Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Construction of a Competitive Endogenous RNA Network Related to Exosomes in Diabetic Retinopathy

Author(s): Tong Wang*, Mao-yuan Cheng, Meng-ya Shan, Cui-yao Tang, Nai-jia Pan, Zi-hui Xu* and Xian-lun Tang

Volume 26, Issue 3, 2023

Published on: 02 August, 2022

Page: [576 - 588] Pages: 13

DOI: 10.2174/1386207325666220610122114

Price: $65

Abstract

Background: The competing endogenous RNA (ceRNA) network plays an important role in the occurrence and development of a variety of diseases. This study aimed to construct a ceRNA network related to exosomes in diabetic retinopathy (DR).

Methods: We explored the Gene Expression Omnibus (GEO) database and then analyzed the RNAs of samples to obtain differentially expressed lncRNAs (DELs), miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of DR. Next, Gene Set Enrichment Analysis (GSEA) analysis of DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of up-DEGs were performed. In addition, a ceRNA network related to exosomes in DR was constructed on the base of DELs, DEMs and DEGs. Finally, the function of the ceRNA network was explored by GO and KEGG enrichment analysis.

Results: Through our analysis, 267 DELs (93 up and 174 down), 114 DEMs (64 up and 50 down) and 2368 DEGs (1252 up and 1116 down) were screened. The GSEA analysis results show that these genes were mainly related to cytokine-cytokine receptor interaction, hippo signaling pathway and JAK-STAT signaling pathway. The GO and KEGG results show that these up-DEGs were mainly enriched in viral gene expression, components of ribosomes, mineral absorption, Wntprotein binding, and TGF-β signaling pathway. Besides, a ceRNA network, including 15 lncRNAs (e.g., C1orf145, FGF14-IT1, and PRNT), 3 miRNAs (miR-10a-5p, miR-1297 and miR-507) and 11 mRNAs (NCOR2, CHAC1 and LIX1L, etc.) was constructed. Those 5 lncRNAs were up-regulated, 1 miRNA was down-regulated and 5 mRNAs were up-regulated in DR, while 10 lncRNAs were downregulated, 2 miRNAs were up-regulated and 6 mRNAs were down-regulated in DR.

Conclusion: The novel ceRNA network that we constructed will provide new insights into the underlying molecular mechanisms of exosomes in DR.

Keywords: Bioinformatics analysis, ceRNA network, exosomes, diabetic retinopathy

Graphical Abstract

[1]
Huang, C.; Fisher, K.P.; Hammer, S.S.; Navitskaya, S.; Blanchard, G.J.; Busik, J.V. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway. Diabetes, 2018, 67(8), 1639-1649.
[http://dx.doi.org/10.2337/db17-1587] [PMID: 29866771]
[2]
Chen, X.D.; Gardner, T.W. A critical review: Psychophysical assessments of diabetic retinopathy. Surv. Ophthalmol., 2021, 66(2), 213-230.
[http://dx.doi.org/10.1016/j.survophthal.2020.08.003] [PMID: 32866468]
[3]
Ruta, L.M.; Magliano, D.J.; Lemesurier, R.; Taylor, H.R.; Zimmet, P.Z.; Shaw, J.E. Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries. Diabet. Med., 2013, 30(4), 387-398.
[http://dx.doi.org/10.1111/dme.12119] [PMID: 23331210]
[4]
Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet, 2010, 376(9735), 124-136.
[http://dx.doi.org/10.1016/S0140-6736(09)62124-3] [PMID: 20580421]
[5]
Wang, W.; Lo, A.C.Y. Diabetic retinopathy: Pathophysiology and treatments. Int. J. Mol. Sci., 2018, 19(6), E1816.
[http://dx.doi.org/10.3390/ijms19061816] [PMID: 29925789]
[6]
Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci., 2018, 193, 20-33.
[http://dx.doi.org/10.1016/j.lfs.2017.12.001] [PMID: 29203148]
[7]
Liu, J.; Jiang, F.; Jiang, Y.; Wang, Y.; Li, Z.; Shi, X.; Zhu, Y.; Wang, H.; Zhang, Z. Roles of exosomes in ocular diseases. Int. J. Nanomed, 2020, 15, 10519-10538.
[http://dx.doi.org/10.2147/IJN.S277190] [PMID: 33402823]
[8]
Mueller, S.K.; Nocera, A.L.; Bleier, B.S. Exosome function in aerodigestive mucosa. Nanomedicine, 2018, 14(2), 269-277.
[http://dx.doi.org/10.1016/j.nano.2017.10.008] [PMID: 29127037]
[9]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[10]
Li, S.; Li, Y.; Chen, B.; Zhao, J.; Yu, S.; Tang, Y.; Zheng, Q.; Li, Y.; Wang, P.; He, X.; Huang, S. exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res., 2018, 46(D1), D106-D112.
[http://dx.doi.org/10.1093/nar/gkx891] [PMID: 30053265]
[11]
Klingeborn, M.; Dismuke, W.M.; Bowes Rickman, C.; Stamer, W.D. Roles of exosomes in the normal and diseased eye. Prog. Retin. Eye Res., 2017, 59, 158-177.
[http://dx.doi.org/10.1016/j.preteyeres.2017.04.004] [PMID: 28465248]
[12]
Momen-Heravi, F.; Bala, S. Emerging role of non-coding RNA in oral cancer. Cell. Signal., 2018, 42, 134-143.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.009] [PMID: 29056500]
[13]
Zheng, R.; Du, M.; Wang, X.; Xu, W.; Liang, J.; Wang, W.; Lv, Q.; Qin, C.; Chu, H.; Wang, M.; Yuan, L.; Qian, J.; Zhang, Z. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol. Cancer, 2018, 17(1), 143.
[http://dx.doi.org/10.1186/s12943-018-0880-3] [PMID: 30285771]
[14]
Liu, Q.; Peng, F.; Chen, J. The role of exosomal MicroRNAs in the tumor microenvironment of breast cancer. Int. J. Mol. Sci., 2019, 20(16), E3884.
[http://dx.doi.org/10.3390/ijms20163884] [PMID: 31395836]
[15]
Yokoi, A.; Villar-Prados, A.; Oliphint, P.A.; Zhang, J.; Song, X.; De Hoff, P.; Morey, R.; Liu, J.; Roszik, J.; Clise-Dwyer, K.; Burks, J.K.; O’Halloran, T.J.; Laurent, L.C.; Sood, A.K. Mechanisms of nuclear content loading to exosomes. Sci. Adv., 2019, 5(11), eaax8849.
[http://dx.doi.org/10.1126/sciadv.aax8849] [PMID: 31799396]
[16]
Baassiri, A.; Nassar, F.; Mukherji, D.; Shamseddine, A.; Nasr, R.; Temraz, S. Exosomal non coding RNA in LIQUID biopsies as a promis-ing biomarker for colorectal Cancer. Int. J. Mol. Sci., 2020, 21(4), E1398.
[http://dx.doi.org/10.3390/ijms21041398] [PMID: 32092975]
[17]
Fan, Q.; Yang, L.; Zhang, X.; Peng, X.; Wei, S.; Su, D.; Zhai, Z.; Hua, X.; Li, H. The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Lett., 2018, 414, 107-115.
[http://dx.doi.org/10.1016/j.canlet.2017.10.040] [PMID: 29107112]
[18]
Morelli, M.B.; Shu, J.; Sardu, C.; Matarese, A.; Santulli, G. Cardiosomal microRNAs are essential in post-infarction myofibroblast pheno-conversion. Int. J. Mol. Sci., 2019, 21(1), E201.
[http://dx.doi.org/10.3390/ijms21010201] [PMID: 31892162]
[19]
Wang, G.; Wang, Y.; Liu, N.; Liu, M. The role of exosome lipids in central nervous system diseases. Rev. Neurosci., 2020, 31(7), 743-756.
[http://dx.doi.org/10.1515/revneuro-2020-0013] [PMID: 32681787]
[20]
Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; Wu, J.; Quan, W.; Yao, Y.; Zhou, Y.; Sun, Z.; Li, D. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol. Cancer, 2020, 19(1), 117.
[http://dx.doi.org/10.1186/s12943-020-01235-0] [PMID: 32713345]
[21]
Zhang, D.; Cai, G.; Liu, K.; Zhuang, Z.; Jia, K.; Pei, S.; Wang, X.; Wang, H.; Xu, S.; Cui, C.; Sun, M.; Guo, S.; Song, W.; Cai, G. Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1. Aging (Albany NY), 2021, 13(3), 4079-4095.
[http://dx.doi.org/10.18632/aging.202373] [PMID: 33461167]
[22]
Gu, S.; Liu, Y.; Zou, J.; Wang, W.; Wei, T.; Wang, X.; Zhu, L.; Zhang, M.; Zhu, J.; Xie, T.; Yao, Y.; Qiu, L. Retinal pigment epithelial cells secrete miR-202-5p-containing exosomes to protect against proliferative diabetic retinopathy. Exp. Eye Res., 2020, 201, 108271.
[http://dx.doi.org/10.1016/j.exer.2020.108271] [PMID: 33007305]
[23]
Li, W.; Jin, L.; Cui, Y.; Nie, A.; Xie, N.; Liang, G. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression. J. Endocrinol. Invest., 2021, 44(6), 1193-1207.
[http://dx.doi.org/10.1007/s40618-020-01405-3] [PMID: 32979189]
[24]
Cao, X.; Xue, L.D.; Di, Y.; Li, T.; Tian, Y.J.; Song, Y. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal tran-sition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis. Life Sci., 2021, 272, 119232.
[http://dx.doi.org/10.1016/j.lfs.2021.119232] [PMID: 33600866]
[25]
Wang, J.; Yao, Y.; Wang, K.; Li, J.; Chu, T.; Shen, H. MicroRNA-148a-3p alleviates high glucose-induced diabetic retinopathy by targeting TGFB2 and FGF2. Acta Diabetol., 2020, 57(12), 1435-1443.
[http://dx.doi.org/10.1007/s00592-020-01569-7] [PMID: 32661705]
[26]
Zheng, Y.; Liu, Y.; Wang, L.; Xu, H.; Lu, Z.; Xuan, Y.; Meng, W.; Ye, L.; Fang, D.; Zhou, Y.; Ke, K.; Liu, Y.; An, M. MicroRNA 126 suppresses the proliferation and migration of endothelial cells in experimental diabetic retinopathy by targeting polo like kinase 4. Int. J. Mol. Med., 2021, 47(1), 151-160.
[http://dx.doi.org/10.3892/ijmm.2020.4775] [PMID: 33416109]
[27]
Xue, L.; Xiong, C.; Li, J.; Ren, Y.; Zhang, L.; Jiao, K.; Chen, C.; Ding, P. miR-200-3p suppresses cell proliferation and reduces apoptosis in diabetic retinopathy via blocking the TGF-β2/Smad pathway. Biosci. Rep., 2020, 40(11), BSR20201545.
[http://dx.doi.org/10.1042/BSR20201545] [PMID: 33150936]
[28]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[29]
Wang, J.D.; Zhou, H.S.; Tu, X.X.; He, Y.; Liu, Q.F.; Liu, Q.; Long, Z.J. Prediction of competing endogenous RNA coexpression network as prognostic markers in AML. Aging (Albany NY), 2019, 11(10), 3333-3347.
[http://dx.doi.org/10.18632/aging.101985] [PMID: 31164492]
[30]
Mao, J.; Zhou, Y.; Lu, L.; Zhang, P.; Ren, R.; Wang, Y.; Wang, J. Identifying a serum exosomal-associated lncRNA/circRNA-miRNA-mRNA network in coronary heart disease. Cardiol. Res. Pract., 2021, 2021, 6682183.
[http://dx.doi.org/10.1155/2021/6682183] [PMID: 34258055]
[31]
Dou, C.; Cao, Z.; Yang, B.; Ding, N.; Hou, T.; Luo, F.; Kang, F.; Li, J.; Yang, X.; Jiang, H.; Xiang, J.; Quan, H.; Xu, J.; Dong, S. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci. Rep., 2016, 6(1), 21499.
[http://dx.doi.org/10.1038/srep21499] [PMID: 26856880]
[32]
Sana, J.; Faltejskova, P.; Svoboda, M.; Slaby, O. Novel classes of non-coding RNAs and cancer. J. Transl. Med., 2012, 10(1), 103.
[http://dx.doi.org/10.1186/1479-5876-10-103] [PMID: 22613733]
[33]
Ba, Z.; Gu, L.; Hao, S.; Wang, X.; Cheng, Z.; Nie, G. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif., 2018, 51(1)
[http://dx.doi.org/10.1111/cpr.12409] [PMID: 29194827]
[34]
Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol., 2011, 21(6), 354-361.
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[35]
Liu, P.; Jia, S.B.; Shi, J.M.; Li, W.J.; Tang, L.S.; Zhu, X.H.; Tong, P. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Biosci. Rep., 2019, 39(5), BSR20181469.
[http://dx.doi.org/10.1042/BSR20181469] [PMID: 30988072]
[36]
Yu, J.; Qin, M.; Li, J.; Cui, S. LncRNA SNHG4 sponges miR-200b to inhibit cell apoptosis in diabetic retinopathy. Arch. Physiol. Biochem., 2021, 1-6.
[http://dx.doi.org/10.1080/13813455.2021.1900873] [PMID: 33822671]
[37]
Sehgal, P.; Mathew, S.; Sivadas, A.; Ray, A.; Tanwar, J.; Vishwakarma, S.; Ranjan, G.; Shamsudheen, K.V.; Bhoyar, R.C.; Pateria, A.; Leonard, E.; Lalwani, M.; Vats, A.; Pappuru, R.R.; Tyagi, M.; Jakati, S.; Sengupta, S. B K, B.; Chakrabarti, S.; Kaur, I.; Motiani, R.K.; Scaria, V.; Sivasubbu, S. LncRNA VEAL2 regulates PRKCB2 to modulate endothelial permeability in diabetic retinopathy. EMBO J., 2021, 40(15), e107134.
[http://dx.doi.org/10.15252/embj.2020107134] [PMID: 34180064]
[38]
Zhang, J.; Chen, C.; Zhang, S.; Chen, J.; Wu, L.; Chen, Z. LncRNA XIST restrains the activation of Müller cells and inflammation in dia-betic retinopathy via stabilizing SIRT1. Autoimmunity, 2021, 54(8), 504-513.
[http://dx.doi.org/10.1080/08916934.2021.1969551] [PMID: 34498499]
[39]
Kobiita, A.; Godbersen, S.; Araldi, E.; Ghoshdastider, U.; Schmid, M.W.; Spinas, G.; Moch, H.; Stoffel, M. The diabetes gene JAZF1 is essential for the homeostatic control of ribosome biogenesis and function in metabolic stress. Cell Rep., 2020, 32(1), 107846.
[http://dx.doi.org/10.1016/j.celrep.2020.107846] [PMID: 32640216]
[40]
Ardestani, A.; Lupse, B.; Maedler, K. Hippo signaling: Key emerging pathway in cellular and whole-body metabolism. Trends Endocrinol. Metab., 2018, 29(7), 492-509.
[http://dx.doi.org/10.1016/j.tem.2018.04.006] [PMID: 29739703]
[41]
Gurzov, E.N.; Stanley, W.J.; Pappas, E.G.; Thomas, H.E.; Gough, D.J. The JAK/STAT pathway in obesity and diabetes. FEBS J., 2016, 283(16), 3002-3015.
[http://dx.doi.org/10.1111/febs.13709] [PMID: 26972840]
[42]
Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci., 2020, 21(5), E1835.
[http://dx.doi.org/10.3390/ijms21051835] [PMID: 32155866]
[43]
Azad, T.; Janse van Rensburg, H.J.; Lightbody, E.D.; Neveu, B.; Champagne, A.; Ghaffari, A.; Kay, V.R.; Hao, Y.; Shen, H.; Yeung, B.; Croy, B.A.; Guan, K.L.; Pouliot, F.; Zhang, J.; Nicol, C.J.B.; Yang, X. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat. Commun., 2018, 9(1), 1061.
[http://dx.doi.org/10.1038/s41467-018-03278-w] [PMID: 29535383]
[44]
Liu, Y.; Xiao, J.; Zhao, Y.; Zhao, C.; Yang, Q.; Du, X.; Wang, X. microRNA-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the NOS2/JAK/STAT axis. Exp. Mol. Pathol., 2020, 115, 104445.
[http://dx.doi.org/10.1016/j.yexmp.2020.104445] [PMID: 32335083]
[45]
Tong, H.; Li, T.; Gao, S.; Yin, H.; Cao, H.; He, W. An epithelial-mesenchymal transition-related long noncoding RNA signature correlates with the prognosis and progression in patients with bladder cancer. Biosci. Rep., 2021, 41(1), BSR20203944.
[http://dx.doi.org/10.1042/BSR20203944] [PMID: 33289830]
[46]
Xia, L.; Wang, Y.; Meng, Q.; Su, X.; Shen, J.; Wang, J.; He, H.; Wen, B.; Zhang, C.; Xu, M. Integrated bioinformatic analysis of a compet-ing endogenous RNA network reveals a prognostic signature in endometrial cancer. Front. Oncol., 2019, 9, 448.
[http://dx.doi.org/10.3389/fonc.2019.00448] [PMID: 31192139]
[47]
Lv, Q.L.; Wang, L.C.; Li, D.C.; Lin, Q.X.; Shen, X.L.; Liu, H.Y.; Li, M.; Ji, Y.L.; Qin, C.Z.; Chen, S.H. Knockdown lncRNA DLEU1 in-hibits gliomas progression and promotes temozolomide chemosensitivity by regulating autophagy. Front. Pharmacol., 2020, 11, 560543.
[http://dx.doi.org/10.3389/fphar.2020.560543] [PMID: 33362537]
[48]
Li, Y.; Yan, J.; Wang, Y.; Wang, C.; Zhang, C.; Li, G. LINC00240 promotes gastric cancer cell proliferation, migration and EMT via the miR-124-3p/DNMT3B axis. Cell Biochem. Funct., 2020, 38(8), 1079-1088.
[http://dx.doi.org/10.1002/cbf.3551] [PMID: 32526811]
[49]
Zhang, X.; Shang, J.; Wang, X.; Cheng, G.; Jiang, Y.; Liu, D.; Xiao, J.; Zhao, Z. Microarray analysis reveals long non coding RNA SOX2OT as a novel candidate regulator in diabetic nephropathy. Mol. Med. Rep., 2018, 18(6), 5058-5068.
[http://dx.doi.org/10.3892/mmr.2018.9534] [PMID: 30320339]
[50]
Zhang, Y.; Chang, B.; Zhang, J.; Wu, X. LncRNA SOX2OT alleviates the high glucose-induced podocytes injury through autophagy induc-tion by the miR-9/SIRT1 axis. Exp. Mol. Pathol., 2019, 110, 104283.
[http://dx.doi.org/10.1016/j.yexmp.2019.104283] [PMID: 31301307]
[51]
Li, C.P.; Wang, S.H.; Wang, W.Q.; Song, S.G.; Liu, X.M. Long noncoding RNA-Sox2OT knockdown alleviates diabetes mellitus-induced retinal ganglion Cell (RGC) injury. Cell. Mol. Neurobiol., 2017, 37(2), 361-369.
[http://dx.doi.org/10.1007/s10571-016-0380-1] [PMID: 27193103]
[52]
Amaral, P.P.; Neyt, C.; Wilkins, S.J.; Askarian-Amiri, M.E.; Sunkin, S.M.; Perkins, A.C.; Mattick, J.S. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA, 2009, 15(11), 2013-2027.
[http://dx.doi.org/10.1261/rna.1705309] [PMID: 19767420]
[53]
Fantes, J.; Ragge, N.K.; Lynch, S.A.; McGill, N.I.; Collin, J.R.; Howard-Peebles, P.N.; Hayward, C.; Vivian, A.J.; Williamson, K.; van Heyningen, V.; FitzPatrick, D.R. Mutations in SOX2 cause anophthalmia. Nat. Genet., 2003, 33(4), 461-463.
[http://dx.doi.org/10.1038/ng1120] [PMID: 12612584]
[54]
Shi, X.M.; Teng, F. Up-regulation of long non-coding RNA Sox2ot promotes hepatocellular carcinoma cell metastasis and correlates with poor prognosis. Int. J. Clin. Exp. Pathol., 2015, 8(4), 4008-4014.
[PMID: 26097588]
[55]
Hou, Z.; Zhao, W.; Zhou, J.; Shen, L.; Zhan, P.; Xu, C.; Chang, C.; Bi, H.; Zou, J.; Yao, X.; Huang, R.; Yu, L.; Yan, J. A long noncoding RNA Sox2ot regulates lung cancer cell proliferation and is a prognostic indicator of poor survival. Int. J. Biochem. Cell Biol., 2014, 53, 380-388.
[http://dx.doi.org/10.1016/j.biocel.2014.06.004] [PMID: 24927902]
[56]
Askarian-Amiri, M.E.; Seyfoddin, V.; Smart, C.E.; Wang, J.; Kim, J.E.; Hansji, H.; Baguley, B.C.; Finlay, G.J.; Leung, E.Y. Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer. PLoS One, 2014, 9(7), e102140.
[http://dx.doi.org/10.1371/journal.pone.0102140] [PMID: 25006803]
[57]
Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in development and disease: Background, mechanisms, and thera-peutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[58]
Martinez, B.; Peplow, P.V. MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen. Res., 2019, 14(11), 1858-1869.
[http://dx.doi.org/10.4103/1673-5374.259602] [PMID: 31290435]
[59]
Yoon, C.; Kim, D.; Kim, S.; Park, G.B.; Hur, D.Y.; Yang, J.W.; Park, S.G.; Kim, Y.S. MiR-9 regulates the post-transcriptional level of VEGF165a by targeting SRPK-1 in ARPE-19 cells. Graefes Arch. Clin. Exp. Ophthalmol., 2014, 252(9), 1369-1376.
[http://dx.doi.org/10.1007/s00417-014-2698-z]
[60]
Ye, E.A.; Steinle, J.J. miR-15b/16 protects primary human retinal microvascular endothelial cells against hyperglycemia-induced increases in tumor necrosis factor alpha and suppressor of cytokine signaling 3. J. Neuroinflammation, 2015, 12(1), 44.
[http://dx.doi.org/10.1186/s12974-015-0265-0] [PMID: 25888955]
[61]
Garcia, J.G.; Verin, A.D.; Schaphorst, K.; Siddiqui, R.; Patterson, C.E.; Csortos, C.; Natarajan, V. Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60(src). Am. J. Physiol., 1999, 276(6), L989-L998.
[PMID: 10362724]
[62]
Yu, T.; Liu, L.; Li, J.; Yan, M.; Lin, H.; Liu, Y.; Chu, D.; Tu, H.; Gu, A.; Yao, M. MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. Oncotarget, 2015, 6(30), 30239-30250.
[http://dx.doi.org/10.18632/oncotarget.4972] [PMID: 26317552]
[63]
Xiong, G.; Huang, H.; Feng, M.; Yang, G.; Zheng, S.; You, L.; Zheng, L.; Hu, Y.; Zhang, T.; Zhao, Y. MiR-10a-5p targets TFAP2C to pro-mote gemcitabine resistance in pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 76.
[http://dx.doi.org/10.1186/s13046-018-0739-x] [PMID: 29615098]
[64]
Khan, S.; Wall, D.; Curran, C.; Newell, J.; Kerin, M.J.; Dwyer, R.M. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer, 2015, 15(1), 345.
[http://dx.doi.org/10.1186/s12885-015-1374-y] [PMID: 25934412]
[65]
Adamiec-Mroczek, J.; Oficjalska-Młyńczak, J.; Misiuk-Hojło, M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: Analysis of vitreous samples. Cytokine, 2010, 49(3), 269-274.
[http://dx.doi.org/10.1016/j.cyto.2009.11.004] [PMID: 20015663]
[66]
Kern, T.S. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp. Diabetes Res., 2007, 2007, 95103.
[http://dx.doi.org/10.1155/2007/95103] [PMID: 18274606]
[67]
Behl, Y.; Krothapalli, P.; Desta, T.; DiPiazza, A.; Roy, S.; Graves, D.T. Diabetes-enhanced tumor necrosis factor-alpha production pro-motes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am. J. Pathol., 2008, 172(5), 1411-1418.
[http://dx.doi.org/10.2353/ajpath.2008.071070] [PMID: 18403591]
[68]
Aveleira, C.A.; Lin, C.M.; Abcouwer, S.F.; Ambrósio, A.F.; Antonetti, D.A. TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes, 2010, 59(11), 2872-2882.
[http://dx.doi.org/10.2337/db09-1606] [PMID: 20693346]
[69]
Zhang, Q.; Xiao, X.; Li, M.; Li, W.; Yu, M.; Zhang, H.; Wang, Z.; Xiang, H. Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats. PLoS One, 2013, 8(11), e79697.
[http://dx.doi.org/10.1371/journal.pone.0079697] [PMID: 24260283]
[70]
Bin, S.; Xin, L.; Lin, Z.; Jinhua, Z.; Rui, G.; Xiang, Z. Targeting miR-10a-5p/IL-6R axis for reducing IL-6-induced cartilage cell ferropto-sis. Exp. Mol. Pathol., 2021, 118, 104570.
[http://dx.doi.org/10.1016/j.yexmp.2020.104570] [PMID: 33166496]
[71]
Li, H.; Yuan, H. MiR-1297 negatively regulates metabolic reprogramming in glioblastoma via repressing KPNA2. Hum. Cell, 2020, 33(3), 619-629.
[http://dx.doi.org/10.1007/s13577-019-00316-7] [PMID: 32124270]
[72]
Pan, X.; Li, H.; Tan, J.; Weng, X.; Zhou, L.; Weng, Y.; Cao, X. miR-1297 suppresses osteosarcoma proliferation and aerobic glycolysis by regulating PFKFB2. OncoTargets Ther., 2020, 13, 11265-11275.
[http://dx.doi.org/10.2147/OTT.S274744] [PMID: 33173315]
[73]
Wei, Y.; Sun, Q.; Zhao, L.; Wu, J.; Chen, X.; Wang, Y.; Zang, W.; Zhao, G. LncRNA UCA1-miR-507-FOXM1 axis is involved in cell pro-liferation, invasion and G0/G1 cell cycle arrest in melanoma. Med. Oncol., 2016, 33(8), 88.
[http://dx.doi.org/10.1007/s12032-016-0804-2] [PMID: 27389544]
[74]
Wang, S.; Sun, K.; Hu, H.; Jin, X.; Wang, Z.; Zhang, H.; Zhao, X. MiR-1297 attenuates high glucose-induced injury in HK-2 cells via tar-geting COL1A2. Nephrology (Carlton), 2021, 26(7), 623-631.
[http://dx.doi.org/10.1111/nep.13881] [PMID: 33811432]
[75]
Yasuda, M.; Tanaka, Y.; Ryu, M.; Tsuda, S.; Nakazawa, T. RNA sequence reveals mouse retinal transcriptome changes early after axonal injury. PLoS One, 2014, 9(3), e93258.
[http://dx.doi.org/10.1371/journal.pone.0093258] [PMID: 24676137]
[76]
Perra, L.; Balloy, V.; Foussignière, T.; Moissenet, D.; Petat, H.; Mungrue, I.N.; Touqui, L.; Corvol, H.; Chignard, M.; Guillot, L. CHAC1 is differentially expressed in normal and cystic fibrosis bronchial epithelial cells and regulates the inflammatory response induced by pseu-domonas aeruginosa. Front. Immunol., 2018, 9, 2823.
[http://dx.doi.org/10.3389/fimmu.2018.02823] [PMID: 30555487]
[77]
Allawzi, A.; McDermott, I.; Delaney, C.; Nguyen, K.; Banimostafa, L.; Trumpie, A.; Hernandez-Lagunas, L.; Riemondy, K.; Gillen, A.; Hesselberth, J.; El Kasmi, K.; Sucharov, C.C.; Janssen, W.J.; Stenmark, K.; Bowler, R.; Nozik-Grayck, E. Redistribution of EC-SOD re-solves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages. FASEB J., 2019, 33(12), 13465-13475.
[http://dx.doi.org/10.1096/fj.201901038RR] [PMID: 31560857]
[78]
Li, S.; Jia, Y.; Xue, M.; Hu, F.; Zheng, Z.; Zhang, S.; Ren, S.; Yang, Y.; Si, Z.; Wang, L.; Guan, M.; Xue, Y. Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci., 2020, 261, 118347.
[http://dx.doi.org/10.1016/j.lfs.2020.118347] [PMID: 32853650]
[79]
Yuan, L.; Luo, X.; Zeng, M.; Zhang, Y.; Yang, M.; Zhang, L.; Liu, R.; Boden, G.; Liu, H.; Ma, Z.A.; Li, L. L.; G Yang, G. Transcription factor TIP27 regulates glucose homeostasis and insulin sensitivity in a PI3-kinase/Akt-dependent manner in mice. Int. J. Obes. (Lond.),, 2015, 39(6), 949-958.
[http://dx.doi.org/10.1038/ijo.2015.5] [PMID: 25614086]
[80]
Meng, F.; Lin, Y.; Yang, M.; Li, M.; Yang, G.; Hao, P.; Li, L. JAZF1 inhibits adipose tissue macrophages and adipose tissue inflammation in diet-induced diabetic mice. BioMed Res. Int., 2018, 2018, 4507659.
[http://dx.doi.org/10.1155/2018/4507659] [PMID: 29765984]
[81]
Shang, J.; Gao, Z.Y.; Zhang, L.Y.; Wang, C.Y. Over-expression of JAZF1 promotes cardiac microvascular endothelial cell proliferation and angiogenesis via activation of the Akt signaling pathway in rats with myocardial ischemia-reperfusion. Cell Cycle, 2019, 18(14), 1619-1634.
[http://dx.doi.org/10.1080/15384101.2019.1629774] [PMID: 31177938]
[82]
Pauter, A.M.; Olsson, P.; Asadi, A.; Herslöf, B.; Csikasz, R.I.; Zadravec, D.; Jacobsson, A. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J. Lipid Res., 2014, 55(4), 718-728.
[http://dx.doi.org/10.1194/jlr.M046151] [PMID: 24489111]
[83]
Bazan, N.G.; Molina, M.F.; Gordon, W.C. Docosahexaenoic acid signalolipidomics in nutrition: Significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu. Rev. Nutr., 2011, 31(1), 321-351.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104635] [PMID: 21756134]
[84]
Chen, D.; Chao, D.L.; Rocha, L.; Kolar, M.; Nguyen Huu, V.A.; Krawczyk, M.; Dasyani, M.; Wang, T.; Jafari, M.; Jabari, M.; Ross, K.D.; Saghatelian, A.; Hamilton, B.A.; Zhang, K.; Skowronska-Krawczyk, D. The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina. Aging Cell, 2020, 19(2), e13100.
[http://dx.doi.org/10.1111/acel.13100] [PMID: 31943697]
[85]
Tikhonenko, M.; Lydic, T.A.; Wang, Y.; Chen, W.; Opreanu, M.; Sochacki, A.; McSorley, K.M.; Renis, R.L.; Kern, T.; Jump, D.B.; Reid, G.E.; Busik, J.V. Remodeling of retinal Fatty acids in an animal model of diabetes: A decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes, 2010, 59(1), 219-227.
[http://dx.doi.org/10.2337/db09-0728] [PMID: 19875612]
[86]
Wang, Q.; Tikhonenko, M.; Bozack, S.N.; Lydic, T.A.; Yan, L.; Panchy, N.L.; McSorley, K.M.; Faber, M.S.; Yan, Y.; Boulton, M.E.; Grant, M.B.; Busik, J.V. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One, 2014, 9(4), e95028.
[http://dx.doi.org/10.1371/journal.pone.0095028] [PMID: 24736612]
[87]
Perissi, V.; Jepsen, K.; Glass, C.K.; Rosenfeld, M.G. Deconstructing repression: Evolving models of co-repressor action. Nat. Rev. Genet., 2010, 11(2), 109-123.
[http://dx.doi.org/10.1038/nrg2736] [PMID: 20084085]
[88]
Chen, J.D.; Evans, R.M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature, 1995, 377(6548), 454-457.
[http://dx.doi.org/10.1038/377454a0] [PMID: 7566127]
[89]
Rönn, T.; Volkov, P.; Davegårdh, C.; Dayeh, T.; Hall, E.; Olsson, A.H.; Nilsson, E.; Tornberg, A.; Dekker Nitert, M.; Eriksson, K.F.; Jones, H.A.; Groop, L.; Ling, C. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adi-pose tissue. PLoS Genet., 2013, 9(6), e1003572.
[http://dx.doi.org/10.1371/journal.pgen.1003572] [PMID: 23825961]
[90]
García-Ramírez, M.; Canals, F.; Hernández, C.; Colomé, N.; Ferrer, C.; Carrasco, E.; García-Arumí, J.; Simó, R. Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): A new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia, 2007, 50(6), 1294-1303.
[http://dx.doi.org/10.1007/s00125-007-0627-y] [PMID: 17380318]
[91]
Kawai, S.; Nakajima, T.; Hokari, S.; Komoda, T.; Kawai, K. Apolipoprotein A-I concentration in tears in diabetic retinopathy. Ann. Clin. Biochem., 2002, 39(Pt 1), 56-61.
[http://dx.doi.org/10.1258/0004563021901748] [PMID: 11853190]
[92]
Fedorov, D.G.; Li, H.; Mironov, V.; Alexeev, Y. Computational methods for biochemical simulations implemented in GAMESS. Methods Mol. Biol., 2020, 2114, 123-142.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_8] [PMID: 32016890]
[93]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Heterogeneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy