Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Updates on Indole Derivatives as Kinase Inhibitors in the Treatment of Cancer

Author(s): Vivek Asati*, Ritu Bhupal, Sushanta Bhattacharya, Kamalpreet Kaur, GD Gupta, Abhishek Pathak and Debarshi Kar Mahapatra

Volume 23, Issue 4, 2023

Published on: 12 October, 2022

Page: [404 - 416] Pages: 13

DOI: 10.2174/1871520622666220607143040

Price: $65

Abstract

Cancer is becoming a global threat as its treatment accounts for many challenges. Hence, newer inventions prioritize the requirement of developing novel anticancer agents. In this context, kinases have been exclusively investigated and developed as a promising and novel class of drug targets for anticancer regimen. Indole derivatives have been found to be most effective for targeting multiple kinases, such as PIM, CDK, TK, AKT, SRC, PI3K, PKD, GSK, etc., to inhibit cell proliferation for cancer. Recently, a group of researchers have proposed their research outcomes related to this moiety, such as Zhang et al. described some potent PI3K inhibitors by substitution at the 4th position of the indole ring. Kassis et al. enumerated several potent CDK5 inhibitors by substituting the 2nd and 6th positions of the indole ring. In the present review, we have taken the initiative to summarize structure-activity relationship (SAR) studies of indole derivatives as kinase inhibitors for the development of potential inhibitors.

Keywords: Indole derivatives, SAR, kinases, clinical trial, cancer, CDK5 inhibition.

Graphical Abstract

[1]
Ward, R.A.; Goldberg, F.W. Kinase drug discovery: Modern approaches; Royal Society of Chemistry, 2018, pp. 1-8.
[http://dx.doi.org/10.1039/9781788013093]
[2]
Zhao, Z.; Bourne, P.E. Progress with covalent small-molecule kinase inhibitors. Drug Discov., 2018, 23(3), 727-735.
[PMID: 29337202]
[3]
K., Bhanumathy K.; Balagopal, A.; Vizeacoumar, F.S.; Vizeacoumar, F.J.; Freywald, A.; Giambra, V. Protein Tyrosine Kinases: Their roles and their targeting in leukemia. Cancers (Basel), 2021, 13(2), 184.
[http://dx.doi.org/10.3390/cancers13020184] [PMID: 33430292]
[4]
Cesaro, L.; Pinna, L.A. Prevalence and significance of the commonest phosphorylated motifs in the human proteome: A global analysis. Cell. Mol. Life Sci., 2020, 77(24), 5281-5298.
[http://dx.doi.org/10.1007/s00018-020-03474-2] [PMID: 32052090]
[5]
Bradley, D.; Beltrao, P. Evolution of protein kinase substrate recognition at the active site. PLoS Biol., 2019, 17(6), e3000341.
[http://dx.doi.org/10.1371/journal.pbio.3000341] [PMID: 31233486]
[6]
Rust, H.L.; Thompson, P.R. Kinase consensus sequences: A breeding ground for crosstalk. ACS Chem. Biol., 2011, 6(9), 881-892.
[http://dx.doi.org/10.1021/cb200171d] [PMID: 21721511]
[7]
Patterson, H.; Nibbs, R.; McInnes, I.; Siebert, S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin. Exp. Immunol., 2014, 176(1), 1-10.
[http://dx.doi.org/10.1111/cei.12248] [PMID: 24313320]
[8]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[9]
Bononi, A.; Agnoletto, C.; De Marchi, E.; Marchi, S.; Patergnani, S.; Bonora, M.; Giorgi, C.; Missiroli, S.; Poletti, F.; Rimessi, A.; Pinton, P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res., 2011, 2011, 329098.
[http://dx.doi.org/10.4061/2011/329098] [PMID: 21904669]
[10]
Valdespino-Gómez, V.M.; Valdespino-Castillo, P.M.; Valdespino-Castillo, V.E. Cell signaling pathways interaction in cellular prolifera-tion: Potential target for therapeutic interventionism. Cir. Cir., 2015, 83(2), 165-174.
[PMID: 25986976]
[11]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098. http://perspectivesinmedicine.cshlp.org/content/5/4/a006098.short
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[12]
Malarkey, D.E.; Hoenerhoff, M.; Maronpot, R.R. Carcinogenesis: Mechanisms and manifestations; Haschek and Rousseaux's Handbook of Toxicologic Pathology, 2013, pp. 107-146.
[13]
Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem., 2020, 7, 873.
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
[14]
Shahin, R.; Shaheen, O.; El-Dahiyat, F.; Habash, M.; Saffour, S. Research advances in kinase enzymes and inhibitors for cardiovascular disease treatment. Future Sci. OA, 2017, 3(4), FSO204.
[http://dx.doi.org/10.4155/fsoa-2017-0010] [PMID: 29134113]
[15]
Borgo, C.; D’Amore, C.; Sarno, S.; Salvi, M.; Ruzzene, M. Protein kinase CK2: A potential therapeutic target for diverse human diseases. Signal Transduct. Target. Ther., 2021, 6(1), 183.
[http://dx.doi.org/10.1038/s41392-021-00567-7] [PMID: 33994545]
[16]
García-Cárceles, J.; Caballero, E.; Gil, C.; Martínez, A. Kinase inhibitors as underexplored antiviral agents. J. Med. Chem., 2022, 65(2), 935-954.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00302] [PMID: 33970631]
[17]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[18]
You, K.S.; Yi, Y.W.; Cho, J.; Park, J.S.; Seong, Y.S. Potentiating therapeutic effects of epidermal growth factor receptor inhibition in triple-negative breast cancer. Pharmaceuticals (Basel), 2021, 14(6), 589.
[http://dx.doi.org/10.3390/ph14060589] [PMID: 34207383]
[19]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]
[20]
Ferguson, F.M.; Gray, N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov., 2018, 17(5), 353-377.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[21]
Pakos-Zebrucka, K.; Koryga, I.; Mnich, K.; Ljujic, M.; Samali, A.; Gorman, A.M. The integrated stress response. EMBO Rep., 2016, 17(10), 1374-1395.
[http://dx.doi.org/10.15252/embr.201642195] [PMID: 27629041]
[22]
Lee, S.H.; Suk, K. Kinase-based taming of brain microglia toward disease-modifying therapy. Front. Cell. Neurosci., 2018, 12, 474.
[http://dx.doi.org/10.3389/fncel.2018.00474] [PMID: 30568577]
[23]
Spanò, V.; Barreca, M.; Rocca, R.; Bortolozzi, R.; Bai, R.; Carbone, A.; Raimondi, M.V.; Piccionello, A.P.; Montalbano, A.; Alcaro, S.; Hamel, E.; Viola, G.; Barraja, P. Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2021, 212, 113122.
[http://dx.doi.org/10.1016/j.ejmech.2020.113122] [PMID: 33401199]
[24]
Ostacolo, C.; Di Sarno, V.; Lauro, G.; Pepe, G.; Musella, S.; Ciaglia, T.; Vestuto, V.; Autore, G.; Bifulco, G.; Marzocco, S.; Campiglia, P.; Gomez-Monterrey, I.M.; Bertamino, A. Identification of an indol-based multi-target kinase inhibitor through phenotype screening and tar-get fishing using inverse virtual screening approach. Eur. J. Med. Chem., 2019, 167, 61-75.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.066] [PMID: 30763817]
[25]
Kryshchyshyn-Dylevych, A.; Radko, L.; Finiuk, N.; Garazd, M.; Kashchak, N.; Posyniak, A.; Niemczuk, K.; Stoika, R.; Lesyk, R. Synthe-sis of novel indole-thiazolidinone hybrid structures as promising scaffold with anticancer potential. Bioorg. Med. Chem., 2021, 50, 116453.
[http://dx.doi.org/10.1016/j.bmc.2021.116453] [PMID: 34634616]
[26]
Wang, G.; He, M.; Liu, W.; Fan, M.; Li, Y.; Peng, Z. Design, synthesis and biological evaluation of novel 2-phenyl-4, 5, 6, 7-tetrahydro-1H- indole derivatives as potential anticancer agents and tubulin polymerization inhibitors. Arab. J. Chem., 2022, 15(1), 103504.
[http://dx.doi.org/10.1016/j.arabjc.2021.103504]
[27]
Ponnam, D.; Arigari, N.K.; Kalvagunta Venkata Naga, S.S.; Jonnala, K.K.; Singh, S.; Meena, A.; Misra, P.; Luqman, S. Synthesis of non‐toxic anticancer active forskolin‐indole‐triazole conjugates along with their in silico succinate dehydrogenase inhibition studies. J. Heterocycl. Chem., 2021, 58(11), 2090-2101.
[http://dx.doi.org/10.1002/jhet.4332]
[28]
Saruengkhanphasit, R.; Butkinaree, C.; Ornnork, N.; Lirdprapamongkol, K.; Niwetmarin, W.; Svasti, J.; Ruchirawat, S.; Eurtivong, C. Iden-tification of new 3-phenyl-1H-indole-2-carbohydrazide derivatives and their structure-activity relationships as potent tubulin inhibitors and anticancer agents: A combined in silico, in vitro and synthetic study. Bioorg. Chem., 2021, 110, 104795.
[http://dx.doi.org/10.1016/j.bioorg.2021.104795] [PMID: 33730670]
[29]
Gilles, P.; Voets, L.; Van Lint, J.; De Borggraeve, W.M. Developments in the discovery and design of Protein Kinase D inhibitors. ChemMedChem, 2021, 16(14), 2158-2171.
[http://dx.doi.org/10.1002/cmdc.202100110] [PMID: 33829655]
[30]
Rathi, K.; Syed, A.; Singh, R.; Shin, V.; V Patel, R. Kinase inhibitor indole derivatives as anticancer agents: A patent review. Recent Pat. Anti-Cancer Drug Discov., 2017, 12, 55-72.
[http://dx.doi.org/10.2174/1574892811666161003112119]
[31]
Fu, D.J.; Cui, X.X.; Zhu, T.; Zhang, Y.B.; Hu, Y.Y.; Zhang, L.R.; Wang, S.H.; Zhang, S.Y. Discovery of novel indole derivatives that in-hibit NEDDylation and MAPK pathways against gastric cancer MGC803 cells. Bioorg. Chem., 2021, 107, 104634.
[http://dx.doi.org/10.1016/j.bioorg.2021.104634] [PMID: 33476867]
[32]
Al-Wahaibi, L.H.; Gouda, A.M.; Abou-Ghadir, O.F.; Salem, O.I.A.; Ali, A.T.; Farghaly, H.S.; Abdelrahman, M.H.; Trembleau, L.; Abdu-Allah, H.H.M.; Youssif, B.G.M. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiprolifera-tive EGFR and BRAFV600E dual inhibitors. Bioorg. Chem., 2020, 104, 104260.
[http://dx.doi.org/10.1016/j.bioorg.2020.104260] [PMID: 32920363]
[33]
Wang, X.; Wang, S.; Liu, Y.; Huang, D.; Zheng, K.; Zhang, Y.; Wang, X.; Liu, Q.; Yang, D.; Wang, Y. Comparative effects of SNX-7081 and SNX-2112 on cell cycle, apoptosis and Hsp90 client proteins in human cancer cells. Oncol. Rep., 2015, 33(1), 230-238.
[http://dx.doi.org/10.3892/or.2014.3552] [PMID: 25334086]
[34]
Sarhan, A.A.; Boraei, A.T.; Barakat, A.; Nafie, M.S. Discovery of hydrazide-based pyridazino [4, 5-b] indole scaffold as a new phospho-inositide 3-kinase (PI3K) inhibitor for breast cancer therapy. RSC Advances, 2020, 10, 19534-19541.
[http://dx.doi.org/10.1039/D0RA02798G]
[35]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[36]
Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615.
[http://dx.doi.org/10.3390/molecules25071615] [PMID: 32244744]
[37]
Kaur, K.; Jaitak, V. Recent development in indole derivatives as anticancer agents for breast cancer. Anticancer. Agents Med. Chem., 2019, 19(8), 962-983.
[http://dx.doi.org/10.2174/1871520619666190312125602] [PMID: 30864529]
[38]
Devi, N.; Kaur, K.; Biharee, A.; Jaitak, V. Recent development in indole derivatives as anticancer agent: A mechanistic approach. Anticancer. Agents Med. Chem., 2021, 21(14), 1802-1824.
[http://dx.doi.org/10.2174/1871520621999210104192644] [PMID: 33397272]
[39]
Robert, R. Jr. There are 71 FDA-approved small molecule protein kinase inhibitors. Blue Ridge Institute for Medical Research in Horse Shoe, North Carolina USA , 2022. Available from: http://www.brimr.org/PKI/PKIs.htm
[40]
AZD9291, an Irreversible EGFR-TKI, in Relapsed EGFR-mutated Non-small Cell Lung Cancer Patients Previously Treated With an EGFR-TKI, Coupled to Extensive Translational Studies (TREM). Available from: https://clinicaltrials.gov/ct2/show/NCT02504346
[41]
More, K.N.; Hong, V.S.; Lee, A.; Park, J.; Kim, S.; Lee, J. Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(14), 2513-2517.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.054] [PMID: 29871845]
[42]
AboulMagd. A.M; Hassan, H.M; Sayed, A.M.; Abdelmohsen, U.R.; Abdel-Rahman, H.M. Saccharomonosporine A inspiration; synthesis of potent analogues as potential PIM kinase inhibitors. RSC Advances, 2020, 10, 6752-6762.
[http://dx.doi.org/10.1039/C9RA10216G]
[43]
Hu, H.; Wu, J.; Ao, M.; Zhou, X.; Li, B.; Cui, Z.; Wu, T.; Wang, L.; Xue, Y.; Wu, Z.; Fang, M. Design, synthesis and biological evaluation of methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold: Novel potential CDK9 inhibitors. Bioorg. Chem., 2020, 102, 104064.
[http://dx.doi.org/10.1016/j.bioorg.2020.104064] [PMID: 32653610]
[44]
El-Sharief, A.M.S.; Ammar, Y.A.; Belal, A.; El-Sharief, M.A.M.S.; Mohamed, Y.A.; Mehany, A.B.M.; Elhag Ali, G.A.M.; Ragab, A. De-sign, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem., 2019, 85, 399-412.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.016] [PMID: 30665034]
[45]
Zhang, L.; Zeng, X.; Ren, X.; Tao, N.; Yang, C.; Xu, Y.; Chen, Y.; Wang, J. Design, synthesis, and biological evaluation of indole carbox-ylic acid esters of podophyllotoxin as antiproliferative agents. Med. Chem. Res., 2019, 28(1), 81-94.
[http://dx.doi.org/10.1007/s00044-018-2266-x]
[46]
Kassis, P.; Brzeszcz, J.; Bénéteau, V.; Lozach, O.; Meijer, L.; Le Guével, R.; Guillouzo, C.; Lewiński, K.; Bourg, S.; Colliandre, L.; Routier, S.; Mérour, J.Y. Synthesis and biological evaluation of new 3-(6-hydroxyindol-2-yl)-5-(Phenyl) pyridine or pyrazine V-Shaped molecules as kinase inhibitors and cytotoxic agents. Eur. J. Med. Chem., 2011, 46(11), 5416-5434.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.048] [PMID: 21944287]
[47]
Peifer, C.; Selig, R.; Kinkel, K.; Ott, D.; Totzke, F.; Schächtele, C.; Heidenreich, R.; Röcken, M.; Schollmeyer, D.; Laufer, S. Design, syn-thesis, and biological evaluation of novel 3-aryl-4-(1H-indole-3yl)-1,5-dihydro-2H-pyrrole-2-ones as vascular endothelial growth factor receptor (VEGF-R) inhibitors. J. Med. Chem., 2008, 51(13), 3814-3824.
[http://dx.doi.org/10.1021/jm8001185] [PMID: 18529047]
[48]
Pin, F.; Buron, F.; Saab, F.; Colliandre, L.; Bourg, S.; Schoentgen, F.; Le Guevel, R.; Guillouzo, C.; Routier, S. Synthesis and biological evaluation of 2, 3-bis (het) aryl-4-azaindole derivatives as protein kinase inhibitors. MedChemComm, 2011, 2(9), 899-903.
[http://dx.doi.org/10.1039/c1md00141h]
[49]
Al-Warhi, T.; El Kerdawy, A.M.; Aljaeed, N.; Ismael, O.E.; Ayyad, R.R.; Eldehna, W.M.; Abdel-Aziz, H.A.; Al-Ansary, G.H. Synthesis, biological evaluation and in silico studies of certain oxindole–indole conjugates as anticancer CDK inhibitors. Molecules, 2020, 25(9), 2031.
[http://dx.doi.org/10.3390/molecules25092031] [PMID: 32349307]
[50]
Yang, D.; Wang, P.; Liu, J.; Xing, H.; Liu, Y.; Xie, W.; Zhao, G. Design, synthesis and evaluation of novel indole derivatives as AKT in-hibitors. Bioorg. Med. Chem., 2014, 22(1), 366-373.
[http://dx.doi.org/10.1016/j.bmc.2013.11.022] [PMID: 24308997]
[51]
Rao, V.K.; Chhikara, B.S.; Shirazi, A.N.; Tiwari, R.; Parang, K.; Kumar, A. 3-substitued indoles: One-pot synthesis and evaluation of anti-cancer and Src kinase inhibitory activities. Bioorg. Med. Chem. Lett., 2011, 21(12), 3511-3514.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.010] [PMID: 21612925]
[52]
Bruel, A.; Logé, C.; Tauzia, M.L.; Ravache, M.; Le Guevel, R.; Guillouzo, C.; Lohier, J.F.; Oliveira Santos, J.S.; Lozach, O.; Meijer, L.; Ruchaud, S.; Bénédetti, H.; Robert, J.M. Synthesis and biological evaluation of new 5-benzylated 4-oxo-3,4-dihydro-5H-pyridazino[4,5-b]indoles as PI3Kα inhibitors. Eur. J. Med. Chem., 2012, 57, 225-233.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.001] [PMID: 23063566]
[53]
Winfield, H.J.; Cahill, M.M.; O’Shea, K.D.; Pierce, L.T.; Robert, T.; Ruchaud, S.; Bach, S.; Marchand, P.; McCarthy, F.O. Synthesis and anticancer activity of novel bisindolylhydroxymaleimide derivatives with potent GSK-3 kinase inhibition. Bioorg. Med. Chem., 2018, 26(14), 4209-4224.
[http://dx.doi.org/10.1016/j.bmc.2018.07.012] [PMID: 30026041]
[54]
Daydé-Cazals, B.; Fauvel, B.; Singer, M.; Feneyrolles, C.; Bestgen, B.; Gassiot, F.; Spenlinhauer, A.; Warnault, P.; Van Hijfte, N.; Borjini, N.; Chevé, G.; Yasri, A. Rational design, synthesis, and biological evaluation of 7-azaindole derivatives as potent focused multi-targeted kinase inhibitors. J. Med. Chem., 2016, 59(8), 3886-3905.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00087] [PMID: 27010810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy