Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer's, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System

Author(s): Payal Kesharwani, Kajal Kumari, Ritika Gururani, Smita Jain and Swapnil Sharma*

Volume 23, Issue 9, 2022

Published on: 24 June, 2022

Page: [678 - 692] Pages: 15

DOI: 10.2174/1389200223666220609141459

Price: $65

Abstract

Liposomes nowadays have become a preferential drug delivery system since they provide facilitating properties to drugs, such as improved therapeutic index of encapsulated drug, target and controlled drug delivery, and less toxicity. However, conventional liposomes have shown some disadvantages, such as less drug loading capacity, poor retention, clearance by kidney or reticuloendothelial system, and less release of hydrophilic drugs. Thus, to overcome these disadvantages recently, scientists have explored new approaches and methods, viz., ligand conjugation, polymer coating, and liposome hybrids, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, liposome-in-nanofiber, etc. These approaches have been shown to improve the physiochemical and pharmacokinetic properties of encapsulated drugs. Lately, pharmacokinetic-pharmacodynamic (PK-PD) computational modeling has emerged as a beneficial tool for analyzing the impact of formulation and system-specific factors on the target disposition and therapeutic efficacy of liposomal drugs. There has been an increasing number of liposome-based therapeutic drugs, both FDA approved and those undergoing clinical trials, having application in cancer, Alzheimer's, diabetes, and glaucoma. To meet the continuous demand of health sectors and to produce the desired product, it is important to perform pharmacokinetic studies. This review focuses on the physical, physicochemical, and chemical factors of drugs that influence the target delivery of drugs. It also explains various physiological barriers, such as systemic clearance and extravasation. A novel approach, liposomal-hybrid complex, an innovative approach as a vesicular drug delivery system to overcome limited membrane permeability and bioavailability, has been discussed in the review. Moreover, this review highlights the pharmacokinetic considerations and challenges of poorly absorbed drugs along with the applications of a liposomal delivery system in improving PKPD in various diseases, such as cancer, Alzheimer's, diabetes, and glaucoma.

Keywords: Therapeutic efficacy, poorly water-soluble drugs, bioavailability, hybrid, polymer, blood brain barrier.

Graphical Abstract

[1]
Danhof, M.; de Lange, E.C.M.; Della Pasqua, O.E.; Ploeger, B.A.; Voskuyl, R.A. Mechanism-based Pharmacokinetic-Pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol. Sci., 2008, 29(4), 186-191.
[http://dx.doi.org/10.1016/j.tips.2008.01.007] [PMID: 18353445]
[2]
Agrawal, M. Ajazuddin; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Re-cent advancements in liposomes targeting strategies to cross Blood-Brain Barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release, 2017, 260, 61-77.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.019] [PMID: 28549949]
[3]
Mohanraj, V.J.; Barnes, T.J.; Prestidge, C.A. Silica nanoparticle coated liposomes: A new type of hybrid nanocapsule for proteins. Int. J. Pharm., 2010, 392(1-2), 285-293.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.061] [PMID: 20363300]
[4]
He, H.; Yuan, D.; Wu, Y. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regu-lation of liposomal drugs. Pharm., 2019, 11, 110.
[5]
Oussoren, C.; Eling, W.M.C.; Crommelin, D.J.A.; Storm, G.; Zuidema, J. The influence of the route of administration and liposome compo-sition on the potential of liposomes to protect tissue against local toxicity of two antitumor drugs. Biochim. Biophys. Acta, 1998, 1369(1), 159-172.
[http://dx.doi.org/10.1016/S0005-2736(97)00221-6] [PMID: 9528684]
[6]
Eroğlu, İ.; İbrahim, M. Liposome-ligand conjugates: A review on the current state of art. J. Drug Target., 2020, 28(3), 225-244.
[http://dx.doi.org/10.1080/1061186X.2019.1648479] [PMID: 31339374]
[7]
Peng, S.; Zou, L.; Liu, W.; Li, Z.; Liu, W.; Hu, X.; Chen, X.; Liu, C. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydr. Polym., 2017, 156, 322-332.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.060] [PMID: 27842829]
[8]
Almeida, B.; Nag, O.K.; Rogers, K.E.; Delehanty, J.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules, 2020, 25(23), 5672.
[http://dx.doi.org/10.3390/molecules25235672] [PMID: 33271886]
[9]
Jain, A.; Jain, S.K. Stimuli-responsive smart liposomes in cancer targeting. Curr. Drug Targets, 2018, 19(3), 259-270.
[http://dx.doi.org/10.2174/1389450117666160208144143] [PMID: 26853324]
[10]
Wakaskar, R.R. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J. Drug Target., 2018, 26(4), 311-318.
[http://dx.doi.org/10.1080/1061186X.2017.1367006] [PMID: 28797169]
[11]
Sharma, M.; Joshi, J.; Chouhan, N.K. Liposome-a comprehensive approach for researchers.Catala, A.; Ahmad, U.; Eds. In Molecular Pharmacology. IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.93256]
[12]
Zhang, H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol. Biol., 2017, 1522, 17-22.
[http://dx.doi.org/10.1007/978-1-4939-6591-5_2] [PMID: 27837527]
[13]
Has, C.; Sunthar, P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res., 2020, 30(4), 336-365.
[http://dx.doi.org/10.1080/08982104.2019.1668010] [PMID: 31558079]
[14]
Reverchon, E.; Della Porta, G. Supercritical fluids-assisted micronization techniques. Low-impact routes for particle production. Pure Appl. Chem., 2001, 73(8), 1293-1297.
[http://dx.doi.org/10.1351/pac200173081293]
[15]
Khaw, K.Y.; Parat, M.O.; Shaw, P.N. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules, 2017, 22, 1186.
[16]
Yamaguchi, S.; Tsuchiya, K.; Sakai, K.; Abe, M.; Sakai, H. Preparation of nonionic vesicles using the supercritical carbon dioxide reverse phase evaporation method and analysis of their solution properties. J. Oleo Sci., 2016, 65(1), 21-26.
[http://dx.doi.org/10.5650/jos.ess15192] [PMID: 26666274]
[17]
Kumar, R.; Mahalingam, H.; Tiwari, K.K. Selection of solvent in supercritical antisolvent process. APCBEE Procedia, 2014, 9, 181-186.
[http://dx.doi.org/10.1016/j.apcbee.2014.01.032]
[18]
Gomes, M.T.M.S.; Santana, Á.L.; Santos, D.T.; Meireles, M.A.A. Trends on the rapid expansion of supercritical solutions process applied to food and non-food industries. Recent Pat. Food Nutr. Agric., 2019, 10(2), 82-92.
[http://dx.doi.org/10.2174/2212798410666180925160459] [PMID: 30255763]
[19]
Trucillo, P.; Martino, M.; Reverchon, E. Supercritical assisted production of lutein-loaded liposomes and modelling of drug release. Process, 2021, 9, 1162.
[20]
Meure, L.A.; Knott, R.; Foster, N.R.; Dehghani, F. The depressurization of an expanded solution into aqueous media for the bulk production of liposomes. Langmuir, 2009, 25(1), 326-337.
[http://dx.doi.org/10.1021/la802511a] [PMID: 19072018]
[21]
Yu, B.; Lee, R.J.; Lee, L.J. Microfluidic methods for production of liposomes. Methods Enzymol., 2009, 465, 129-141.
[http://dx.doi.org/10.1016/S0076-6879(09)65007-2] [PMID: 19913165]
[22]
Carugo, D.; Bottaro, E.; Owen, J. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep., 2016, 6, 1-15.
[23]
Song, G.; Wu, H.; Yoshino, K. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. J. Liposome, 2012, 22, 177-192.
[24]
Rodallec, A.; Fanciullino, R.; Lacarelle, B.; Ciccolini, J. Seek and destroy: Improving PK/PD profiles of anticancer agents with nanoparticles. Expert Rev. Clin. Pharmacol., 2018, 11(6), 599-610.
[http://dx.doi.org/10.1080/17512433.2018.1477586] [PMID: 29768060]
[25]
Bodey, B. Neuroendocrine influence on thymic haematopoiesis via the reticulo-epithelial cellular network. Expert Opin. Ther. Targets, 2002, 6(1), 57-72.
[http://dx.doi.org/10.1517/14728222.6.1.57] [PMID: 11901481]
[26]
Shaker, S.; Gardouh, A.R.; Ghorab, M.M. Factors affecting liposomes particle size prepared by ethanol injection method. Res. Pharm. Sci., 2017, 12(5), 346-352.
[http://dx.doi.org/10.4103/1735-5362.213979] [PMID: 28974972]
[27]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[28]
Li, H.; Chen, Y.; Deng, Y.; Wang, Y.; Ke, X.; Ci, T. Effects of surface charge of low molecular weight heparin-modified cationic liposomes on drug efficacy and toxicity. Drug Dev. Ind. Pharm., 2017, 43(7), 1163-1172.
[http://dx.doi.org/10.1080/03639045.2017.1301948] [PMID: 28277844]
[29]
Kang, J.H.; Jang, W.Y.; Ko, Y.T. The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging. Pharm. Res., 2017, 34(4), 704-717.
[http://dx.doi.org/10.1007/s11095-017-2097-3] [PMID: 28078484]
[30]
Hermann, K.F.; Neuhaus, C.S.; Micallef, V.; Wagner, B.; Hatibovic, M.; Aschmann, H.E.; Paech, F.; Alvarez-Sanchez, R.; Krämer, S.D.; Belli, S. Kinetics of lipid bilayer permeation of a series of ionisable drugs and their correlation with human transporter-independent intesti-nal permeability. Eur. J. Pharm. Sci., 2017, 104, 150-161.
[http://dx.doi.org/10.1016/j.ejps.2017.03.040] [PMID: 28366650]
[31]
Farzaneh, H.; Ebrahimi Nik, M.; Mashreghi, M.; Saberi, Z.; Jaafari, M.R.; Teymouri, M. A study on the role of cholesterol and phosphati-dylcholine in various features of liposomal doxorubicin: From liposomal preparation to therapy. Int. J. Pharm., 2018, 551(1-2), 300-308.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.047] [PMID: 30243944]
[32]
Nosova, A.S.; Koloskova, O.O.; Nikonova, A.A.; Simonova, V.A.; Smirnov, V.V.; Kudlay, D.; Khaitov, M.R. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MedChemComm, 2019, 10(3), 369-377.
[http://dx.doi.org/10.1039/C8MD00515J] [PMID: 31015904]
[33]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considera-tions. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[34]
Naik, H.; Sonju, J.J.; Singh, S.; Chatzistamou, I.; Shrestha, L.; Gauthier, T.; Jois, S. Lipidated peptidomimetic ligand-functionalized HER2 targeted liposome as nano-carrier designed for doxorubicin delivery in cancer therapy. Pharmaceuticals (Basel), 2021, 14(3), 221.
[http://dx.doi.org/10.3390/ph14030221] [PMID: 33800723]
[35]
Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), e1450.
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[36]
Veremeeva, P.N.; Zaborova, O.V.; Grishina, I.V.; Makeev, D.V.; Timoshenko, V.A.; Palyulin, V.A. Stimulus-sensitive liposomal delivery system based on new 3,7-diazabicyclo[3.3.1]nonane derivatives. Bioorg. Med. Chem. Lett., 2021, 39, 127871.
[http://dx.doi.org/10.1016/j.bmcl.2021.127871] [PMID: 33662539]
[37]
Wei, Y.; Guo, J.; Zheng, X.; Wu, J.; Zhou, Y.; Yu, Y.; Ye, Y.; Zhang, L.; Zhao, L. Preparation, pharmacokinetics and biodistribution of bai-calin-loaded liposomes. Int. J. Nanomedicine, 2014, 9, 3623-3630.
[PMID: 25120360]
[38]
Tran, B.H.; Yu, Y.; Chang, L.; Tan, B.; Jia, W.; Xiong, Y.; Dai, T.; Zhong, R.; Zhang, W.; Le, V.M.; Rose, P.; Wang, Z.; Mao, Y.; Zhu, Y.Z. A Novel liposomal s-propargyl-cysteine: A sustained release of hydrogen sulfide reducing myocardial fibrosis via TGF-β1/Smad pathway. Int. J. Nanomedicine, 2019, 14, 10061-10077.
[http://dx.doi.org/10.2147/IJN.S216667] [PMID: 31920303]
[39]
Huang, A.; Su, Z.; Li, S.; Sun, M.; Xiao, Y.; Ping, Q.; Deng, Y. Oral absorption enhancement of salmon calcitonin by using both N-trimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers. Drug Deliv., 2014, 21(5), 388-396.
[http://dx.doi.org/10.3109/10717544.2013.848247] [PMID: 24188463]
[40]
Klemetsrud, T.; Kjøniksen, A.L.; Hiorth, M.; Jacobsen, J.; Smistad, G. Polymer coated liposomes for use in the oral cavity - a study of the in vitro toxicity, effect on cell permeability and interaction with mucin. J. Liposome Res., 2018, 28(1), 62-73.
[http://dx.doi.org/10.1080/08982104.2016.1255640] [PMID: 27809639]
[41]
Smistad, G.; Nyström, B.; Zhu, K.; Grønvold, M.K.; Røv-Johnsen, A.; Hiorth, M. Liposomes coated with hydrophobically modified hy-droxyethyl cellulose: Influence of hydrophobic chain length and degree of modification. Colloids Surf. B Biointerfaces, 2017, 156, 79-86.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.061] [PMID: 28527360]
[42]
Zeng, C.; Zheng, R.; Jiang, W.; He, C.; Li, J.; Xing, J. Chitosan coated chlorogenic acid and rutincomposite phospholipid liposomes: Prepara-tion, characterizations, permeability and pharmacokinetic. Pak. J. Pharm. Sci., 2018, 31(5)(Suppl.), 2095-2102.
[43]
Bao, Q.Y.; Zhang, N.; Geng, D.D.; Xue, J.W.; Merritt, M.; Zhang, C.; Ding, Y. The enhanced longevity and liver targetability of Paclitaxel by hybrid liposomes encapsulating Paclitaxel-conjugated gold nanoparticles. Int. J. Pharm., 2014, 477(1-2), 408-415.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.040] [PMID: 25455782]
[44]
Liu, Y.; Xie, X.; Chen, H.; Hou, X.; He, Y.; Shen, J.; Shi, J.; Feng, N. Advances in next-generation lipid-polymer hybrid nanocarriers with emphasis on polymer-modified functional liposomes and cell-based-biomimetic nanocarriers for active ingredients and fractions from Chi-nese medicine delivery. Nanomedicine , 2020, 29, 102237.
[http://dx.doi.org/10.1016/j.nano.2020.102237] [PMID: 32534047]
[45]
Katagiri, K.; Imai, Y.; Koumoto, K.; Kaiden, T.; Kono, K.; Aoshima, S. Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small, 2011, 7(12), 1683-1689.
[http://dx.doi.org/10.1002/smll.201002180] [PMID: 21567941]
[46]
Zhang, R.X.; Cai, P.; Zhang, T. Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomedicine Nanotechnology. Biol. Med. (Aligarh), 2016, 12, 1279-1290.
[47]
Romana, B.; Hassan, M.M.; Sonvico, F.; Garrastazu Pereira, G.; Mason, A.F.; Thordarson, P.; Bremmell, K.E.; Barnes, T.J.; Prestidge, C.A. A liposome-micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: Enhancing solubilisation and intestinal transport. Eur. J. Pharm. Biopharm., 2020, 154, 338-347.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.022] [PMID: 32739535]
[48]
Gómez-Ballesteros, M.; López-Cano, J.J.; Bravo-Osuna, I.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Osmoprotectants in hybrid lipo-some/HPMC systems as potential glaucoma treatment. Polymers (Basel), 2019, 11(6), 929.
[http://dx.doi.org/10.3390/polym11060929] [PMID: 31141875]
[49]
Song, Y.; Zhang, N.; Li, Q.; Chen, J.; Wang, Q.; Yang, H.; Tan, H.; Gao, J.; Dong, Z.; Pang, Z.; Huang, Z.; Qian, J.; Ge, J. Biomimetic lipo-somes hybrid with platelet membranes for targeted therapy of atherosclerosis. Chem. Eng. J., 2021, 408, 127296.
[http://dx.doi.org/10.1016/j.cej.2020.127296]
[50]
Liang, H.; Zou, F.; Liu, Q.; Wang, B.; Fu, L.; Liang, X.; Liu, J.; Liu, Q. Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. Int. J. Pharm., 2021, 599, 120418.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120418] [PMID: 33647414]
[51]
Zhou, F.; Xu, T.; Zhao, Y.; Song, H.; Zhang, L.; Wu, X.; Lu, B. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocoll., 2018, 83, 17-24.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.040]
[52]
Caddeo, C.; Gabriele, M.; Fernàndez-Busquets, X.; Valenti, D.; Fadda, A.M.; Pucci, L.; Manconi, M. Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery. Int. J. Pharm., 2019, 565, 64-69.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.007] [PMID: 31071415]
[53]
Du, Y.; He, W.; Zhou, W.; Li, X. Disulfide phosphatidylcholines: Alternative phospholipids for the preparation of functional liposomes. Chem. Commun. (Camb.), 2019, 55(58), 8434-8437.
[http://dx.doi.org/10.1039/C9CC03571K] [PMID: 31259350]
[54]
Kierstead, P.H.; Okochi, H.; Venditto, V.J.; Chuong, T.C.; Kivimae, S.; Fréchet, J.M.J.; Szoka, F.C. The effect of polymer backbone chemis-try on the induction of the accelerated blood clearance in polymer modified liposomes. J. Control. Release, 2015, 213, 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.023] [PMID: 26093095]
[55]
Cuomo, F.; Cofelice, M.; Venditti, F.; Ceglie, A.; Miguel, M.; Lindman, B.; Lopez, F. In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids Surf. B Biointerfaces, 2018, 168, 29-34.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.047] [PMID: 29183647]
[56]
Bhattacharyya, S.; Sudheer, P.; Das, K.; Ray, S. Experimental design supported liposomal aztreonam delivery: In vitro studies. Adv. Pharm. Bull., 2021, 11(4), 651-662.
[http://dx.doi.org/10.34172/apb.2021.074] [PMID: 34888212]
[57]
Abu Lila, A.S.; Nawata, K.; Shimizu, T.; Ishida, T.; Kiwada, H. Use of Polyglycerol (PG), instead of Polyethylene Glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration. Int. J. Pharm., 2013, 456(1), 235-242.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.059] [PMID: 23928149]
[58]
Shimizu, T.; Abu Lila, A.S.; Fujita, R.; Awata, M.; Kawanishi, M.; Hashimoto, Y.; Okuhira, K.; Ishima, Y.; Ishida, T. A hydroxyl PEG ver-sion of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes. Eur. J. Pharm. Biopharm., 2018, 127, 142-149.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.019] [PMID: 29462689]
[59]
Caballero Romero, Á.; Delgado Ureña, M.T.; Salmerón García, A.; Megías Fernández, M.T.; Librada Porriño-Bustamante, M. Cabeza Barre-ra, J. Extravasation accidents with liposomal/liposomal pegylated anthracyclines treated with dexrazoxane: An overview and outcomes. Anticancer Drugs, 2018, 29(9), 821-826.
[http://dx.doi.org/10.1097/CAD.0000000000000672] [PMID: 30036190]
[60]
Riaz, M.K.; Riaz, M.A.; Zhang, X. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19, 195.
[61]
Lee, M.K. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. Pharmaceutics, 2020, 12(3), 264.
[http://dx.doi.org/10.3390/pharmaceutics12030264] [PMID: 32183185]
[62]
Rachamalla, H.K.; Bhattacharya, S.; Ahmad, A.; Sridharan, K.; Madamsetty, V.S.; Mondal, S.K.; Wang, E.; Dutta, S.K.; Jan, B.L.; Jinka, S.; Chandra Sekhar Jaggarapu, M.M.; Yakati, V.; Mukhopadhyay, D.; Alkharfy, K.M.; Banerjee, R. Enriched pharmacokinetic behavior and an-titumor efficacy of thymoquinone by liposomal delivery. Nanomedicine (Lond.), 2021, 16(8), 641-656.
[http://dx.doi.org/10.2217/nnm-2020-0470] [PMID: 33769068]
[63]
Singh, A.; Neupane, Y.R.; Shafi, S.; Mangla, B.; Kohli, K. PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: In vitro and in vivo assessment. J. Mol. Liq., 2020, 303, 112649.
[http://dx.doi.org/10.1016/j.molliq.2020.112649]
[64]
Zancanella, P.; Oliveira, D.M.L.; de Oliveira, B.H.; Woiski, T.D.; Pinto, C.C.; Santana, M.H.A.; Souto, E.B.; Severino, P. Mitotane liposomes for potential treatment of adrenal cortical carcinoma: Ex vivo intestinal permeation and in vivo bioavailability. Pharm. Dev. Technol., 2020, 25(8), 949-961.
[http://dx.doi.org/10.1080/10837450.2020.1762645] [PMID: 32343624]
[65]
d’Avanzo, N.; Torrieri, G.; Figueiredo, P.; Celia, C.; Paolino, D.; Correia, A.; Moslova, K.; Teesalu, T.; Fresta, M.; Santos, H.A. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int. J. Pharm., 2021, 597, 120346.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120346] [PMID: 33545283]
[66]
Zhang, H.; Tang, W.L.; Kheirolomoom, A.; Fite, B.Z.; Wu, B.; Lau, K.; Baikoghli, M.; Raie, M.N.; Tumbale, S.K.; Foiret, J.; Ingham, E.S.; Mahakian, L.M.; Tam, S.M.; Cheng, R.H.; Borowsky, A.D.; Ferrara, K.W. Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. J. Control. Release, 2021, 330, 1080-1094.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.013] [PMID: 33189786]
[67]
Park, Y.I.; Kwon, S.H.; Lee, G.; Motoyama, K.; Kim, M.W.; Lin, M.; Niidome, T.; Choi, J.H.; Lee, R. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J. Control. Release, 2021, 330, 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.011] [PMID: 33321157]
[68]
Shahraki, N.; Mehrabian, A.; Amiri-Darban, S.; Moosavian, S.A.; Jaafari, M.R. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf. B Biointerfaces, 2021, 200, 111589.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111589] [PMID: 33545570]
[69]
Fei, W.; Zhao, Y.; Wu, X.; Sun, D.; Yao, Y.; Wang, F.; Zhang, M.; Li, C.; Qin, J.; Zheng, C. Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy. J. Nanobiotechnology, 2021, 19(1), 184.
[http://dx.doi.org/10.1186/s12951-021-00931-3] [PMID: 34130695]
[70]
Haftcheshmeh, S.M.; Jaafari, M.R.; Mashreghi, M.; Mehrabian, A.; Alavizadeh, S.H.; Zamani, P.; Zarqi, J.; Darvishi, M.H.; Gheybi, F. Lipo-somal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. J. Drug Deliv. Sci. Technol., 2021, 62, 102351.
[http://dx.doi.org/10.1016/j.jddst.2021.102351]
[71]
Mashreghi, M.; Zamani, P.; Moosavian, S.A.; Jaafari, M.R. Anti-Epcam Aptamer (Syl3c)-Functionalized liposome for targeted delivery of doxorubicin: In vitro and in vivo antitumor studies in mice bearing C26 colon carcinoma. Nanoscale Res. Lett., 2020, 15(1), 101.
[http://dx.doi.org/10.1186/s11671-020-03334-9] [PMID: 32383027]
[72]
Lin, Z.; Ding, J.; Sun, G. Application of paclitaxel-loaded EGFR peptide-conjugated magnetic polymeric liposomes for liver cancer therapy. Curr. Med. Sci., 2020, 40(1), 145-154.
[73]
Narendra, Mehata, A.K.; Viswanadh, M.K. Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer. Ther. Deliv., 2020, 11, 557-571.
[74]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[75]
Rompicherla, S.K.L.; Arumugam, K.; Bojja, S.L.; Kumar, N.; Rao, C.M. Pharmacokinetic and pharmacodynamic evaluation of nasal lipo-some and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(8), 1737-1755.
[http://dx.doi.org/10.1007/s00210-021-02096-0] [PMID: 34086100]
[76]
Kong, L.; Li, X.T.; Ni, Y.N.; Xiao, H.H.; Yao, Y.J.; Wang, Y.Y.; Ju, R.J.; Li, H.Y.; Liu, J.J.; Fu, M.; Wu, Y.T.; Yang, J.X.; Cheng, L. Trans-ferrin-modified osthole pegylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice. Int. J. Nanomedicine, 2020, 15, 2841-2858.
[http://dx.doi.org/10.2147/IJN.S239608] [PMID: 32425521]
[77]
Li, C.; Wan, L.; Luo, J.; Jiang, M.; Wang, K. Advances in subcutaneous delivery systems of biomacromolecular agents for diabetes treat-ment. Int. J. Nanomedicine, 2021, 16, 1261-1280.
[http://dx.doi.org/10.2147/IJN.S283416] [PMID: 33628020]
[78]
de Souza Von Zuben, E.; Eloy, J.O.; Araujo, V.H.S.; Gremião, M.P.D.; Chorilli, M. Insulin-loaded liposomes functionalized with cell-penetrating peptides: Influence on drug release and permeation through porcine nasal mucosa. Colloids Surf. A Physicochem. Eng. Asp., 2021, 622, 126624.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126624]
[79]
Villalba, A.; Rodriguez-Fernandez, S.; Ampudia, R.M.; Cano-Sarabia, M.; Perna-Barrull, D.; Bertran-Cobo, C.; Ehrenberg, C.; Maspoch, D.; Vives-Pi, M. Preclinical evaluation of antigen-specific nanotherapy based on phosphatidylserine-liposomes for type 1 diabetes. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 77-83.
[http://dx.doi.org/10.1080/21691401.2019.1699812] [PMID: 31852325]
[80]
Shen, H.; Wang, W. Effect of glutathione liposomes on diabetic nephropathy based on oxidative stress and polyol pathway mechanism. J. Liposome Res., 2021, 31(4), 317-325.
[http://dx.doi.org/10.1080/08982104.2020.1780607] [PMID: 32567425]
[81]
Yazdi, J.R.; Tafaghodi, M.; Sadri, K.; Mashreghi, M.; Nikpoor, A.R.; Nikoofal-Sahlabadi, S.; Chamani, J.; Vakili, R.; Moosavian, S.A.; Jaafa-ri, M.R. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2020, 194, 111203.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111203] [PMID: 32585538]
[82]
Chono, S.; Togami, K.; Itagaki, S. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsu-lated insulin compared with co-administered insulin. Drug Dev. Ind. Pharm., 2017, 43(11), 1892-1898.
[http://dx.doi.org/10.1080/03639045.2017.1353521] [PMID: 28689439]
[83]
Yadav, K.S.; Rajpurohit, R.; Sharma, S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci., 2019, 221, 362-376.
[http://dx.doi.org/10.1016/j.lfs.2019.02.029] [PMID: 30797820]
[84]
Hathout, R.M.; Gad, H.A.; Abdel-Hafez, S.M.; Nasser, N.; Khalil, N.; Ateyya, T.; Amr, A.; Yasser, N.; Nasr, S.; Metwally, A.A. Gelatinized core liposomes: A new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int. J. Pharm., 2019, 556, 192-199.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.015] [PMID: 30553005]
[85]
Guo, L.S.S.; Fielding, R.M.; Lasic, D.D.; Hamilton, R.L.; Mufson, D. Novel antifungal drug delivery: Stable amphotericin B-cholesteryl sul-fate discs. Int. J. Pharm., 1991, 75(1), 45-54.
[http://dx.doi.org/10.1016/0378-5173(91)90249-N]
[86]
Adler-Moore, J.P.; Proffitt, R.T. Development, characterization, efficacy and mode of action of ambisome, a unilamellar liposomal formula-tion of amphotericin B. J. Liposome Res., 2008, 3(3), 429-450.
[http://dx.doi.org/10.3109/08982109309150729]
[87]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory land-scape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[88]
Richard, B.M.; Rickert, D.E.; Newton, P.E.; Ott, L.R.; Haan, D.; Brubaker, A.N.; Cole, P.I.; Ross, P.E.; Rebelatto, M.C.; Nelson, K.G. Safety evaluation of exparel (depofoam bupivacaine) administered by repeated subcutaneous injection in rabbits and dogs: Species comparison. J. Drug Deliv., 2011, 2011, 467429.
[http://dx.doi.org/10.1155/2011/467429] [PMID: 22013534]
[89]
Li, Z.; Zhang, Y.; Wurtz, W.; Lee, J.K.; Malinin, V.S.; Durwas-Krishnan, S.; Meers, P.; Perkins, W.R. Characterization of nebulized liposo-mal amikacin (Arikace) as a function of droplet size. J. Aerosol Med. Pulm. Drug Deliv., 2008, 21(3), 245-254.
[http://dx.doi.org/10.1089/jamp.2008.0686] [PMID: 18759656]
[90]
Puri, A. Phototriggerable liposomes: Current research and future perspectives. Pharmaceutics, 2013, 6(1), 1-25.
[http://dx.doi.org/10.3390/pharmaceutics6010001] [PMID: 24662363]
[91]
Vega, W.A.; Rodriguez, M.A.; Gruskin, E. Health disparities in the Latino population. Epidemiol. Rev., 2009, 31(1), 99-112.
[http://dx.doi.org/10.1093/epirev/mxp008] [PMID: 19713270]
[92]
Tomkinson, B.; Bendele, R.; Giles, F.J.; Brown, E.; Gray, A.; Hart, K.; LeRay, J.D.; Meyer, D.; Pelanne, M.; Emerson, D.L. OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL. Leuk. Res., 2003, 27(11), 1039-1050.
[http://dx.doi.org/10.1016/S0145-2126(03)00092-4] [PMID: 12859997]
[93]
Mélanie, Plourde. Pharmacokinetic study on three formulations of coenzyme q10 with different carriers - full text view. ClinicalTrials. gov, 2020.. Available from:, https://clinicaltrials.gov/ct2/show/NCT04035525?term=liposomes+to+increase+bioavailability&draw=2&rank=4
[94]
Fathalla, D.; Youssef, E.M.K.; Soliman, G.M. Liposomal and ethosomal gels for the topical delivery of anthralin: Preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics, 2020, 12(5), 1. Epub ahead of print
[http://dx.doi.org/10.3390/pharmaceutics12050446] [PMID: 32403379]
[95]
Timothy Pardee. Vincristine sulfate liposome in treating patients with relapsed or refractory acute myeloid leukemia - full text view. ClinicalTrials.gov,, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02337478?term=liposomes+to+increase+bioavailability& draw=2&rank=1 [96] Andreea
[96]
Ciudin The use of liposomated iron after bariatric surgery in patients that are receiving parentheral therapy with iron - full text view. ClinicalTrials.gov.2017, Available from: https://clinicaltrials.gov/ct2/show/NCT02390921?term=liposomes+to+increase+absorption&draw=2&rank=2
[97]
Shira Dinner Volasertib and vincristine sulfate liposome in treating patients with relapsed or refractory acute lymphoblastic leukemia. Tabu-lar View, ClinicalTrials.gov. 2016; Available from: https://clinicaltrials.gov/ct2/show/record/NCT02861040?term=liposomes+to+increase+bioavailability&draw=2&rank=6
[98]
Morikawa, A.; Peereboom, D.M.; Thorsheim, H.R.; Samala, R.; Balyan, R.; Murphy, C.G.; Lockman, P.R.; Simmons, A.; Weil, R.J.; Tabar, V.; Steeg, P.S.; Smith, Q.R.; Seidman, A.D. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: A prospective study. Neuro-oncol., 2015, 17(2), 289-295.
[http://dx.doi.org/10.1093/neuonc/nou141] [PMID: 25015089]
[99]
Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Lymp, J.; Minic, P.; Quittner, A.L.; Rubenstein, R.C.; Young, K.R.; Saiman, L.; Burns, J.L.; Govan, J.R.; Ramsey, B.; Gupta, R. Phase II studies of nebulised Arikace in CF patients with Pseudomonas ae-ruginosa infection. Thorax, 2013, 68(9), 818-825.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202230] [PMID: 23749840]
[100]
Arrieta, Ó.; Medina, L.A.; Estrada-Lobato, E.; Hernández-Pedro, N.; Villanueva-Rodríguez, G.; Martínez-Barrera, L.; Macedo, E.O.; López-Rodríguez, V.; Motola-Kuba, D.; Corona-Cruz, J.F. First-line chemotherapy with liposomal doxorubicin plus cisplatin for patients with ad-vanced malignant pleural mesothelioma: Phase II trial. Br. J. Cancer, 2012, 106(6), 1027-1032.
[http://dx.doi.org/10.1038/bjc.2012.44] [PMID: 22353806]
[101]
Beier, C.P.; Schmid, C.; Gorlia, T.; Kleinletzenberger, C.; Beier, D.; Grauer, O.; Steinbrecher, A.; Hirschmann, B.; Brawanski, A.; Dietmaier, C.; Jauch-Worley, T.; Kölbl, O.; Pietsch, T.; Proescholdt, M.; Rümmele, P.; Muigg, A.; Stockhammer, G.; Hegi, M.; Bogdahn, U.; Hau, P. RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma--a phase II study. BMC Cancer, 2009, 9(1), 308.
[http://dx.doi.org/10.1186/1471-2407-9-308] [PMID: 19725960]
[102]
Tam, P.Y. Study evaluating inhaled aerolef (liposome-encapsulated fentanyl)in normal healthy subjects - full text view. clinicaltrials.gov, 2008.Available from, https://clinicaltrials.gov/ct2/show/study/NCT00708318?cond=NCT00708318&draw=2&rank=1
[103]
Andrés, J. High-dose sequential chemoimmunotherapy for b-cell lymphomas with central nervous system involvement - Full Text View. ClinicalTrials.gov.2008., Available from: https://clinicaltrials.gov/ct2/show/NCT00801216?term=liposomes+to+increase+bioavailability&draw=2&rank=5

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy