Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Gastroretentive Drug Delivery System in Cancer Chemotherapy

Author(s): Pooja Anothra, Deepak Pradhan, Jitu Halder, Goutam Ghosh and Goutam Rath*

Volume 20, Issue 5, 2023

Published on: 11 August, 2022

Page: [483 - 496] Pages: 14

DOI: 10.2174/1567201819666220608141124

Price: $65

Abstract

Background: Chemotherapy for stomach cancer often includes several side effects. The primary reasons for the failure of such treatment approaches are low drug concentrations in target tissues and a short stomach residence time.

Objective: Gastroretentive controlled drug delivery systems improves the therapeutic performance of chemotherapeutic drugs following oral administration because of the longer gastric retention time. The goal of this study was to find suitable gastroretentive formulations that might be used for the localized treatment of stomach cancer.

Methods: The purpose of this study is to summarize current advances in gastro-retentive drug administration for oral chemotherapy, with a focus on floating, mucoadhesive, and swellable systems. This article also discusses the potentials and limitations of existing gastroretentive drug delivery systems used in cancer chemotherapy.

Results: Due to increased stomach retention and modified drug release properties, gastroretentive controlled drug delivery systems improve the therapeutic performance of anti-cancer drugs used to treat stomach cancer.

Conclusion: Gastroretentive drug delivery systems appear to be a promising carrier for localized chemotherapy with smaller doses and better patient compliance. However, selection of drug candidates, drugfood interactions and chemotherapy-induced gastric discomfort remain the key characteristics that must be addressed to improve treatment outcomes.

Keywords: Gastroretentive, floating, mucoadhesive, swellable, gastric cancer, chemotherapy.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz. Gastroenterol., 2019, 14(1), 26-38.
[http://dx.doi.org/10.5114/pg.2018.80001] [PMID: 30944675]
[3]
Yu, B.; Gu, D.; Zhang, X.; Liu, B.; Xie, J. The role of GLI2-ABCG2 signaling axis for 5Fu resistance in gastric cancer. J. Genet. Genomics, 2017, 44(8), 375-383.
[http://dx.doi.org/10.1016/j.jgg.2017.04.008] [PMID: 28847472]
[4]
Dikshit, R.P.; Mathur, G.; Mhatre, S.; Yeole, B.B. Epidemiological review of gastric cancer in India. Indian J. Med. Paediatr. Oncol., 2011, 32(1), 3-11.
[http://dx.doi.org/10.4103/0971-5851.81883] [PMID: 21731209]
[5]
Bauer, B.; Meyer, T.F.J. The human gastric pathogen Helicobacter pylori and its association with gastric cancer and ulcer disease. Ulcers, 2011, 2011, 340157.
[6]
Bernards, N.; Creemers, G-J.; Nieuwenhuijzen, G.A.; Bosscha, K.; Pruijt, J.F.; Lemmens, V.E. No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Ann. Oncol., 2013, 24(12), 3056-3060.
[http://dx.doi.org/10.1093/annonc/mdt401] [PMID: 24121120]
[7]
Kotreka, U.; Adeyeye, M.C.J. Gastroretentive floating drug-delivery systems: A critical review. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(1), 47-99.
[8]
Badoni, A.; Ojha, A.; Gnanarajan, G.; Kothiyal, P.J. Review on gastro retentive drug delivery system. Pharma Innov., 2012, 1(8, Part A), 32.
[9]
Sarojini, S.; Manavalan, R.J. An overview on various approaches to gastroretentive dosage forms. Int. J. Drug Dev. Res., 2012, 4(1), 1-13.
[10]
Huang, Y.; Wei, Y.; Yang, H.; Pi, C.; Liu, H.; Ye, Y.; Zhao, L.A. 5-fluorouracil-loaded floating gastroretentive hollow microsphere: Development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice. Drug Des. Devel. Ther., 2016, 10, 997-1008.
[PMID: 27042001]
[11]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-Influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11, 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[12]
Sandercock, D.; Cramer, M.; Biton, V.; Cowles, V.E. A gastroretentive gabapentin formulation for the treatment of painful diabetic peripheral neuropathy: Efficacy and tolerability in a double-blind, randomized, controlled clinical trial. Diabetes Res. Clin. Pract., 2012, 97(3), 438-445.
[13]
Chen, N.; Li, Q.; Li, J. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. J. Drug Deliv. Sci. Technol., 2019, 51, 485-492.
[http://dx.doi.org/10.1016/j.jddst.2019.03.024]
[14]
Anothra, P.; Pradhan, D.; Naik, P.K.; Ghosh, G.; Rath, G. Development and characterization of 5-fluorouracil nanofibrous film for the treatment of stomach cancer. J. Drug Deliv. Sci. Technol., 2021, 61, 102219.
[http://dx.doi.org/10.1016/j.jddst.2020.102219]
[15]
Rahamathulla, M.; Alshahrani, S.M.; Al Saqr, A.; Alshetaili, A.; Shakeel, F. Effervescent floating matrix tablets of a novel anti-cancer drug neratinib for breast cancer treatment. J. Drug Deliv. Sci. Technol., 2021, 66, 102788.
[http://dx.doi.org/10.1016/j.jddst.2021.102788]
[16]
Mahmoud, D.B.E.D.; Marzok, S. In situ supersaturable polyhydrogels: A feasible modification of the conventional hydrogels for the enhanced delivery of stomach specific hydrophobic drugs. J. Drug Deliv. Sci. Technol., 2020, 58, 101744.
[http://dx.doi.org/10.1016/j.jddst.2020.101744]
[17]
Singh, Y.; Singh, M.; Meher, J.G.; Pawar, V.K.; Chourasia, M.K. Trichotomous gastric retention of amorphous capecitabine: An attempt to overcome pharmacokinetic gap. Int. J. Pharm., 2015, 478(2), 811-821.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.055] [PMID: 25529434]
[18]
Mo, C-E.; Chai, M-H.; Zhang, L-P.; Ran, R-X.; Huang, Y-P.; Liu, Z-S. Floating molecularly imprinted polymers based on liquid crystalline and polyhedral oligomeric silsesquioxanes for capecitabine sustained release. Int. J. Pharm., 2019, 557, 293-303.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.070] [PMID: 30599225]
[19]
Arya, P.; Pathak, K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: Optimization and pharmacokinetics. Int. J. Pharm., 2014, 460(1-2), 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.045] [PMID: 24184218]
[20]
Raafat, A.I.; Kamal, H.; Sharada, H.M.; Mohamed, R.D. Radiation development of gastroretentive amoxicillin trihydrate floating-alginate based beads for the treatment of helicobacter pylori. Radiat. Phys. Chem., 2021, 179, 109268.
[http://dx.doi.org/10.1016/j.radphyschem.2020.109268]
[21]
Upadhyay, M.; Vardhan, H.; Mishra, B. Natural polymers composed mucoadhesive interpenetrating buoyant hydrogel beads of capecitabine: Development, characterization and in vivo scintigraphy. J. Drug Deliv. Sci. Technol., 2020, 55, 101480.
[http://dx.doi.org/10.1016/j.jddst.2019.101480]
[22]
Chen, R.; Guo, X.; Liu, X.; Cui, H.; Wang, R.; Han, J. Formulation and statistical optimization of gastric floating alginate/oil/chitosan capsules loading procyanidins: In vitro and in vivo evaluations. Int. J. Biol. Macromol., 2018, 108, 1082-1091.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.032] [PMID: 29128589]
[23]
Xu, Z-Y.; Tang, J-N.; Xie, H-X.; Du, Y.A.; Huang, L.; Yu, P.F.; Cheng, X.D. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int. J. Biol. Sci., 2015, 11(3), 284-294.
[http://dx.doi.org/10.7150/ijbs.10248] [PMID: 25678847]
[24]
Taghizadeh, D.E.; Ibrahim, N.M.; Kadivar, A.; Kamalidehghan, B.; Farjam, A.S.; Akbari Javar, H. Preparation and characterization of a gastric floating dosage form of capecitabine. BioMed Res. Int., 2013, 2013, 495319.
[http://dx.doi.org/10.1155/2013/495319] [PMID: 24288681]
[25]
Sharma, A.; Radhakrishnan, V. Gastric cancer in India. Indian J. Med. Paediatr. Oncol., 2011, 32(1), 12-16.
[http://dx.doi.org/10.4103/0971-5851.81884] [PMID: 21731210]
[26]
Tripathi, J.; Thapa, P.; Maharjan, R.; Jeong, S.H. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics, 2019, 11(4), 193.
[http://dx.doi.org/10.3390/pharmaceutics11040193] [PMID: 31010054]
[27]
Karimzadeh, S.; Safaei, B.; Jen, T-C. Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study. J. Mol. Liq., 2021, 322, 114890.
[http://dx.doi.org/10.1016/j.molliq.2020.114890]
[28]
Karimzadeh, S.; Safaei, B.; Jen, T-C. Prediction effect of ethanol molecules on doxorubicin drug delivery using single-walled carbon nanotube carrier through POPC cell membrane. J. Mol. Liq., 2021, 330, 115698.
[http://dx.doi.org/10.1016/j.molliq.2021.115698]
[29]
Karimzadeh, S.; Safaei, B.; Jen, T-C. Investigate the importance of mechanical properties of SWCNT on doxorubicin anti-cancer drug adsorption for medical application: A molecular dynamic study. J. Mol. Graph. Model., 2020, 101, 107745.
[http://dx.doi.org/10.1016/j.jmgm.2020.107745] [PMID: 32977299]
[30]
Geetha, T.; Deol, P.K.; Kaur, I.P. Role of sesamol-loaded floating beads in gastric cancers: A pharmacokinetic and biochemical evidence. J. Microencapsul., 2015, 32(5), 478-487.
[PMID: 26268954]
[31]
Cho, J-K.; Kuh, H-J.; Song, S-C. Injectable poly(organophos-phazene) hydrogel system for effective paclitaxel and doxorubicin combination therapy. J. Drug Target., 2014, 22(8), 761-767.
[http://dx.doi.org/10.3109/1061186X.2014.921923] [PMID: 24937548]
[32]
Upadhyay, M.; Adena, S.K.R.; Vardhan, H.; Pandey, S.; Mishra, B. Development and optimization of locust bean gum and sodium alginate interpenetrating polymeric network of capecitabine. Drug Dev. Ind. Pharm., 2018, 44(3), 511-521.
[http://dx.doi.org/10.1080/03639045.2017.1402921] [PMID: 29161913]
[33]
Agarwal, S.; Murthy, R.S. Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets. Indian J. Pharm. Sci., 2015, 77(6), 705-714.
[http://dx.doi.org/10.4103/0250-474X.174993] [PMID: 26997698]
[34]
Rani, R.; Kumar, M.; Yadav, N. Recent advances in the development of floating microspheres for the treatment of gastric ulcers. Int. J. Adv. Sci. Technol., 2020, 29(5), 3613-3627.
[35]
Kumar, A.; Naik, P.K.; Pradhan, D.; Ghosh, G.; Rath, G. Mucoadhesive formulations: Innovations, merits, drawbacks, and future outlook. Pharm. Dev. Technol., 2020, 25(7), 797-814.
[http://dx.doi.org/10.1080/10837450.2020.1753771] [PMID: 32267180]
[36]
Bahadur, S.; Sahu, M.; Baghel, P.; Yadu, K.; Naurange, T. An overview on various types of gastroretentive drug delivery system. Sci. Rise Pharm. Sci., 2020, 6(28), 4-13.
[37]
Gopal, S.V.; Chaurasia, P.K.; Pardhe, H.A.; Santosh, S.S.; Sonar, N.S. Gastroretentive drug delivery system: A systematic review. AJPTech., 2020, 10(4), 278-284.
[http://dx.doi.org/10.5958/2231-5713.2020.00046.X]
[38]
Vrettos, N-N.; Roberts, C.J.; Zhu, Z. Gastroretentive technologies in tandem with controlled-release strategies: A potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics, 2021, 13(10), 1591.
[http://dx.doi.org/10.3390/pharmaceutics13101591] [PMID: 34683884]
[39]
Namdev, A.; Jain, D. Floating drug delivery systems: An emerging trend for the treatment of peptic ulcer. Curr. Drug Deliv., 2019, 16(10), 874-886.
[http://dx.doi.org/10.2174/1567201816666191018163519] [PMID: 31894738]
[40]
Kumar, R.; Patil, M.; Patil, S.R.; Paschapur, M.S. Formulation and evaluation of effervescent floating tablet of famotidine. Int. J. Pharm. Tech. Res., 2009, 1(3), 754-763.
[41]
Tadros, M.I. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: Development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Eur. J. Pharm. Biopharm., 2010, 74(2), 332-339.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.010] [PMID: 19932750]
[42]
Arza, R.A.K.; Gonugunta, C.S.R.; Veerareddy, P.R. Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech, 2009, 10(1), 220-226.
[http://dx.doi.org/10.1208/s12249-009-9200-y] [PMID: 19277869]
[43]
Mostafavi, A.; Emami, J.; Varshosaz, J.; Davies, N.M.; Rezazadeh, M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers. Int. J. Pharm., 2011, 409(1-2), 128-136.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.035] [PMID: 21371548]
[44]
Mouzam, M.I.; Dehghan, M.H.; Asif, S.; Sahuji, T.; Chudiwal, P. Preparation of a novel floating ring capsule-type dosage form for stomach specific delivery. Saudi Pharm. J., 2011, 19(2), 85-93.
[http://dx.doi.org/10.1016/j.jsps.2011.01.004] [PMID: 23960746]
[45]
Rajput, P.; Singh, D.; Pathak, K. Bifunctional capsular dosage form: Novel fanicular cylindrical gastroretentive system of clarithromycin and immediate release granules of ranitidine HCl for simultaneous delivery. Int. J. Pharm., 2014, 461(1-2), 310-321.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.053] [PMID: 24309435]
[46]
Murata, Y.; Kofuji, K.; Kawashima, S. Preparation of floating alginate gel beads for drug delivery to the gastric mucosa. J. Biomater. Sci. Polym. Ed., 2003, 14(6), 581-588.
[http://dx.doi.org/10.1163/15685620360674263] [PMID: 12901439]
[47]
Murata, Y.; Sasaki, N.; Miyamoto, E.; Kawashima, S. Use of floating alginate gel beads for stomach-specific drug delivery. Eur. J. Pharm. Biopharm., 2000, 50(2), 221-226.
[http://dx.doi.org/10.1016/S0939-6411(00)00110-7] [PMID: 10962231]
[48]
Stops, F.; Fell, J.T.; Collett, J.H.; Martini, L.G.; Sharma, H.L.; Smith, A-M. Citric acid prolongs the gastro-retention of a floating dosage form and increases bioavailability of riboflavin in the fasted state. Int. J. Pharm., 2006, 308(1-2), 14-24.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.039] [PMID: 16343829]
[49]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[50]
Narkar, M.; Sher, P.; Pawar, A. Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS PharmSciTech, 2010, 11(1), 267-277.
[http://dx.doi.org/10.1208/s12249-010-9384-1] [PMID: 20180053]
[51]
Shishu; Gupta, N.; Aggarwal, N. Stomach-specific drug delivery of 5-fluorouracil using floating alginate beads. AAPS PharmSciTech, 2007, 8(2), 48.
[http://dx.doi.org/10.1208/pt0802048] [PMID: 17625805]
[52]
Hou, J-Y.; Gao, L-N.; Meng, F-Y.; Cui, Y-L. Mucoadhesive microparticles for gastroretentive delivery: Preparation, biodistribution and targeting evaluation. Mar. Drugs, 2014, 12(12), 5764-5787.
[http://dx.doi.org/10.3390/md12125764] [PMID: 25470180]
[53]
Raval, J.A.; Patel, J.K.; Patel, M.M. Formulation and in vitro characterization of spray dried microspheres of amoxicillin. Acta Pharm., 2010, 60(4), 455-465.
[http://dx.doi.org/10.2478/v10007-010-0034-7] [PMID: 21169137]
[54]
Jain, S.K.; Jangdey, M.S. Lectin conjugated gastroretentive multiparticulate delivery system of clarithromycin for the effective treatment of Helicobacter pylori. Mol. Pharm., 2009, 6(1), 295-304.
[http://dx.doi.org/10.1021/mp800193n] [PMID: 19093870]
[55]
Malik, R.; Garg, T.; Goyal, A.K.; Rath, G. Polymeric nanofibers: Targeted gastro-retentive drug delivery systems. J. Drug Target., 2015, 23(2), 109-124.
[http://dx.doi.org/10.3109/1061186X.2014.965715] [PMID: 25268275]
[56]
Illangakoon, U.E.; Yu, D-G.; Ahmad, B.S.; Chatterton, N.P.; Williams, G.R. 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning. Int. J. Pharm., 2015, 495(2), 895-902.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.044] [PMID: 26410755]
[57]
Patil, H.; Tiwari, R.V.; Repka, M.A. Recent advancements in mucoadhesive floating drug delivery systems: A mini-review. J. Drug Deliv. Sci. Technol., 2016, 31, 65-71.
[http://dx.doi.org/10.1016/j.jddst.2015.12.002]
[58]
Duggan, S.; Cummins, W.; O’ Donovan, O.; Hughes, H.; Owens, E. Thiolated polymers as mucoadhesive drug delivery systems. Eur. J. Pharm. Sci., 2017, 100, 64-78.
[http://dx.doi.org/10.1016/j.ejps.2017.01.008] [PMID: 28087353]
[59]
Juntapram, K.; Praphairaksit, N.; Siraleartmukul, K.; Muangsin, N. Electrosprayed polyelectrolyte complexes between mucoadhesive N,N,N,-trimethylchitosan-homocysteine thiolactone and alginate/carrageenan for camptothecin delivery. Carbohydr. Polym., 2012, 90(4), 1469-1479.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.017] [PMID: 22944404]
[60]
Patle, R.; Shinde, S.; Patel, S.; Maheshwari, R.; Jariyal, H.; Srivastava, A.; Chauhan, N.; Globisch, C.; Jain, A.; Tekade, R.K.; Shard, A. Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. Bioorg. Med. Chem. Lett., 2021, 42, 128062.
[http://dx.doi.org/10.1016/j.bmcl.2021.128062] [PMID: 33901643]
[61]
Tan, H.; Qin, F.; Chen, D.; Han, S.; Lu, W.; Yao, X. Study of glycol chitosan-carboxymethyl β-cyclodextrins as anticancer drugs carrier. Carbohydr. Polym., 2013, 93(2), 679-685.
[http://dx.doi.org/10.1016/j.carbpol.2012.12.016] [PMID: 23499111]
[62]
Ezzat, H.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Improved oral bioavailability of the anticancer drug catechin using chitosomes: Design, in vitro appraisal and in vivo studies. Int. J. Pharm., 2019, 565, 488-498.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.034] [PMID: 31100382]
[63]
Zhang, E.; Xing, R.; Liu, S.; Li, K.; Qin, Y.; Yu, H.; Li, P. Vascular targeted chitosan-derived nanoparticles as docetaxel carriers for gastric cancer therapy. Int. J. Biol. Macromol., 2019, 126, 662-672.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.262] [PMID: 30599159]
[64]
Asfia, S.; Mohammadian, M.; Kouchakzadeh, H. Polymeric nanoparticulates as efficient anticancer drugs delivery systems.Nanomaterials for Advanced Biological Applications; Rahmandoust, M.; Ayatollahi, M., Eds.; Springer: Cham, 2019, pp. 55-84.
[http://dx.doi.org/10.1007/978-3-030-10834-2_3]
[65]
Choi, H.; Liu, T.; Qiao, H.; Chacko, A.M.; Hu, S.H.; Chen, S.Y.; Zhou, R.; Chen, I.W. Biomimetic nano-surfactant stabilizes sub-50 nanometer phospholipid particles enabling high paclitaxel payload and deep tumor penetration. Biomaterials, 2018, 181, 240-251.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.034] [PMID: 30096559]
[66]
Sorasitthiyanukarn, F.N.; Muangnoi, C.; Ratnatilaka Na Bhuket, P.; Rojsitthisak, P.; Rojsitthisak, P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater. Sci. Eng. C, 2018, 93, 178-190.
[http://dx.doi.org/10.1016/j.msec.2018.07.069] [PMID: 30274050]
[67]
Boni, F.I.; Almeida, A.; Lechanteur, A.; Sarmento, B.; Cury, B.S.F.; Gremião, M.P.D. Mucoadhesive nanostructured polyelectrolytes complexes modulate the intestinal permeability of methotrexate. Eur. J. Pharm. Sci., 2018, 111, 73-82.
[http://dx.doi.org/10.1016/j.ejps.2017.09.042] [PMID: 28962855]
[68]
Lin, Y-J.; Shatkin, J.A.; Kong, F. Evaluating mucoadhesion properties of three types of nanocellulose in the gastrointestinal tract in vitro and ex vivo. Carbohydr. Polym., 2019, 210, 157-166.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.029] [PMID: 30732748]
[69]
Cheng, Z.; Chen, X.; Zhai, D.; Gao, F.; Guo, T.; Li, W.; Hao, S.; Ji, J.; Wang, B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J. Nanobiotechnology, 2018, 16(1), 24.
[http://dx.doi.org/10.1186/s12951-018-0353-2] [PMID: 29554910]
[70]
de Ávila, P.H.M.; de Ávila, R.I.; Dos Santos Filho, E.X.; Cunha Bastos, C.C.; Batista, A.C.; Mendonça, E.F.; Serpa, R.C.; Marreto, R.N.; da Cruz, A.F.; Lima, E.M.; Valadares, M.C. Mucoadhesive formulation of Bidens pilosa L. (Asteraceae) reduces intestinal injury from 5-fluorouracil-induced mucositis in mice. Toxicol. Rep., 2015, 2, 563-573.
[http://dx.doi.org/10.1016/j.toxrep.2015.03.003] [PMID: 28962391]
[71]
Arora, S.; Gupta, S.; Narang, R.K.; Budhiraja, R.D. Amoxicillin loaded chitosan-alginate polyelectrolyte complex nanoparticles as mucopenetrating delivery system for H. pylori. Sci. Pharm., 2011, 79(3), 673-694.
[http://dx.doi.org/10.3797/scipharm.1011-05] [PMID: 21886911]
[72]
Lin, Y-H.; Chang, C-H.; Wu, Y-S.; Hsu, Y-M.; Chiou, S-F.; Chen, Y-J. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials, 2009, 30(19), 3332-3342.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.036] [PMID: 19299008]
[73]
Lin, H-L.; Chen, L-C.; Cheng, W-T.; Cheng, W-J.; Ho, H-O.; Sheu, M-T. Preparation and characterization of a novel swellable and floating gastroretentive drug delivery system (sfGRDDS) for enhanced oral bioavailability of nilotinib. Pharmaceutics, 2020, 12(2), 137.
[http://dx.doi.org/10.3390/pharmaceutics12020137] [PMID: 32041184]
[74]
Kim, S.; Hwang, K-M.; Park, Y.S.; Nguyen, T-T.; Park, E-S. Preparation and evaluation of non-effervescent gastroretentive tablets containing pregabalin for once-daily administration and dose proportional pharmacokinetics. Int. J. Pharm., 2018, 550(1-2), 160-169.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.038] [PMID: 30138708]
[75]
Avachat, A.M.; Patel, K.B.; Rokade, M.S.; Dash, R.R.P. Formulation and characterization of an expandable, gastroretentive system of carvedilol phosphate by 32 factorial design. J. Pharm. Sci. Technol., 2011, 65(1), 12-19.
[PMID: 21414936]
[76]
Chen, R-N.; Ho, H-O.; Yu, C-Y.; Sheu, M-T. Development of swelling/floating gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with CYP2C9 polymorphism. Eur. J. Pharm. Sci., 2010, 39(1-3), 82-89.
[http://dx.doi.org/10.1016/j.ejps.2009.10.015] [PMID: 19903527]
[77]
Neumann, M.; Schneider, F.; Koziolek, M.; Garbacz, G.; Weitschies, W. A novel mechanical antrum model for the prediction of the gastroretentive potential of dosage forms. Int. J. Pharm., 2017, 530(1-2), 63-70.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.067] [PMID: 28750896]
[78]
Gupta, P.; Sheth, A.; Smith, R.L. Gastro-retentive formulations. U.S. Patent 14,653,600, January 07;2016
[79]
Qian, K.; Qian, H.; Cai, J.; Yue, W.; Yu, X.; Liu, B. Evaluation of cisplatin-hydrogel for improving localized antitumor efficacy in gastric cancer. Pathology-Research., 2019, 215(4), 755-760.
[http://dx.doi.org/10.1016/j.prp.2019.01.005] [PMID: 30718098]
[80]
Khan, H.; Chaudhary, J.P.; Meena, R. Anionic carboxymethylagarose-based pH-responsive smart superabsorbent hydrogels for controlled release of anticancer drug. Int. J. Biol. Macromol., 2019, 124, 1220-1229.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.045] [PMID: 30529202]
[81]
Chaniyara, S.; Modi, D.; Patel, R.; Patel, J.; Desai, R.; Chaudhary, S. Formulation and evaluation of floatable in situ gel for stomach-specific drug delivery of ofloxacin. Am. J. Adv. Drug Deliv., 2013, 1(3), 285-299.
[82]
Jung, Y.S.; Koo, D-H.; Yang, J-Y.; Lee, H-Y.; Park, J-H.; Park, J.H. Peri-tumor administration of 5-fluorouracil sol-gel using a hollow microneedle for treatment of gastric cancer. Drug Deliv., 2018, 25(1), 872-879.
[http://dx.doi.org/10.1080/10717544.2018.1455760] [PMID: 29608119]
[83]
Singh, R.; Kumar, A.; Kaushik, S.; Kumar, V. Gastroretentive extended release suspension compositions. U.S. Patent 20180008539A1, January 11;2018
[84]
Castan, C.; Caisse, P. Controlled-release floating pharmaceutical compositions. U.S. Patent 20100310667A1, February 7;2010
[85]
Vergnault, G.; Conte, U.; Maggi, L. Gastroretentive gel formulations. U.S. Patent 20170319698A1, November 09;2017
[86]
Altıok, D; Tıhmınlıoğlu, F Essential oil loaded mucoadhesive nanocomposite delivery system for gastrointestinal system. E.P. Patent 3240527A1, November 08;2017
[87]
Grenier, P.; Nhamias, A.; Vergnault, G. Floating gastric retentive dosage form. U.S. Patent 9,314,43079B2, April 19;2016
[88]
Patel, J.D.; Patel, S.D. A novel oral gastroretentive pharmaceutical dosage form. W.O. Patent 2016020936A2, May 26;2016
[89]
Jahagirdar, H.; Kulkarni, R.; Kulkarni, S. Pharmaceutical compositions for gastrointestinal drug delivery. U.S. Patent 8,974,825B2, March 10;2015
[90]
Muthusamy, R.; Kulkarni, M.G. Gastroretentive, extended release composition of therapeutic agent. U.S. Patent 8,808,669B2, August 19;2014
[91]
Zhilong, C.; Na, C.; Zhiqiang, L.; Yujia, Y. Anti-cancer drug-loading nanofiber film and preparation method. C.N. Patent 10,268,8223B, January 08;2014
[92]
Chen, M.J.; Hui, H-W.; Shen, X. Controlled release oral dosage forms of poorly soluble drugs and uses thereof. U.S. Patent 20140018404A1, January 16;2014
[93]
Reyes, J.; Anderson, K.; Zevotek, D. Gastroretentive controlled release vehicles that include ethylene copolymers, ethyl celluloses, and/or thermoplastic polyurethanes. U.S. Patent 20140348936A1, November 27;2014
[94]
Xiang, L.; Kun, W. Preparation method of 5-fluorouracil-wrapped biodegradable polylactic acid/nano-hydroxyapatite compound microspheres. C.N. Patent 101804032B, August 08;2012
[95]
Gandhi, A.S.; Pilgaonkar, P.S.; Rustomjee, M.T. Sustained release compositions. W.O. Patent 2012063257A2, November 01;2012
[96]
Berner, B.; Louie-Helm, J.; Shell, J. Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract. U.S. Patent 7,976,870B2, July 12;2011
[97]
Gorukanti, S.; Zu, Y.; Kotamraj, P.; Neelam, K.; Ahmed, S.U. Modified gastroretentive drug delivery system for amine drugs. U.S. Patent 20110287096A1, November 24;2011
[98]
Muthusamy, R.; Kulkarni, M.G. Sustained release composition of therapeutic agent. W.O. Patent 2010103365A2, November 18;2010
[99]
Illum, S.; Ping, H. Gastroretentive controlled release microspheres for improved drug delivery. U.S. Patent 6,207,197B1, March 27;2001

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy