Oxide Nanoparticles as Carriers for DOX and Magnetic Hyperthermia after Intratumoral Application into Breast Cancer in Mice: Impact and Future Perspectives. Nanomaterials(Basel. 2020; 10.(6): 1016.
[92]
Liu X, Wang C, Ma H, Yu F, Hu F, Yuan H. Water-Responsive Hybrid Nanoparticles Codelivering ICG and DOX Effectively Treat Breast Cancer via Hyperthermia-aided DOX Functionality and Drug Penetration. Adv Healthc Mater 2019; 8(8), e1801486.
[http://dx.doi.org/10.1002/adhm.201801486 ] [PMID: 30856296]
[93]
Jafari M, Sriram V, Xu Z, Harris GM, Lee JY. Fucoidan-Doxorubicin Nanoparticles Targeting P-Selectin for Effective Breast Cancer Therapy. Carbohydr Polym 2020; 249, 116837.
[http://dx.doi.org/10.1016/j.carbpol.2020.116837 ] [PMID: 32933681]
[94]
Kolahkaj FF, Derakhshandeh K, Khaleseh F, Azandaryani AH, Mansouri K, Khazaei M. Active targeting carrier for breast cancer treatment: Monoclonal antibody conjugated epirubicin loaded nanoparticle. J Drug Deliv Sci Technol 2019; 53, 101136.
[http://dx.doi.org/10.1016/j.jddst.2019.101136]
[95]
Tang H, Chen J, Wang L. et al. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int J Pharm 2020; 573, 118806.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118806 ] [PMID: 31678519]
[96]
Li X, Zou Q, Zhang J. et al. Self-Assembled Dual-Targeted Epirubicin-Hybrid Polydopamine Nanoparticles for Combined Chemo-Photothermal Therapy of Triple-Negative Breast Cancer. Int J Nanomedicine 2020; 15: 6791-811.
[http://dx.doi.org/10.2147/IJN.S260477 ] [PMID: 32982234]
[97]
Bayat P, Pakravan P, Salouti M, Ezzati Nazhad Dolatabadi J. Lysine Decorated Solid Lipid Nanoparticles of Epirubicin for Cancer Target-ing and Therapy. Adv Pharm Bull 2021; 11(1): 96-103.
[http://dx.doi.org/10.34172/apb.2021.010 ] [PMID: 33747856]
[98]
Samaan TMA, Samec M, Liskova A, Kubatka P. Büsselberg, [REMOVED HYPERLINK FIELD]D.Paclitaxel’sMechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019; 9(12): 789.
[http://dx.doi.org/10.3390/biom9120789 ] [PMID: 31783552]
[99]
Tang B, Qian Y, Gou Y, Cheng G, Fang G. VE-Albumin Core-Shell Nanoparticles for Paclitaxel Delivery to Treat MDR Breast Cancer. Molecules 2018; 23(11): 2760.
[http://dx.doi.org/10.3390/molecules23112760]
[100]
Wang M, Chen J, Li W, Zang F, Liu X, Qin S. Paclitaxelnanoparticles-loaded double network hydrogel for local treatment of breast cancer after surgical resection. Mater Sci Eng C 2020; 114, 111046.
[http://dx.doi.org/10.1016/j.msec.2020.111046 ] [PMID: 32993992]
[101]
Zhang X, Niu S, Williams GR. et al. Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy. Carbohydr Polym 2019; 221: 84-93.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.081 ] [PMID: 31227170]
[102]
Chen SH, Liu TI, Chuang CL, Chen HH, Chiang WH, Chiu HC. Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J Mater Chem B Mater Biol Med 2020; 8(17): 3789-800.
[http://dx.doi.org/10.1039/D0TB00046A ] [PMID: 32150202]
[103]
Bao Y, Zhang S, Chen Z. et al. Synergistic Chemotherapy for Breast Cancer and Breast Cancer Brain Metastases via Paclitaxel-Loaded Oleanolic Acid Nanoparticles. Mol Pharm 2020; 17(4): 1343-51.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00044 ] [PMID: 32150416]
[104]
Zhang X, Liu J, Li X. et al. Trastuzumab-Coated Nanoparticles Loaded With Docetaxel for Breast Cancer Therapy. Dose Response 2019; 17(3), 1559325819872583.
[http://dx.doi.org/10.1177/1559325819872583 ] [PMID: 31523204]
[105]
Gao J, Liu J, Xie F, Lu Y, Yin C, Shen X. Co-Delivery of Docetaxel and Salinomycin to Target Both Breast Cancer Cells and Stem Cells by PLGA/TPGS Nanoparticles. Int J Nanomedicine 2019; 14: 9199-216.
[http://dx.doi.org/10.2147/IJN.S230376 ] [PMID: 32063706]
[106]
Kothari IR, Mazumdar S, Sharma S, Italiya K, Mittal A, Chitkara D. Docetaxel and alpha-lipoic acid co-loaded nanoparticles for cancer therapy. Ther Deliv 2019; 10(4): 227-40.
[http://dx.doi.org/10.4155/tde-2018-0074 ] [PMID: 30991918]
[107]
Yang Q, Li P, Ran H. et al. Polypyrrole-coated phase-change liquid perfluorocarbon nanoparticles for the visualized photothermal-chemotherapy of breast cancer. Acta Biomater 2019; 90: 337-49.
[http://dx.doi.org/10.1016/j.actbio.2019.03.056 ] [PMID: 30936037]
[108]
Xu X, Li Y, Lu X, Sun Y, Luo J, Zhang Y. Glutaryl Polyamidoamine Dendrimer for Overcoming Cisplatin-Resistance of Breast Cancer Cells. J Nanosci Nanotechnol 2018; 18(10): 6732-9.
[http://dx.doi.org/10.1166/jnn.2018.15502 ] [PMID: 29954488]
[109]
Alomari M, Jermy BR, Ravinayagam V. et al. Cisplatin-functionalized three-dimensional magnetic SBA-16 for treating breast cancer cells (MCF-7). Artif Cells Nanomed Biotechnol 2019; 47(1): 3079-86.
[http://dx.doi.org/10.1080/21691401.2019.1645155 ] [PMID: 31352799]
[110]
Hu H, Steinmetz NF. Cisplatin Prodrug-Loaded Nanoparticles Based on Physalis Mottle Virus for Cancer Therapy. Mol Pharm 2020; 17(12): 4629-36.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00834 ] [PMID: 33186039]
[111]
Khan MA, Zafaryab M, Mehdi SH, Quadri J, Rizvi MM. Characterization and carboplatin loaded chitosan nanoparticles for the chemotherapy against breast cancer in vitro studies. Int J Biol Macromol 2017; 97: 115-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.090 ] [PMID: 28082219]
[112]
Novohradsky V, Zajac J, Vrana O, Kasparkova J, Brabec V. Simultaneous delivery of olaparib and carboplatin in PEGylated liposomes imparts this drug combination hypersensitivity and selectivity for breast tumor cells. Oncotarget 2018; 9(47): 28456-73.
[http://dx.doi.org/10.18632/oncotarget.25466 ] [PMID: 29983873]
[113]
Hashemi-Moghaddam H, Kazemi-Bagsangani S, Jamili M, Zavareh S. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model. Int J Pharm 2016; 497(1-2): 228-38.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.040 ] [PMID: 26621688]
[114]
Kouchakzadeh H, Shojaosadati SA, Mohammadnejad J, Paknejad M, Rasaee MJ. Attachment of an anti-MUC1 monoclonal antibody to 5-FU loaded BSA nanoparticles for active targeting of breast cancer cells. Hum Antibodies 2012; 21(3-4): 49-56.
[http://dx.doi.org/10.3233/HAB-2012-0261 ] [PMID: 23549021]
[115]
Hepokur C, Kariper İA, Mısır S. et al. Silver nanoparticle/capecitabine for breast cancer cell treatment. Toxicol In Vitro 2019; 61: 104600.
[http://dx.doi.org/10.1016/j.tiv.2019.104600 ] [PMID: 31302208]
[116]
Shi JF, Sun MG, Li XY. et al. A Combination of Targeted Sunitinib Liposomes and Targeted Vinorelbine Liposomes for Treating Invasive Breast Cancer. J Biomed Nanotechnol 2015; 11(9): 1568-82.
[http://dx.doi.org/10.1166/jbn.2015.2075 ] [PMID: 26485927]
[117]
Zhou W, Zhou Y, Wu J. et al. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J Drug Target 2014; 22(1): 57-66.
[http://dx.doi.org/10.3109/1061186X.2013.839683 ] [PMID: 24156476]
[118]
Lakshmi;Sing, S.; Vijayakumar, M.R.; Dewangan,H.K. Lipid-Based Aqueous Core Nanocapsules (ACNs) for Encapsulating Hydrophilic Vinorelbine Bitartrate: Preparation, Optimization, Characterization, and In-vitro Safety Assessment for Intravenous Administration. Curr Drug Deliv 2018; 15(9): 1284-93.
[http://dx.doi.org/10.2174/1567201815666180716112457 ] [PMID: 30009708]
[119]
Li L, Tong R, Li M, Kohane DS. Self-assembled gemcitabinegadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomater 2016; 33: 34-9.
[http://dx.doi.org/10.1016/j.actbio.2016.01.039 ] [PMID: 26826531]
[120]
Parsian M, Mutlu P, Yalcin S, Gunduz U. Characterization of Gemcitabine Loaded Polyhydroxybutyrate Coated Magnetic Nanoparticles for Targeted Drug Delivery. Anticancer Agents Med Chem 2020; 20(10): 1233-40.
[http://dx.doi.org/10.2174/1871520620666200310091026 ] [PMID: 32156242]
[121]
Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine (Lond) 2018; 13(16): 2037-50.
[http://dx.doi.org/10.2217/nnm-2018-0004 ] [PMID: 30189774]
[122]
Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target 2018; 26(8): 617-32.
[http://dx.doi.org/10.1080/1061186X.2017.1400553 ] [PMID: 29095640]
[123]
Twelves C, Jove M, Gombos A, Awada A. Cytotoxic chemotherapy: Still the mainstay of clinical practice for all subtypes metastatic breast cancer. Crit Rev Oncol Hematol 2016; 100: 74-87.
[http://dx.doi.org/10.1016/j.critrevonc.2016.01.021 ] [PMID: 26857987]
[124]
Gradishar WJ, Anderson BO, Balassanian R. et al. NCCN Guidelines Insights Breast Cancer, Version 1.2016. J Natl Compr Canc Netw 2015; 13(12): 1475-85.
[http://dx.doi.org/10.6004/jnccn.2015.0176 ] [PMID: 26656517]
[125]
Burstein MD, Tsimelzon A, Poage GM. et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 2015; 21(7): 1688-98.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0432 ] [PMID: 25208879]
[126]
Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 2017; 389(10087): 2430-42.
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0 ] [PMID: 27939063]
[127]
Rau KM, Lin YC, Chen YY. et al. Pegylated liposomal doxorubicin (Lipo-Dox®) combined with cyclophosphamide and 5-fluorouracil is effective and safe as salvage chemotherapy in taxane-treated metastatic breast cancer: an open-label, multi-center, non-comparative phase II study. BMC Cancer 2015; 15(1): 423.
[http://dx.doi.org/10.1186/s12885-015-1433-4 ] [PMID: 25994543]
[128]
Torrisi R, Montagna E, Scarano E. et al. Neoadjuvant pegylated liposomal doxorubicin in combination with cisplatin and infusional fluoruracil (CCF) with and without endocrine therapy in locally advanced primary or recurrent breast cancer. Breast 2011; 20(1): 34-8.
[http://dx.doi.org/10.1016/j.breast.2010.06.005 ] [PMID: 20638282]
[129]
Gil-Gil MJ, Bellet M, Morales S. et al. Pegylated liposomal doxorubicin plus cyclophosphamide followed by paclitaxel as primary chemo-therapy in elderly or cardiotoxicity-prone patients with high-risk breast cancer: results of the phase II CAPRICE study. Breast Cancer Res Treat 2015; 151(3): 597-606.
[http://dx.doi.org/10.1007/s10549-015-3415-2 ] [PMID: 25981896]
[130]
Torrisi R, Cardillo A, Cancello G. et al. Phase II trial of combination of pegylated liposomal doxorubicin, cisplatin, and infusional 5-fluorouracil (CCF) plus trastuzumab as preoperative treatment for locally advanced and inflammatory breast cancer. Clin Breast Cancer 2010; 10(6): 483-8.
[http://dx.doi.org/10.3816/CBC.2010.n.064 ] [PMID: 21147693]
[131]
Tezuka K, Takashima T, Kashiwagi S. et al. Phase I study of nanoparticle albumin-bound paclitaxel, carboplatin and trastuzumab in women with human epidermal growth factor receptor 2-overexpressing breast cancer. Mol Clin Oncol 2017; 6(4): 534-8.
[http://dx.doi.org/10.3892/mco.2017.1176 ] [PMID: 28413662]
[132]
Nahleh ZA, Barlow WE, Hayes DF. et al. SWOG S0800 (NCI CDR0000636131): addition of bevacizumab to neoadjuvant nab-paclitaxel with dose-dense doxorubicin and cyclophosphamide improves pathologic complete response (pCR) rates in inflammatory or locally advanced breast cancer. Breast Cancer Res Treat 2016; 158(3): 485-95.
[http://dx.doi.org/10.1007/s10549-016-3889-6 ] [PMID: 27393622]
[133]
Zhang H. Onivyde for the therapy of multiple solid tumors. Onco- Targets Ther 2016; 9: 3001-7.
[http://dx.doi.org/10.2147/OTT.S105587 ] [PMID: 27284250]
[134]
Hoff Von D, Li CP, Wang-Gillam A, Von Hoff DD, Belanger B, de Jong FA. et al. NAPOLI 1: Randomized phase 3 study of MM-398 (nal-IRI), with or without 5-fluorouracil and leucovorin, versus 5-fluorouracil and leucovorin, in metastatic pancreatic cancer, progressed on or following gemcitabine-based therapy. Ann Oncol 2014; 25(2): 105-6.
[http://dx.doi.org/10.1093/annonc/mdu193.3]
[135]
Chang TC, Shiah HS, Yang CH. et al. Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother Pharmacol 2015; 75(3): 579-86.
[http://dx.doi.org/10.1007/s00280-014-2671-x ] [PMID: 25577133]
[136]
Samyang Biopharm Genexol PM.. Available from: https://www.samyangbiopharm.com/eng/ProductIntroduce/injection01 [Accessed May 20, 2017]
[137]
Samyang Biopharmaceuticals Corporation Genexol-PM (paclitaxel) Available from: https://www.samyangbiopharm.com/eng/ProductIntroduce/injection01[Accessed November 29, 2016]
[138]
Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 2012; 7(4): 597-615.
[http://dx.doi.org/10.2217/nnm.12.22 ] [PMID: 22471722]
[139]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1(1): 149-73.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847 ] [PMID: 22432577]
[140]
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121(3): 1746-803.
[http://dx.doi.org/10.1021/acs.chemrev.0c00779 ] [PMID: 33445874]
[141]
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38(1): 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy