Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Surface-Enhanced Raman Scattering: A Promising Nanotechnology for Anti-Counterfeiting and Tracking Systems

Author(s): Khaled Alkhuder*

Volume 19, Issue 5, 2023

Published on: 03 October, 2022

Page: [636 - 650] Pages: 15

DOI: 10.2174/1573413718666220607164053

Price: $65

Abstract

Surface-enhanced Raman Scattering (SERS) is a sensing method based on inelastic scattering of a laser beam by a reporter molecule absorbed on a plasmonic substrate. The incident laser beam induces a localized-surface plasmon resonance in the substrate, which generates an oscillating electromagnetic field on the substrate dielectric surface. Under the influence of this field, the reporter molecule absorbed on the plasmonic substrate starts to vibrate, causing inelastic scattering of the laser beam. The laser-induced electromagnetic field is also the main contributor to the enhancement observed in the intensity of the scattered light. Plasmonic substrates are nanostructured surfaces often made of noble metals. The surface enhancement of a plasmonic substrate is determined primarily by factors related to the substrate’s nano-architecture and its composition. SERS-based labeling has emerged as a reliable and sophisticated anti-counterfeiting technology with potential applications in a wide range of industries. This technology is based on detecting the SERS signals produced by SERS tags using Raman spectroscopy. SERS tags are generally made of a plasmonic substrate, a Raman reporter, and a protective coating shell. They can be engineered using a wide variety of materials and methods. Several SERS-based anticounterfeiting labels have been developed in the past two decades. Some of these labels have been successfully combined with identification systems based on artificial intelligence. The purpose of this review is to shed light on the SERS technology and the progress that has been achieved in the SERS-based tracking systems.

Keywords: SERS, SERS-tags, anti-counterfeiting, plasmonic substrates, nanoparticles, laser, and semiconductors.

[1]
Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: Recent advances and future challenges. ACS Nano, 2020, 14(11), 14417-14492.
[http://dx.doi.org/10.1021/acsnano.0c07289] [PMID: 33079535]
[2]
Spink, J.; Fejes, Z.L. A review of the economic impact of counterfeiting and piracy methodologies and assessment of currently utilized estimates. Int. J. Comp. Appl. Crim. Justice, 2012, 36(4), 249-271.
[http://dx.doi.org/10.1080/01924036.2012.726320]
[3]
Bansal, D.; Malla, S.; Gudala, K.; Tiwari, P. Anti-counterfeit technologies: A pharmaceutical industry perspective. Sci. Pharm., 2013, 81(1), 1-13.
[http://dx.doi.org/10.3797/scipharm.1202-03] [PMID: 23641326]
[4]
Liu, H.; Xie, D.; Shen, H.; Li, F.; Chen, J. Functional micro–nano structure with variable colour: Applications for anti-counterfeiting. Adv. Polym. Technol., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/6519018]
[5]
Álvarez López, Y.; Franssen, J.; Álvarez Narciandi, G.; Pagnozzi, J.; González-Pinto Arrillaga, I.; Las-Heras Andrés, F. RFID technology for management and tracking: E-health applications. Sensors (Basel), 2018, 18(8), 2663-2681.
[http://dx.doi.org/10.3390/s18082663] [PMID: 30104557]
[6]
Saygin, C.; Jagannathan, S. Radio frequency identification (RFID) enabling lean manufacturing. Int. J. Manuf. Res., 2011, 6(4), 321-336.
[http://dx.doi.org/10.1504/IJMR.2011.043234]
[7]
Kalytchuk, S.; Wang, Y.; Poláková, K.; Zbořil, R. Carbon dot fluorescence-lifetime-encoded anti-counterfeiting. ACS Appl. Mater. Interfaces, 2018, 10(35), 29902-29908.
[http://dx.doi.org/10.1021/acsami.8b11663] [PMID: 30085654]
[8]
Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett., 2012, 7(1), 480-494.
[http://dx.doi.org/10.1186/1556-276X-7-480] [PMID: 22929008]
[9]
Liu, Y.; Han, F.; Li, F.; Zhao, Y.; Chen, M.; Xu, Z.; Zheng, X.; Hu, H.; Yao, J.; Guo, T.; Lin, W.; Zheng, Y.; You, B.; Liu, P.; Li, Y.; Qian, L. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun., 2019, 10(1), 2409-2418.
[http://dx.doi.org/10.1038/s41467-019-10406-7] [PMID: 31160579]
[10]
Mutavdžić, D.; Xu, J.; Thakur, G.; Triulzi, R.; Kasas, S.; Jeremić, M.; Leblanc, R.; Radotić, K. Determination of the size of quantum dots by fluorescence spectroscopy. Analyst, 2011, 136(11), 2391-2396.
[http://dx.doi.org/10.1039/c0an00802h] [PMID: 21491050]
[11]
Smith, J.D.; Reza, M.A.; Smith, N.L.; Gu, J.; Ibrar, M.; Crandall, D.J.; Skrabalak, S.E. Plasmonic anticounterfeit tags with high encoding capacity rapidly authenticated with deep machine learning. ACS Nano, 2021, 15(2), 2901-2910.
[http://dx.doi.org/10.1021/acsnano.0c08974] [PMID: 33559464]
[12]
Ibrar, M.; Skrabalak, S.E. Designer plasmonic nanostructures for unclonable anticounterfeit tags. Small Struc., 2021, 2(9), 2100043-2100051.
[http://dx.doi.org/10.1002/sstr.202100043]
[13]
Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. (Camb.), 2020, 11(18), 4563-4577.
[http://dx.doi.org/10.1039/D0SC00809E] [PMID: 34122914]
[14]
Frank-Kamenetskii, D.A. Rotating Plasmas. Plasma: The Fourth State of Matter; Springer, 1972, pp. 4684-1896.
[15]
Chaudhary, K.; Rizvi, S.Z.H.; Ali, J. Laser-Induced Plasma and its Applications. In: Plasma Science and Technology-Progress in Physical States and Chemical Reactions; Mieno, T., Ed.; IntechOpen, Japan, 2016.
[http://dx.doi.org/10.5772/61784]
[16]
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; García de Abajo, F.J.; Goodacre, R.; Graham, D.; Haes, A.J.; Haynes, C.L.; Huck, C.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N.A.; Kuang, H.; Le Ru, E.C.; Lee, H.K.; Li, J.F.; Ling, X.Y.; Maier, S.A.; Mayerhöfer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G.C.; Shegai, T.; Schlücker, S.; Tay, L.L.; Thomas, K.G.; Tian, Z.Q.; Van Duyne, R.P.; Vo-Dinh, T.; Wang, Y.; Willets, K.A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y.S.; Zhao, B.; Liz-Marzán, L.M. Present and future of surface-enhanced raman scattering. ACS Nano, 2020, 14(1), 28-117.
[http://dx.doi.org/10.1021/acsnano.9b04224] [PMID: 31478375]
[17]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107(3), 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[18]
Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors (Basel), 2019, 9(2), 57-156.
[http://dx.doi.org/10.3390/bios9020057] [PMID: 30999661]
[19]
Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett., 2019, 14(1), 231-265.
[http://dx.doi.org/10.1186/s11671-019-3039-2] [PMID: 31300945]
[20]
Chaichi, A.; Prasad, A.; Gartia, M.R. Raman spectroscopy and microscopy applications in cardiovascular diseases: From molecules to organs. Biosensors (Basel), 2018, 8(4), 107-126.
[http://dx.doi.org/10.3390/bios8040107] [PMID: 30424523]
[21]
Sanchez-Purra, M.; Roig-Solvas, B.; Rodriguez- Quijada, C.; Leonardo, B. M.; Hamad-Schifferli, K. Reporter selection for nanotags in multiplexed surface enhanced raman spectroscopy assays. Am. Chem. Soci. Nano, 2018, 3(9), 10733-10742.
[22]
Long, D.A. Intensities in raman spectra. I. A bond polarizability theory. Proc. Royal Soc., Math. Phys. Eng. Sci., 1953, 217(1129), 203-221.
[23]
Dieringer, J.A.; McFarland, A.D.; Shah, N.C.; Stuart, D.A.; Whitney, A.V.; Yonzon, C.R.; Young, M.A.; Zhang, X.; Van Duyne, R.P. Surface enhanced raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss., 2006, 132, 9-26.
[http://dx.doi.org/10.1039/B513431P] [PMID: 16833104]
[24]
Le Ru, E.C.; Etchegoin, P. Quantifying SERS enhancements. MRS Bull., 2013, 38(8), 631-640.
[http://dx.doi.org/10.1557/mrs.2013.158]
[25]
Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun., 2012, 3(684), 684.
[http://dx.doi.org/10.1038/ncomms1674] [PMID: 22353715]
[26]
de Almeida, M.P.; Pereira, E.; Baptista, P.; Gomes, I.; Figueiredo, S.; Soares, S.; Franco, R. Gold Nanoparticles as (Bio) Chemical Sensors. In: Comprehensive Analytical Chemistry; Valcárcel, M.; López-Lorente, A. I., Eds.; Elsevier, 2014; Vol. 66, pp. 529-567.
[27]
Wang, X.; Liu, G.; Hu, R.; Cao, M.; Yan, S.; Bao, Y.; Ren, B. Principles of surface-enhanced Raman spectroscopy. In: Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy; Wang, Y., Ed.; Elsevier, 2022; pp. 1-32.
[http://dx.doi.org/10.1016/B978-0-12-821121-2.00004-4]
[28]
Njoki, P.N.; Lim, I-I.S.; Mott, D.; Park, H-Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C-J. Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C, 2007, 111(40), 14664-14669.
[http://dx.doi.org/10.1021/jp074902z]
[29]
Moskovits, M. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc., 2005, 36(6-7), 485-496.
[http://dx.doi.org/10.1002/jrs.1362]
[30]
Mosier-Boss, P.A. Review of SERS substrates for chemical sensing. Nanomaterials (Basel), 2017, 7(6), 142-172.
[http://dx.doi.org/10.3390/nano7060142] [PMID: 28594385]
[31]
Israelsen, N.D.; Hanson, C.; Vargis, E. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction. Sci. World J., 2015, 2015, 124582-124594.
[http://dx.doi.org/10.1155/2015/124582] [PMID: 25884017]
[32]
Ermushev, A.V.; Mchedlishvili, B.V.; Oleĭnikov, V.; Petukhov, A.V. Surface enhancement of local optical fields and the lightning-rod effect. Quantum Electron., 1993, 23(5), 23432-23451.
[http://dx.doi.org/10.1070/QE1993v023n05ABEH003090]
[33]
Le Ru, E.C.; Grand, J.; Sow, I.; Somerville, W.R.; Etchegoin, P.G.; Treguer-Delapierre, M.; Charron, G.; Félidj, N.; Lévi, G.; Aubard, J. A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. Nano Lett., 2011, 11(11), 5013-5019.
[http://dx.doi.org/10.1021/nl2030344] [PMID: 21985399]
[34]
Lim, D.K.; Jeon, K.S.; Kim, H.M.; Nam, J.M.; Suh, Y.D. Nanogap-engineerable raman-active nanodumbbells for single-molecule detection. Nat. Mater., 2010, 9(1), 60-67.
[http://dx.doi.org/10.1038/nmat2596] [PMID: 20010829]
[35]
Okitsu, K.; Sharyo, K.; Nishimura, R. One-pot synthesis of gold nanorods by ultrasonic irradiation: The effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir, 2009, 25(14), 7786-7790.
[http://dx.doi.org/10.1021/la9017739] [PMID: 19545140]
[36]
Khoury, C.G.; Vo-Dinh, T. Gold nanostars for surfaceenhanced Raman scattering: Synthesis, characterization and optimization. J. Phys. Chem. C, 2008, 112(48), 18849-18859.
[http://dx.doi.org/10.1021/jp8054747]
[37]
Orendorff, C.J.; Gearheart, L.; Jana, N.R.; Murphy, C.J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys., 2006, 8(1), 165-170.
[http://dx.doi.org/10.1039/B512573A] [PMID: 16482257]
[38]
Fales, A.M.; Yuan, H.; Vo-Dinh, T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: A potential nanoplatform for theranostics. Langmuir, 2011, 27(19), 12186-12190.
[http://dx.doi.org/10.1021/la202602q] [PMID: 21859159]
[39]
Wang, X.; Shi, W.; She, G.; Mu, L. Surface-enhanced raman scattering (SERS) on transition metal and semiconductor nanostructures. Phys. Chem. Chem. Phys., 2012, 14(17), 5891-5901.
[http://dx.doi.org/10.1039/c2cp40080d] [PMID: 22362151]
[40]
Cong, S.; Yuan, Y.; Chen, Z.; Hou, J.; Yang, M.; Su, Y.; Zhang, Y.; Li, L.; Li, Q.; Geng, F.; Zhao, Z. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun., 2015, 6(7800), 7800.
[http://dx.doi.org/10.1038/ncomms8800] [PMID: 26183467]
[41]
West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon Rev., 2010, 4(6), 795-808.
[http://dx.doi.org/10.1002/lpor.200900055]
[42]
See, K.C.; Spicer, J.B.; Brupbacher, J.; Zhang, D.; Vargo, T.G. Modeling interband transitions in silver nanoparticle-fluoropolymer composites. J. Phys. Chem. B, 2005, 109(7), 2693-2698.
[http://dx.doi.org/10.1021/jp046687h] [PMID: 16851276]
[43]
Zhang, L.; Zhao, Q.; Jiang, Z.; Shen, J.; Wu, W.; Liu, X.; Fan, Q.; Huang, W. Recent progress of SERS nanoprobe for pH detecting and its application in biological imaging. Biosensors (Basel), 2021, 11(8), 282-299.
[http://dx.doi.org/10.3390/bios11080282] [PMID: 34436084]
[44]
Qian, X.; Emory, S.R.; Nie, S. Anchoring molecular chromophores to colloidal gold nanocrystals: Surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking. J. Am. Chem. Soc., 2012, 134(4), 2000-2003.
[http://dx.doi.org/10.1021/ja210992b] [PMID: 22257217]
[45]
Canamares, M.V.; Chenal, C.; Birke, R.L.; Lombardi, J.R. DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. C, 2008, 112(51), 20295-20300.
[http://dx.doi.org/10.1021/jp807807j]
[46]
Etchegoin, P.G.; Lacharmoise, P.D.; Le Ru, E.C. Influence of photostability on single-molecule surface enhanced Raman scattering enhancement factors. Anal. Chem., 2009, 81(2), 682-688.
[http://dx.doi.org/10.1021/ac802083z] [PMID: 19072023]
[47]
Seo, S.; Chang, T-W.; Liu, G.L. 3D plasmon coupling assisted SERS on nanoparticle-nanocup array hybrids. Sci. Rep., 2018, 8(1), 3002.
[http://dx.doi.org/10.1038/s41598-018-19256-7] [PMID: 29445092]
[48]
Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1), 267-297.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607] [PMID: 17067281]
[49]
Wang, Z.; Li, Y. Resonance Raman enhancement optimization in the visible range by selecting different excitation wavelengths. J. Biomed. Opt., 2015, 20(9), 095003-095009.
[http://dx.doi.org/10.1117/1.JBO.20.9.095003] [PMID: 26334974]
[50]
Greeneltch, N.G.; Davis, A.S.; Valley, N.A.; Casadio, F.; Schatz, G.C.; Van Duyne, R.P.; Shah, N.C. Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of eosin Y: Theoretical calculations and evaluation of two different nanoplasmonic substrates. J. Phys. Chem. A, 2012, 116(48), 11863-11869.
[http://dx.doi.org/10.1021/jp3081035] [PMID: 23102210]
[51]
Sharma, B.; Frontiera, R.R.; Henry, A-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today, 2012, 15(1–2), 16-25.
[http://dx.doi.org/10.1016/S1369-7021(12)70017-2]
[52]
Shikha, S.; Salafi, T.; Cheng, J.; Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev., 2017, 46(22), 7054-7093.
[http://dx.doi.org/10.1039/C7CS00271H] [PMID: 29022018]
[53]
Magno, G.; Bélier, B.; Barbillon, G. Al/Si nanopillars as very sensitive SERS substrates. Materials (Basel), 2018, 11(9), 1534-1543.
[http://dx.doi.org/10.3390/ma11091534] [PMID: 30149662]
[54]
Abdelsalam, M.E.; Mahajan, S.; Bartlett, P.N.; Baumberg, J.J.; Russell, A.E. SERS at structured palladium and platinum surfaces. J. Am. Chem. Soc., 2007, 129(23), 7399-7406.
[http://dx.doi.org/10.1021/ja071269m] [PMID: 17506559]
[55]
Quaresma, P.; Osório, I.; Dória, G.; Patrícia, A.; Carvalho, P.A.; Pereira, A.; Langer, J.; Araújo, J.P.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Franco, R.; Baptisa, P.V.; Pereira, E. Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv., 2014, 4(8), 3659-3667.
[http://dx.doi.org/10.1039/C3RA46762G]
[56]
Chorsi, H.T.; Lee, Y.; Alù, A.; Zhang, J.X.J. Tunable plasmonic substrates with ultrahigh Q-factor resonances. Sci. Rep., 2017, 7(1), 15985-15994.
[http://dx.doi.org/10.1038/s41598-017-16288-3] [PMID: 29167504]
[57]
Mulvaney, S.P.; Musick, M.D.; Keating, C.D.; Natan, M.J. Glass-coated, analyte-tagged nanoparticles: A new tagging system based on detection with surface- enhanced Raman scattering. Langmuir, 2003, 19(11), 4784-4790.
[http://dx.doi.org/10.1021/la026706j]
[58]
Huang, C-C.; Huang, C-H.; Kuo, I-T.; Chau, L-K.; Yang, T-S. Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration. Colloids Surf. A Physicochem. Eng. Asp., 2012, 409(1), 61-68.
[http://dx.doi.org/10.1016/j.colsurfa.2012.06.003]
[59]
Trippa, R.A.; Dluhyb, R.A.; Zhaoc, Y. Novel nanostructures for SERS biosensing. Nano today, 2008, 3(3-4), 31-37.
[60]
Ma, H.; Liu, S.; Zheng, N.; Liu, Y.; Han, X.X.; He, C.; Lu, H.; Zhao, B. Frequency shifts in surface-enhanced raman spectroscopy-based immunoassays: Mechanistic insights and application in protein carbonylation detection. Anal. Chem., 2019, 91(15), 9376-9381.
[http://dx.doi.org/10.1021/acs.analchem.9b02640] [PMID: 31287298]
[61]
Gu, Y.; He, C.; Zhang, Y.; Lin, L.; Thackray, B.D.; Ye, J. Gap enhanced raman tags for physically unclonable anticounterfeiting labels. Nat. Commun., 2020, 11(1), 516.
[http://dx.doi.org/10.1038/s41467-019-14070-9] [PMID: 31980613]
[62]
Huo, Y.; Curry, S.; Trowbridge, A.; Xu, X.; Jiang, C. Surface-enhanced Raman scattering-based molecular encoding with gold nanostars for anticounterfeiting applications. Mater. Adv., 2021, 2(1), 5116-5123.
[63]
Lim, D.K.; Jeon, K.S.; Hwang, J.H.; Kim, H.; Kwon, S.; Suh, Y.D.; Nam, J.M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol., 2011, 6(7), 452-460.
[http://dx.doi.org/10.1038/nnano.2011.79] [PMID: 21623360]
[64]
Feng, Y.; Wang, Y.; Wang, H.; Chen, T.; Tay, Y.Y.; Yao, L.; Yan, Q.; Li, S.; Chen, H. Engineering “hot” nanoparticles for surface-enhanced Raman scattering by embedding reporter molecules in metal layers. Small, 2012, 8(2), 246-251.
[http://dx.doi.org/10.1002/smll.201102215] [PMID: 22125121]
[65]
Shen, W.; Lin, X.; Jiang, C.; Li, C.; Lin, H.; Huang, J.; Wang, S.; Liu, G.; Yan, X.; Zhong, Q.; Ren, B. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards. Angew. Chem. Int., 2015, 54(25), 7308-7312.
[66]
Wang, W.; Wang, W.; Liu, L.; Xu, L.; Kuang, H.; Zhu, J.; Xu, C. Nanoshell-enhanced raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing. ACS Appl. Mater. Interfaces, 2016, 8(24), 15591-15597.
[http://dx.doi.org/10.1021/acsami.6b02905] [PMID: 27193082]
[67]
Khlebtsov, N.G.; Lin, L.; Khlebtsov, B.N.; Ye, J. Gap-enhanced Raman tags: Fabrication, optical properties, and theranostic applications. Theranostics, 2020, 10(5), 2067-2094.
[http://dx.doi.org/10.7150/thno.39968] [PMID: 32089735]
[68]
Guillot, N.; Lamyde la Chapelle, M. The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures. J. Quant. Spectrosc. Radiat. Transf., 2012, 113(18), 2321-2333.
[http://dx.doi.org/10.1016/j.jqsrt.2012.04.025]
[69]
Li, Z.Y.; Wilcoxon, J.P.; Yin, F.; Chen, Y.; Palmer, R.E.; Johnston, R.L. Structures and optical properties of 4-5 nm bimetallic AgAu nanoparticles. Faraday Discuss., 2008, 138(1), 363-373.
[http://dx.doi.org/10.1039/B708958A] [PMID: 18447026]
[70]
Zhou, Y.; Zhao, G.; Bian, J.; Tian, X.; Cheng, X.; Wang, H.; Chen, H. Multiplexed SERS barcodes for anti-counterfeiting. ACS Appl. Mater. Interfaces, 2020, 12(25), 28532-28538.
[http://dx.doi.org/10.1021/acsami.0c06272] [PMID: 32483972]
[71]
Aberasturi, D.; Serrano, A.; Langer, J. Henriksen- Lacey, M.; Parak, W.; Liz-Marzán, L. Surface enhanced raman scattering encoded gold nanostars for multiplexed cell discrimination. Chem. Mater., 2016, 28(18), 6779-6790.
[http://dx.doi.org/10.1021/acs.chemmater.6b03349]
[72]
Oliveira, M.J.; P de Almeida, M.; Nunes, D.; Fortunato, E.; Martins, R.; Pereira, E.; J Byrne, H.; Águas, H.; Franco, R. Design and simple assembly of gold nanostar bioconjugates for surface-enhanced Raman spectroscopy immunoassays. Nanomaterials (Basel), 2019, 9(11), 1561-1577.
[http://dx.doi.org/10.3390/nano9111561] [PMID: 31689919]
[73]
Indrasekara, A.S.; Meyers, S.; Shubeita, S.; Feldman, L.C.; Gustafsson, T.; Fabris, L. Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale, 2014, 6(15), 8891-8899.
[http://dx.doi.org/10.1039/C4NR02513J] [PMID: 24961293]
[74]
Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S. Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep., 2013, 3(3396), 3396.
[http://dx.doi.org/10.1038/srep03396] [PMID: 24292236]
[75]
Zhang, C.; Yi, P.; Peng, L.; Lai, X.; Chen, J.; Huang, M.; Ni, J. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci. Rep., 2017, 7(39814), 39814.
[http://dx.doi.org/10.1038/srep39814] [PMID: 28051175]
[76]
Syed, H.; Podagatlapalli, G.K.; Mohiddon, M.A.; Soma, V.R. SERS studies of explosive molecules with diverse copper nanostructures fabricated using ultrafast laser ablation. Adv. Mater. Lett., 2015, 6(12), 1073-1080.
[http://dx.doi.org/10.5185/amlett.2015.6007]
[77]
Lin, C.H.; Jiang, L.; Chai, Y.H.; Xiao, H.; Chen, S.J.; Tsai, H.L. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering. Opt. Express, 2009, 17(24), 21581-21589.
[http://dx.doi.org/10.1364/OE.17.021581] [PMID: 19997399]
[78]
Yang, J.; Li, J.; Du, Z.; Gong, Q.; Teng, J.; Hong, M. Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Sci. Rep., 2014, 4(6657), 6657.
[PMID: 25324167]
[79]
Yukun, H.; Lan, X.; Wei, T.; Tsai, H-L.; Xiao, H. Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Appl. Phys., A Mater. Sci. Process., 2009, 97(3), 721-724.
[http://dx.doi.org/10.1007/s00339-009-5306-z]
[80]
Zhu, Z.; Yan, Z.; Zhan, P.; Wang, Z.L. Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Sci. China Phys. Mech. Astron., 2013, 56(1), 1806-1809.
[http://dx.doi.org/10.1007/s11433-013-5239-6]
[81]
Zhang, P.; Yang, S.; Wang, L.; Zhao, J.; Zhu, Z.; Liu, B.; Zhong, J.; Sun, X. Large-scale uniform Au nanodisk arrays fabricated via X-ray interference lithography for reproducible and sensitive SERS substrate. Nanotechnology, 2014, 25(24), 245301-245301.
[http://dx.doi.org/10.1088/0957-4484/25/24/245301] [PMID: 24859832]
[82]
Dhawan, A.; Duval, A.; Nakkach, M.; Barbillon, G.; Moreau, J.; Canva, M.; Vo-Dinh, T. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging. Nanotechnology, 2011, 22(16), 165301-165314.
[http://dx.doi.org/10.1088/0957-4484/22/16/165301] [PMID: 21393822]
[83]
Bryche, J.F.; Gillibert, R.; Barbillon, G.; Sarkar, M.; Coutrot, A-L.; Hamouda, F.; Aassime, A.; Moreau, J.; de la Chapelle, M.L.; Bartenlian, B.; Canva, M. Density effect of gold nanodisks on the SERS intensity for a highly sensitive detection of chemical molecules. J. Mater. Sci., 2015, 50(1), 6601-6607.
[http://dx.doi.org/10.1007/s10853-015-9203-x]
[84]
Lay, C.L.; Koh, C.S.L.; Wang, J.; Lee, Y.H.; Jiang, R.; Yang, Y.; Yang, Z.; Phang, I.Y.; Ling, X.Y. Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels. Nanoscale, 2018, 10(2), 575-581.
[http://dx.doi.org/10.1039/C7NR07793A] [PMID: 29242860]
[85]
Zhang, W.; Xue, T.; Zhang, L.; Lu, F.; Liu, M.; Meng, C.; Mao, D.; Mei, T. Surface-enhanced Raman spectroscopy based on a silverfilm semi-coated nanosphere array. Sensors (Basel), 2019, 19(18), 3966-3975.
[http://dx.doi.org/10.3390/s19183966]
[86]
Dou, Z.; Zhao, Z.; Zhang, Z.; Xie, Y.; Yu, W.; Chen, Y. Uniform near-spherical nanoscale silver films for surface-enhanced raman spectroscopy sensing. ACS Appl. Nano Mater., 2020, 3(2), 2008-2015.
[http://dx.doi.org/10.1021/acsanm.0c00084]
[87]
Liu, Y.; Lee, Y.H.; Zhang, Q.; Cuia, Y.; Linga, X.Y. Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 4(19), 4312-4319.
[http://dx.doi.org/10.1039/C6TC00682E]
[88]
Liu, Y.; Lee, Y.H.; Mian, R.L.; Yang, Y.; Ling, X.Y. Flexible three-dimensional anti- counterfeiting plasmonic security labels: Utilizing Z- axis-dependent sers readouts to encode multi- layered molecular information. Am. Chem. Soc. Photon., 2017, 4(10), 2529-2536.
[89]
Cui, Y.; Hegde, R.S.; Phang, I.Y.; Lee, H.K.; Ling, X.Y. Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications. Nanoscale, 2014, 6(1), 282-288.
[http://dx.doi.org/10.1039/C3NR04375D] [PMID: 24189553]
[90]
Poston, P.E.; Harris, J.M. Stable, dispersible surface-enhanced Raman scattering substrate capable of detecting molecules bound to silica-immobilized ligands. Appl. Spectrosc., 2010, 64(11), 1238-1243.
[http://dx.doi.org/10.1366/000370210793335061] [PMID: 21073792]
[91]
Hajduková, N.; Procházka, M.; Štěpánek, J.; Špírková, M. Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing. Colloids Surf. A Physicochem. Eng. Asp., 2007, 301(1-2), 264-270.
[http://dx.doi.org/10.1016/j.colsurfa.2006.12.065]
[92]
Péron, O.; Rinnert, E.; Lehaitre, M.; Crassous, P.; Compère, C. Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS). Talanta, 2009, 79(2), 199-204.
[http://dx.doi.org/10.1016/j.talanta.2009.03.043] [PMID: 19559865]
[93]
Jiang, T.; Wang, X.; Zhang, L.; Zhou, J.; Zhao, Z. Synthesis and improved SERS performance of silver nanoparticles-decorated surface mesoporous silica microspheres. Appl. Surf. Sci., 2016, 378(1), 181-191.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.225]
[94]
Pham, X.H.; Hahm, E.; Kang, E.; Son, B.S.; Ha, Y.; Kim, H.M.; Jeong, D.H.; Jun, B.H. Control of silver coating on Raman label incorporated gold nanoparticles assembled silica nanoparticles. Int. J. Mol. Sci., 2019, 20(6), 1258-1271.
[http://dx.doi.org/10.3390/ijms20061258] [PMID: 30871136]
[95]
Fierro-Mercado, P.M.; Hernández-Rivera, S.P. Highly sensitive filter paper substrate for SERS trace explosives detection. Int. J. Spectrosc., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/716527]
[96]
He, S.; Chua, J.; Tanb, E.K.M.; Kah, J.C.Y. Optimizing the SERS enhancement of a facile gold nanostar immobilized paper-based SERS substrate. RSC Adv., 2017, 7(27), 16264-16272.
[http://dx.doi.org/10.1039/C6RA28450G]
[97]
Muniz-Miranda, M.; Gellini, C.; Giorgetti, E.; Margheri, G.; Marsili, P.; Lascialfari, L.; Becucci, L.; Trigari, S.; Giammanco, F. Nanostructured films of metal particles obtained by laser ablation. Thin Solid Films, 2013, 473(1), 118-121.
[http://dx.doi.org/10.1016/j.tsf.2013.02.057]
[98]
Bian, X.; Xu, J.; Pu, Y.; Yang, J.; Chiu, K-L.; Jiang, S. Ag-coated cotton fabric as ultrasensitive and flexible SERS substrate. J. Ind. Text., 2021. [Epub ahead of print]
[http://dx.doi.org/10.1177/15280837211027781]
[99]
Liu, S.; Tian, X.; Guo, J.; Kong, X.; Xu, L.; Yu, Q.; Wang, A.X. Multi-functional plasmonic fabrics: A flexible SERS substrate and anti-counterfeiting security labels with tunable encoding information. Appl. Surf. Sci., 2021, 567, 150861.
[http://dx.doi.org/10.1016/j.apsusc.2021.150861]
[100]
Yang, B.; Jin, S.; Guo, S.; Park, Y.; Chen, L.; Zhao, B.; Jung, Y.M. Recent development of SERS technology: Semiconductor-based study. ACS Omega, 2019, 4(23), 20101-20108.
[http://dx.doi.org/10.1021/acsomega.9b03154] [PMID: 31815210]
[101]
Tian, Z.; Bai, H.; Chen, C.; Ye, Y.; Kong, Q.; Li, Y.; Fan, W.; Yi, W.; Xi, G. Quasi-metal for highly sensitive and stable surface-enhanced Raman scattering. iScience, 2019, 19(1), 836-849.
[http://dx.doi.org/10.1016/j.isci.2019.08.040] [PMID: 31505331]
[102]
Li, Y.; Bai, H.; Zhai, J.; Yi, W.; Li, J.; Yang, H.; Xi, G. Alternative to noble metal substrates: Metallic and plasmonic Ti3O5 hierarchical microspheres for surface enhanced raman spectroscopy. Anal. Chem., 2019, 91(7), 4496-4503.
[http://dx.doi.org/10.1021/acs.analchem.8b05282] [PMID: 30854853]
[103]
Yang, L.; Jiang, X.; Yang, M. Improvement of surface- enhanced Raman scattering performance for broad band gap semiconductor nanomaterial (TiO2): Strategy of metal doping. Appl. Phys. Lett., 2011, 99(11), 111114-111127.
[http://dx.doi.org/10.1063/1.3638467]
[104]
Jiang, X.; Song, K.; Li, X.; Yang, M.; Han, X.; Yang, L.; Zhao, B. Double metal Co–doping of TiO2 nanoparticles for improvement of their SERS activity and ultrasensitive detection of enrofloxacin: Regulation strategy of energy levels. ChemistrySelect, 2017, 2(10), 3099-3105.
[http://dx.doi.org/10.1002/slct.201700099]
[105]
Yang, L.; Peng, Y.; Yang, Y.; Liu, J.; Huang, H.; Yu, B.; Zhao, J.; Lu, Y.; Huang, Z.; Li, Z.; Lombardi, J.R. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. (Weinh.), 2019, 6(12), 1900310-1900326.
[http://dx.doi.org/10.1002/advs.201900310] [PMID: 31380169]
[106]
Letizia, J.A.; Facchetti, A.; Stern, C.L.; Ratner, M.A.; Marks, T.J. High electron mobility in solution-cast and vapor-deposited phenacyl-quaterthiophene-based field-effect transistors: Toward N-type polythiophenes. J. Am. Chem. Soc., 2005, 127(39), 13476-13477.
[http://dx.doi.org/10.1021/ja054276o] [PMID: 16190693]
[107]
Facchetti, A.; Yoon, M.H.; Stern, C.L.; Katz, H.E.; Marks, T.J. Building blocks for n-type organic electronics: Regiochemically modulated inversion of majority carrier sign in perfluoroarene-modified polythiophene semiconductors. Angew. Chem. Int., 2003, 42(33), 3900-3903.
[108]
Demirel, G.; Gieseking, R.L.M.; Ozdemir, R.; Kahmann, S.; Loi, M.A.; Schatz, G.C.; Facchetti, A.; Usta, H. Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nat. Commun., 2019, 10(1), 5502.
[http://dx.doi.org/10.1038/s41467-019-13505-7] [PMID: 31796731]
[109]
Yilmaz, M.; Babur, E.; Ozdemir, M.; Gieseking, R.L.; Dede, Y.; Tamer, U.; Schatz, G.C.; Facchetti, A.; Usta, H.; Demirel, G. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater., 2017, 16(9), 918-924.
[http://dx.doi.org/10.1038/nmat4957] [PMID: 28783157]
[110]
Jiang, S.; Guo, J.; Zhang, C.; Li, C.; Wang, M.; Li, Z.; Gao, S.; Chen, P.; Si, H.; Xuc, S. A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS2@Ag nanoparticles@pyramidal silicon. RSC Adv., 2017, 7(1), 5764-5773.
[http://dx.doi.org/10.1039/C6RA26879J]
[111]
Li, Z.; Xu, S.C.; Zhang, C.; Liu, X.Y.; Gao, S.S.; Hu, L.T.; Guo, J.; Ma, Y.; Jiang, S.Z.; Si, H.P. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@ pyramid Si. Sci. Rep., 2016, 6(1), 38539.
[http://dx.doi.org/10.1038/srep38539] [PMID: 27924863]
[112]
Krajczewski, J.; Ambroziak, R.; Kudelski, A. Substrates for surface-enhanced raman scattering formed on nanostructured non-metallic materials: Preparation and characterization. Nanomaterials, 2021, 11(1), 75-100.
[113]
Zhu, T.; Wang, H.; Zang, L.; Jin, S.; Guo, S.; Park, E.; Mao, Z.; Jung, Y.M. Flexible and reusable Ag Coated TiO2 nanotube arrays for highly sensitive SERS detection of formaldehyde. Molecules, 2020, 25(5), 1199-1210.
[http://dx.doi.org/10.3390/molecules25051199] [PMID: 32155919]
[114]
Ma, L.; Huang, Y.; Hou, M.; Xie, Z.; Zhang, Z. Ag nanorods coated with ultrathin TiO2 shells as stable and recyclable SERS substrates. Sci. Rep., 2015, 5(1), 15442.
[http://dx.doi.org/10.1038/srep15442] [PMID: 26486994]
[115]
Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N.M.; Mujica, V.; Martin, D.; Rajh, T. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc., 2009, 131(17), 6040-6041.
[http://dx.doi.org/10.1021/ja808277u] [PMID: 19364105]
[116]
Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Japanese J. Appl. Phys., 2005, 44(12), 8269-8285.
[117]
Yang, J.; Zhou, L.; Wang, X-Y.; Song, G.; You, L-J.; Li, J-M. Core-satellite Ag/TiO2/Ag composite nanospheres for multiple SERS applications in solution by a portable Raman spectrometer. Colloids Surf. A Physicochem. Eng. Asp., 2020, 584(2), 124013.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124013]
[118]
Barbillon, G. Fabrication and SERS performances of Metal/Si and Metal/ZnO nanosensors: A review. Coatings, 2019, 9(2), 86-100.
[119]
Huang, C-Y.; Tsai, M-S. Tunable silver nanoparticle arrays by hot embossing and sputter deposition for surface-enhanced raman scattering. Appl. Sci. (Basel), 2019, 9(8), 1636-1648.
[http://dx.doi.org/10.3390/app9081636]
[120]
Zhengkun, W.; Jiamin, Q.; Can, Z.; Yong, Z.; Jie, Z. AgNIs/Al2O3/Ag as SERS substrates using a self-encapsulation technology. Opt. Express, 2020, 28(21), 31993-32001.
[http://dx.doi.org/10.1364/OE.404196] [PMID: 33115162]
[121]
Lee, Y.; Lee, J.; Lee, T.K.; Park, J.; Ha, M.; Kwak, S.K.; Ko, H. Particle-on-film gap plasmons on antireflective Zno nanocone arrays for molecular-level surface-enhanced raman scattering sensors. ACS Appl. Mater. Interfaces, 2015, 7(48), 26421-26429.
[http://dx.doi.org/10.1021/acsami.5b09947] [PMID: 26575302]
[122]
Żygieło, M.; Piotrowski, P.; Witkowski, M.; Cichowicz, G.; Szczytko, J.; Królikowska, A. Reduced self-aggregation and improved stability of silica-coated Fe3O4/Ag SERS-active nanotags functionalized with 2-mercaptoethanesulfonate. Front Chem., 2021, 9, 697595.
[http://dx.doi.org/10.3389/fchem.2021.697595] [PMID: 34222201]
[123]
Su, S.; Zhang, C.; Yuwen, L.; Chao, J.; Zuo, X.; Liu, X.; Song, C.; Fan, C.; Wang, L. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6(21), 18735-18741.
[http://dx.doi.org/10.1021/am5043092] [PMID: 25310705]
[124]
Xu, J.; Li, C.; Si, H.; Zhao, X.; Wang, L.; Jiang, S.; Wei, D.; Yu, J.; Xiu, X.; Zhang, C. 3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure. Opt. Express, 2018, 26(17), 21546-21557.
[http://dx.doi.org/10.1364/OE.26.021546] [PMID: 30130861]
[125]
Wang, Y.; Sun, Z.; Hu, H.; Jing, S.; Zhao, B.; Xu, W.; Zhao, C.; Lombardi, J.R. Raman scattering study of molecules adsorbed on ZnS nanocrystals. Raman Spectroscopy, 2007, 38(1), 34-38.
[126]
He, H.; Cheng, J.; Fan, L.; Hu, J.; Lin, Y.; Liu, J.; Zeng, Z. A novel SERS substrate: Wrinkled ZnS nanobelt film coated with Ag nanoparticle. Mater. Lett., 2020, 272(1), 127827.
[http://dx.doi.org/10.1016/j.matlet.2020.127827]
[127]
Jiang, Y.; Tian, B. Inorganic semiconductor biointerfaces. Nat. Rev. Mater., 2018, 3(12), 473-490.
[http://dx.doi.org/10.1038/s41578-018-0062-3] [PMID: 31656635]
[128]
Segal, M. Material history: Learning from silicon. Nature, 2012, 483(7389), S43-S44.
[http://dx.doi.org/10.1038/483S43a] [PMID: 22419214]
[129]
Holmes, J.D.; Johnston, K.P.; Doty, R.C.; Korgel, B.A. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457), 1471-1473.
[http://dx.doi.org/10.1126/science.287.5457.1471] [PMID: 10688792]
[130]
Caldwell, J.D.; Glembocki, O.; Bezares, F.J.; Bassim, N.D.; Rendell, R.W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano, 2011, 5(5), 4046-4055.
[http://dx.doi.org/10.1021/nn200636t] [PMID: 21480637]
[131]
Lin, D.; Wu, Z.; Li, S.; Zhao, W.; Ma, C.; Wang, J.; Jiang, Z.; Zhong, Z.; Zheng, Y.; Yang, X. Large-Area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano, 2017, 11(2), 1478-1487.
[http://dx.doi.org/10.1021/acsnano.6b06778] [PMID: 28061026]
[132]
Zhang, M.L.; Fan, X.; Zhou, H.W.; Shao, M.W.; Zapien, J.A.; Wong, N.B.; Lee, S.T. A high- efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J. Phys. Chem. C, 2010, 114(5), 1969-1975.
[http://dx.doi.org/10.1021/jp902775t]
[133]
Cara, E.; Mandrile, L.; Ferrarese Lupi, F.; Giovannozzi, A.M.; Dialameh, M.; Portesi, C.; Sparnacci, K.; De Leo, N.; Rossi, A.M.; Boarino, L. Influence of the long-range ordering of gold-coated Si nanowires on SERS. Sci. Rep., 2018, 8(1), 11305.
[http://dx.doi.org/10.1038/s41598-018-29641-x] [PMID: 30054503]
[134]
Wang, X.; Yin, R.; Zeng, L.; Zhu, M. A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ. Pollut., 2019, 253, 100-110.
[http://dx.doi.org/10.1016/j.envpol.2019.06.067] [PMID: 31306819]
[135]
Ghuge, A.D.; Shirode, A.R.; Kadam, V.J. Graphene: A comprehensive review. Curr. Drug Targets, 2017, 18(6), 724-733.
[http://dx.doi.org/10.2174/1389450117666160709023425] [PMID: 27397067]
[136]
Guex, L.G.; Sacchi, B.; Peuvot, K.F.; Andersson, R.L.; Pourrahimi, A.M.; Ström, V.; Farris, S.; Olsson, R.T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale, 2017, 9(27), 9562-9571.
[http://dx.doi.org/10.1039/C7NR02943H] [PMID: 28664948]
[137]
Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci., 2019, 1(1), 31-47.
[http://dx.doi.org/10.1016/j.nanoms.2019.02.004]
[138]
Lai, H.; Xu, F.; Zhang, Y.; Wang, L. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(24), 4008-4028.
[http://dx.doi.org/10.1039/C8TB00902C] [PMID: 32255147]
[139]
Fan, W.; Lee, Y.H.; Pedireddy, S.; Zhang, Q.; Liu, T.; Ling, X.Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014, 6(9), 4843-4851.
[http://dx.doi.org/10.1039/C3NR06316J] [PMID: 24664184]
[140]
Qian, Z.; Cheng, Y.; Zhou, X.; Wu, J.; Xu, G. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics. J. Colloid Interface Sci., 2013, 397, 103-107.
[http://dx.doi.org/10.1016/j.jcis.2013.01.049] [PMID: 23425548]
[141]
Ponlamuangdee, K.; Hornyak, G.L.; Borab, T.; Bamrungsap, S. Graphene oxide/gold nanorod plasmonic paper – a simple and cost-effective SERS substrate for anticancer drug analysis. New J. Chem., 2020, 44(33), 14087-14094.
[http://dx.doi.org/10.1039/D0NJ02448A]
[142]
Xiao, G.; Li, L.; Shi, W.; Shen, L.; Chen, Q.C.; Huang, L. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper. Appl. Surf. Sci., 2017, 404, 334-341.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.231]
[143]
Naqvi, T.K.; Srivastava, A.K.; Kulkarni, M.M.; Siddiqui, A.M.; Dwivedi, P.K. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surf. Sci., 2019, 478, 887-895.
[http://dx.doi.org/10.1016/j.apsusc.2019.02.026]
[144]
Scott, L.; Jurewicz, I.; Jeevaratnam, K.; Lewis, R. Carbon nanotube-based scaffolds for cardiac tissue engineering-systematic review and narrative synthesis. Bioengineering (Basel), 2021, 8(6), 80-111.
[http://dx.doi.org/10.3390/bioengineering8060080] [PMID: 34207645]
[145]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[146]
Beqa, L.; Kumar, A.; Zheng, S.; Senapati, D.; Ray, C.P. Chemically attached gold nanoparticle–carbon nanotube hybrids for highly sensitive SERS substrate. Chem. Phys. Lett., 2011, 512(4-6), 237-242.
[http://dx.doi.org/10.1016/j.cplett.2011.07.037]
[147]
Xin, W.; Yang, J.M.; Li, C.; Goorsky, M.S.; Carlson, L.; De Rosa, I.M. Novel strategy for one-pot synthesis of gold nanoplates on carbon nanotube sheet as an effective flexible SERS substrate. ACS Appl. Mater. Interfaces, 2017, 9(7), 6246-6254.
[http://dx.doi.org/10.1021/acsami.6b10560] [PMID: 28106364]
[148]
Zhang, K.; Ji, J.; Fang, X.; Yan, L.; Liu, B. Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon enhanced interface for sensitive SERS sensing. Analyst (Lond.), 2015, 140(1), 134-139.
[http://dx.doi.org/10.1039/C4AN01473A] [PMID: 25347701]
[149]
Chen, Y-C.; Young, R.J.; Macpherson, J.V.; Wilson, N.R. Single-walled carbon nanotube networks decorated with silver nanoparticles: A novel graded SERS substrate. J. Phys. Chem. C, 2007, 114(44), 16167-16173.
[http://dx.doi.org/10.1021/jp073771z]
[150]
Zhang, J.; Zhang, X.; Lai, C.; Zhou, H.; Zhu, Y. Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing. Opt. Express, 2014, 22(18), 21157-21166.
[http://dx.doi.org/10.1364/OE.22.021157] [PMID: 25321496]
[151]
Fikiet, M. A.; Khandasammy, S. R.; Mistek, E.; Ahmed, Y.; Halamkova, L.; Bueno, J.; Lednev, I. K. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2018, 197(1), 255-260.https://doi.org/10.1016/j.saa.2018.02.046
[152]
Huang, Y.; Liu, W.; Gong, Z.; Wu, W.; Fan, M. Detection of buried explosives using a surface-enhanced raman scattering (SERS) substrate tailored for miniaturized spectrometers. Am. Chem. Soc. Sensors, 2020, 5(9), 2933-2939.
[153]
Michael, M.; Kristian, P.; Tasnim, M.; Richard, T.; Gary, L.; Edwards, H. Analysis of seized drugs using portable raman spectroscopy in an airport environment - A proof of principle study. J. Raman Spectrosc., 2008, 39(7), 873-880.
[http://dx.doi.org/10.1002/jrs.1926]
[154]
Shende, C.; Farquharson, A.; Brouillette, C.; Smith, W.; Farquharson, S. Quantitative measurements of codeine and fentanyl on a surface-enhanced Raman-active pad test. Molecules, 2019, 24(14), 2578.
[http://dx.doi.org/10.3390/molecules24142578] [PMID: 31315188]
[155]
Adhikari, S.; Ampadu, E.K.; Kim, M.; Noh, D.; Oh, E.; Lee, D. Detection of explosives by SERS platform using metal nanogap substrates. Sensors (Basel), 2021, 21(16), 5567-5575.
[http://dx.doi.org/10.3390/s21165567] [PMID: 34451009]
[156]
Jaworska, A.; Fornasaro, S.; Sergo, V.; Bonifacio, A. Potential of surface enhanced Raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A critical review. Biosensors, 2016, 6(47), 1-17.
[157]
Alula, M.T.; Mengesha, Z.T.; Mwenesongole, E. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review. Vib. Spectrosc., 2018, 98, 50-63.
[http://dx.doi.org/10.1016/j.vibspec.2018.06.013]
[158]
Guerrini, L.; Alvarez-Puebla, R.A. Surface-enhanced Raman spectroscopy in cancer diagnosis, prognosis and monitoring. Cancers, 2019, 11(6), 748-763.
[159]
Saviñon-Flores, F.; Méndez, E.; López-Castaños, M.; Carabarin-Lima, A.; López-Castaños, K.A.; González-Fuentes, M.A.; Méndez-Albores, A. Infections: Influenza and coronavirus. Biosensors (Basel), 2021, 11(3), 66-95.
[http://dx.doi.org/10.3390/bios11030066] [PMID: 33670852]
[160]
Zheng, J.; He, L. Surface-enhanced raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf., 2014, 13(3), 317-328.
[http://dx.doi.org/10.1111/1541-4337.12062] [PMID: 33412656]
[161]
Neng, J.; Zhang, Q.; Sun, P. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosens. Bioelectron., 2020, 167, 112480-112493.
[http://dx.doi.org/10.1016/j.bios.2020.112480] [PMID: 32798805]
[162]
Zhao, X.; Li, M.; Xu, Z. Detection of foodborne pathogens by surface enhanced Raman spectroscopy. Front. Microbiol., 2018, 9, 1236.
[163]
Halvorson, R.A.; Vikesland, P.J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol., 2010, 44(20), 7749-7755.
[http://dx.doi.org/10.1021/es101228z] [PMID: 20836559]
[164]
Huh, Y.S.; Chung, A.J.; Erickson, E. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid. Nanofluidics, 2009, 6(3), 285-297.
[http://dx.doi.org/10.1007/s10404-008-0392-3]
[165]
Kim, J.; Nam, S.H.; Lim, D-K.; Suh, Y.D. SERS-based particle tracking and molecular imaging in live cells: Toward the monitoring of intracellular dynamics. Nanoscale, 2019, 11(45), 21724-21727.
[http://dx.doi.org/10.1039/C9NR05159G] [PMID: 31495836]
[166]
Bodelón, G.; Pastoriza-Santos, I. Recent progress in surface-enhanced Raman scattering for the detection of chemical contaminants in water. Front. Chem. Nanosci., 2020, 8, 478.
[167]
Staake, T.; Thiesse, F.; Fleisch, E. The emergence of counterfeit trade: A literature review. Eur. J. Mark., 2009, 43(3/4), 320-349.
[http://dx.doi.org/10.1108/03090560910935451]
[168]
Xiu, X.; Guo, Y.; Li, C.; Li, Z.; Li, D.; Zang, C.; Jiang, S.; Liu, A.; Man, B.; Zhang, C. High- performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA. Opt. Mater. Express, 2018, 8(4), 844-857.
[http://dx.doi.org/10.1364/OME.8.000844]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy