Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Research Article

Assessment of Nano Lipid Carrier Loaded Transdermal Patch of Rizatriptan Benzoate

Author(s): Sayani Bhattacharyya* and Lavanya Nanjareddy

Volume 15, Issue 2, 2022

Published on: 22 August, 2022

Page: [101 - 115] Pages: 15

DOI: 10.2174/2949681015666220609095706

Price: $65

Abstract

Background: Migraine is a neurological disorder and is accompanied by different painful episodes. Hence, the maintenance of a steady-state concentration of drugs can be beneficial for patients suffering from migraine. The present investigation focuses on the development of nano lipid carriers (NLCs) loaded with transdermal patches of rizatriptan benzoate to sustain the effect of the drug for the enhancement of therapeutic effects.

Methods: Stearic acid and peanut oil were used to make the NLCs. A central composite design was employed to observe the effect of formulation factors like solid lipid ratio, phase volume ratio, and concentration of surfactants on the formation of nanoparticles. The effects were evaluated for the responses like particle size and entrapment of the drug in the nanocarriers. The optimized formulation was subjected to compatibility, thermal, surface characteristics, and surface morphology studies. The optimized formulation was dispersed in HPMC 15CPS and PVP K30 polymer matrix, and the transdermal patch was evaluated for its mechanical properties, drug release study, and skin irritation study.

Results: The experimental design was suitable to produce nanosized stable lipid carriers of the drug with high drug entrapment. The drug and excipients were found to be compatible. The thermal and surface characteristics study proved the high loading of drugs in the nanoparticles. The surface morphology study showed the formation of irregular-shaped NLCs. The transdermal patch had good mechanical properties. The ex vivo study of the formulated patch showed a sustained release of the drug over 24h. No skin irritation was reported from the transdermal patch.

Conclusion: Therefore, it can be concluded that the nanoparticles loaded transdermal patch of rizatriptan benzoate can be promising in controlling the divergent phases of migraine.

Keywords: Rizatriptan benzoate, migraine, nanoparticles, transdermal patch, experimental design, ex vivo diffusion.

Next »
Graphical Abstract

[1]
Dodick, D.W. A phase-by-phase review of migraine patho-physiology. Headache, 2018, 58(Suppl. 1), 4-16.
[http://dx.doi.org/10.1111/head.13300] [PMID: 29697154]
[2]
Sheftell, F.D.; Feleppa, M.; Tepper, S.J.; Volcy, M.; Rapoport, A.M.; Bigal, M.E. Patterns of use of triptans and reasons for switching them in a tertiary care migraine population. Headache, 2004, 44(7), 661-668.
[http://dx.doi.org/10.1111/j.1526-4610.2004.04124.x] [PMID: 15209687]
[3]
Wilt, L.A.; Nguyen, D.; Roberts, A.G. Insights into the molecular mechanism of triptan transport by P-glycoprotein. J. Pharm. Sci., 2017, 106(6), 1670-1679.
[http://dx.doi.org/10.1016/j.xphs.2017.02.032] [PMID: 28283434]
[4]
Sachan, A.K.; Gupta, A.; Arora, M. Formulation & characterization of nanostructured lipid carrier (Nlc) based gel for topical delivery of etoricoxib. J. Drug Deliv. Ther., 2016, 6(2), 4-13.
[http://dx.doi.org/10.22270/jddt.v6i2.1222]
[5]
Patel, R.; Patel, A.; Prajapati, B.; Shinde, G.; Dharamsi, A. Transdermal drug delivery systems: A mini review. Int. J. Adv. Res. (Indore), 2018, 6(5), 891-900.
[http://dx.doi.org/10.21474/IJAR01/7109]
[6]
Keny, R.V.; Desouza, C.; Lourenco, C.F. Formulation and evaluation of rizatriptan benzoate mouth disintegrating tablets. Indian J. Pharm. Sci., 2010, 72(1), 79-85.
[http://dx.doi.org/10.4103/0250-474X.62253] [PMID: 20582194]
[7]
Chauhan, M.K.; Sharma, P.K. Optimization and characterization of rivastigmine nanolipid carrier loaded transdermal patches for the treatment of dementia. Chem. Phys. Lipids, 2019, 224, 104794.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.104794] [PMID: 31361985]
[8]
Patel, D.; Dasgupta, S.; Dey, S.; Ramani, Y.R.; Ray, S.; Mazumder, B. Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: Preparation, characterization, and in vivo evaluation. Sci. Pharm., 2012, 80(3), 749-764.
[http://dx.doi.org/10.3797/scipharm.1202-12] [PMID: 23008819]
[9]
Kavya, H.R.; Bhattacharyya, S.; Raghavendra Reddy, H.V. Analytical method validation of rizatriptan benzoate in fasted state simulated intestinal fluid using UV spectrophotometric method. Int. J. Pharm. Res., 2019, 11(1), 756-760.
[10]
Harshitha, C.; Bhattacharyya, S. Statistical optimization amalgamated approach on formulation development of nano lipid carrier loaded hydrophilic gel of fluticasone propionate. Indian J. Pharm. Edu. Res., 2021, 55(2), 1-10.
[11]
Nagaich, U.; Gulati, N. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: Design and in vivo characterization. Drug Deliv. Transl. Res., 2016, 6(3), 289-298.
[http://dx.doi.org/10.1007/s13346-016-0291-1] [PMID: 27072979]
[12]
Bhattacharyya, S.; Reddy, P. Effect of surfactant on azithromycin dihydrate loaded stearic acid solid lipid nanoparticles. Turk. J. Pharm. Sci., 2019, 16(4), 425-431.
[http://dx.doi.org/10.4274/tjps.galenos.2018.82160] [PMID: 32454745]
[13]
Banna, H.; Hasan, N.; Lee, J.; Kim, J.; Cao, J.; Lee, E.H.; Moon, H.R.; Chung, H.Y.; Yoo, J.W. In vitro and in vivo evaluation of MHY908-loaded nanostructured lipid carriers for the topical treatment of hyperpigmentation. J. Drug Deliv. Sci. Technol., 2018, 48, 457-465.
[http://dx.doi.org/10.1016/j.jddst.2018.10.032]
[14]
Chaudhary, S.; Garg, T.; Murthy, R.S.R.; Rath, G.; Goyal, A.K. Development, optimization and evaluation of long chain nanolipid carrier for hepatic delivery of silymarin through lymphatic transport pathway. Int. J. Pharm., 2015, 485(1-2), 108-121.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.070] [PMID: 25735668]
[15]
Rençber, S.; Karavana, S.Y.; Yılmaz, F.F.; Eraç, B.; Nenni, M.; Özbal, S.; Pekçetin, Ç.; Gurer-Orhan, H.; Hoşgör-Limoncu, M.; Güneri, P.; Ertan, G. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int. J. Nanomedicine, 2016, 11, 2641-2653.
[http://dx.doi.org/10.2147/IJN.S103762] [PMID: 27358561]
[16]
Rodriguez Amado, J.R.; Prada, A.L.; Duarte, J.L.; Keita, H.; da Silva, H.R.; Ferreira, A.M.; Sosa, E.H.; Carvalho, J.C.T. Development, stability and in vitro delivery profile of new loratadine-loaded nanoparticles. Saudi Pharm. J., 2017, 25(8), 1158-1168.
[http://dx.doi.org/10.1016/j.jsps.2017.07.008] [PMID: 30166904]
[17]
Bhattacharyya, S.; Sudheer, P.; Das, K.; Ray, S. Experimental design supported liposomal aztreonam delivery: In vitro studies. Adv. Pharm. Bull., 2021, 11(4), 651-662.
[http://dx.doi.org/10.34172/apb.2021.074] [PMID: 34888212]
[18]
Gheorghe, I.; Saviuc, C.; Ciubuca, B.; Lazar, V.; Chifiriuc, M.C. Nanodrug delivery systems for transdermal drug delivery. In: Nanomaterials for Drug Delivery and Therapy; Elsevier Inc., 2019.
[19]
Mahajan, N.M.; Zode, G.H.; Mahapatra, D.K.; Thakre, S.; Dumore, N.; Gangane, P.S. Formulation development and evaluation of transdermal patch of piroxicam for treating dysmenorrhoea. J. Appl. Pharm. Sci., 2018, 8(11), 35-41.
[http://dx.doi.org/10.7324/JAPS.2018.81105]
[20]
Elmehbad, N.Y.; Mohamed, N.A. Designing, preparation and evaluation of the antimicrobial activity of biomaterials based on chitosan modified with silver nanoparticles. Int. J. Biol. Macromol., 2020, 151, 92-103.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.298] [PMID: 32014480]
[21]
Harisa, G.I.; Badran, M.M. Simvastatin nanolipid carriers decreased hypercholesterolemia induced cholesterol inclusion and phosphatidy-lserine exposure on human erythrocytes. J. Mol. Liq., 2015, 208, 202-210.
[http://dx.doi.org/10.1016/j.molliq.2015.04.005]
[22]
Sarkar, J.; Dey, P.; Saha, S.; Acharya, K. Mycosynthesis of selenium nanoparticles. Micro & Nano Lett., 2011, 6(8), 599-602.
[http://dx.doi.org/10.1049/mnl.2011.0227]
[23]
Reddy Hv, R.; Bhattacharyya, S. In vitro evaluation of mucoadhesive in situ nanogel of celecoxib for buccal delivery. Ann. Pharm. Fr., 2021, 79(4), 418-430.
[http://dx.doi.org/10.1016/j.pharma.2021.01.006] [PMID: 33515589]
[24]
Sabir, F.; Qindeel, M.; Rehman, A.U.; Ahmad, N.M.; Khan, G.M.; Csoka, I.; Ahmed, N. An efficient approach for development and optimisation of curcumin-loaded solid lipid nanoparticles’ patch for transdermal delivery. J. Microencapsul., 2021, 38(4), 233-248.
[http://dx.doi.org/10.1080/02652048.2021.1899321] [PMID: 33689550]
[25]
Ajina, C.T.; Narayana Charyulu, R.; Sandeep, D.S. Rizatriptan transdermal patches for the treatment of migraine. Res. J. Pharm. Technol., 2018, 11(3), 873-878.
[http://dx.doi.org/10.5958/0974-360X.2018.00162.2]
[26]
Budhathoki, U.; Gartoulla, M.K.; Shakya, S. Formulation and evaluation of transdermal patches of atenelol. Indones. J. Pharm., 2016, 27(4), 196-202.
[http://dx.doi.org/10.14499/indonesianjpharm27iss4pp196]
[27]
Nair, A.B.; Jacob, S.; Al-Dhubiab, B.E.; Alhumam, R.N. Influence of skin permeation enhancers on the transdermal delivery of palonosetron: An in vitro evaluation. J. Appl. Biomed., 2018, 16(3), 192-197.
[http://dx.doi.org/10.1016/j.jab.2017.12.003]
[28]
Srivastava, P.; Kulkarni, G.T.; Kumar, M.; Visht, S. Design and evaluation of pectin based matrix for transdermal patches of meloxicam. Asian J. Pharm. Res. Health Care, 2010, 2(3), 2-6.
[29]
Jadhav, R.T.; Kasture, P.V.; Gattani, S.G.; Surana, S.J. Formulation and evaluation of transdermal films of diclofenac sodium. Int. J. Chemtech Res., 2010, 2(1), 354-360.
[30]
Fatima, A. Development and in-vitro evaluation of matrix-type transdermal patches of losartan potassium. Univ. J. Pharm. Res., 2017, 2(2), 39-43.
[http://dx.doi.org/10.22270/ujpr.v2i2.R5]
[31]
Musale, R.; Jwanjal, P. Formulation and evaluation of transdermal patches of metformin hydrochloride G. Int. J. Innov. Res. Sci. Eng. Technol., 2019, 4(6), 776-779.
[32]
Cherukuri, S.; Batchu, U.R.; Mandava, K.; Cherukuri, V.; Ganapuram, K.R. Formulation and evaluation of transdermal drug delivery of topiramate. Int. J. Pharm. Investig., 2017, 7(1), 10-17.
[http://dx.doi.org/10.4103/jphi.JPHI_35_16] [PMID: 28405574]
[33]
Tirunagari, M.; Jangala, V.R.; Nandagopal, A. Development and physicochemical, in vitro and in vivo evaluation of transdermal patches of zaleplon. Indian J. Pharm. Educ. Res., 2013, 47(4), 49-58.
[34]
Chauhan, S.B.; Naved, T.; Parvez, N. Formulation and development of transdermal drug delivery system of ethinylestradiol and testosterone: In vitro evaluation. Int. J. Appl. Pharm., 2019, 11(1), 55-60.
[http://dx.doi.org/10.22159/ijap.2019v11i1.28564]
[35]
Kanikkannan, N.; Singh, M. Skin permeation enhancement effect and skin irritation of saturated fatty alcohols. Int. J. Pharm., 2002, 248(1-2), 219-228.
[http://dx.doi.org/10.1016/S0378-5173(02)00454-4] [PMID: 12429475]
[36]
Salehi, S.; Boddohi, S. Design and optimization of kollicoat® IR based mucoadhesive buccal film for co-delivery of rizatriptan benzoate and propranolol hydrochloride. Mater. Sci. Eng. C, 2019, 97, 230-244.
[http://dx.doi.org/10.1016/j.msec.2018.12.036] [PMID: 30678908]
[37]
Drugbank online.. Database for drug and drug target info. Available from: https://go.drugbank.com/
[38]
Haarika, B.; Veerareddy, P.R. Formulation and evaluation of fast disintegrating rizatriptan benzoate sublingual tablets. Malays. J. Pharm. Sci., 2012, 10(1), 45-60.
[39]
Suksaeree, J.; Siripornpinyo, P.; Chaiprasit, S. Formulation, characterization, and in vitro evaluation of transdermal patches for inhibiting crystallization of mefenamic acid. J. Drug Deliv., 2017, 2017, 7358042.
[http://dx.doi.org/10.1155/2017/7358042] [PMID: 29259828]
[40]
Ibrahim, S.A.; Li, S.K. Efficiency of fatty acids as chemical penetration enhancers: Mechanisms and structure enhancement relationship. Pharm. Res., 2010, 27(1), 115-125.
[http://dx.doi.org/10.1007/s11095-009-9985-0] [PMID: 19911256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy