Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

The Mechanisms of Current Platinum Anticancer Drug Resistance in the Glioma

Author(s): Enzhou Lu, Ilgiz Gareev, Chao Yuan, Yanchao Liang, Jingxian Sun, Xin Chen, Ozal Beylerli, Albert Sufianov, Shiguang Zhao* and Guang Yang*

Volume 28, Issue 23, 2022

Published on: 15 July, 2022

Page: [1863 - 1869] Pages: 7

DOI: 10.2174/1381612828666220607105746

open access plus

Abstract

Gliomas are the most common and malignant primary tumors of the central nervous system (CNS). Glioblastomas are the most malignant and aggressive form of primary brain tumors and account for the majority of brain tumor-related deaths. The current standard treatment for gliomas is surgical resection supplemented by postoperative chemotherapy. Platinum drugs are a class of chemotherapeutic drugs that affect the cell cycle, and the main site of action is the DNA of cells, which are common chemotherapeutic drugs in clinical practice. Chemotherapy with platinum drugs such as cisplatin, carboplatin, oxaliplatin, or a combination thereof is used to treat a variety of tumors. However, the results of gliomas chemotherapy are unsatisfactory, and resistance to platinum drugs is one of the important reasons. The resistance of gliomas to platinum drugs is the result of a combination of influencing factors. Decreased intracellular drug concentration, enhanced function of cell processing active products, enhanced repair ability of cellular DNA damage, and blockage of related apoptosis pathways play an important role in it. It is known that the pathogenic properties of glioma cells and the response of glioma towards platinum-based drugs are strongly influenced by non-coding RNAs, particularly, by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs and lncRNAs control drug sensitivity and the development of tumor resistance towards platinum drugs. This mini-review summarizes the resistance mechanisms of gliomas to platinum drugs, as well as molecules and therapies that can improve the sensitivity of gliomas to platinum drugs.

Keywords: Glioma, platinum drugs, resistance mechanisms, chemosensitivity, prognosis, microRNAs, long non-coding RNAs.

Next »
[1]
Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 1965; 205: 698-9.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[2]
Pizzocaro G, Piva L, Salvioni R, Zanoni F, Milani A. Cisplatin, etoposide, bleomycin first-line therapy and early resection of residual tumor in far-advanced germinal testis cancer. Cancer 1985; 56(10): 2411-5.
[http://dx.doi.org/10.1002/1097-0142(19851115)56:10<2411:AID-CNCR2820561012>3.0.CO;2-H] [PMID: 2412683]
[3]
Falandry C, Rousseau F, Mouret-Reynier MA, et al. Efficacy and safety of first-line single-agent carboplatin vs carboplatin plus paclitaxel for vulnerable older adult women with ovarian Cancer: A GINECO/GCIG randomized clinical trial. JAMA Oncol 2021; 7(6): 853-61.
[http://dx.doi.org/10.1001/jamaoncol.2021.0696] [PMID: 33885718]
[4]
Kenmotsu H, Yamamoto N, Yamanaka T, et al. Randomized phase III study of pemetrexed plus cisplatin versus vinorelbine plus cisplatin for completely resected stage II to IIIA nonsquamous non-small-cell lung cancer. J Clin Oncol 2020; 38(19): 2187-96.
[http://dx.doi.org/10.1200/JCO.19.02674] [PMID: 32407216]
[5]
Shalinsky DR, Bischoff ED, Gregory ML, et al. Enhanced antitumor efficacy of cisplatin in combination with ALRT1057 (9-cis retinoic acid) in human oral squamous carcinoma xenografts in nude mice. Clin Cancer Res 1996; 2(3): 511-20.
[PMID: 9816198]
[6]
Kostova I. Platinum complexes as anticancer agents. Recent Patents Anticancer Drug Discov 2006; 1(1): 1-22.
[http://dx.doi.org/10.2174/157489206775246458] [PMID: 18221023]
[7]
Reedijk J. Why does Cisplatin reach Guanine-n7 with competing s-donor ligands available in the cell? Chem Rev 1999; 99(9): 2499-510.
[http://dx.doi.org/10.1021/cr980422f] [PMID: 11749488]
[8]
Kraker AJ, Hoeschele JD, Elliott WL, Showalter HD, Sercel AD, Farrell NP. Anticancer activity in murine and human tumor cell lines of bis(platinum) complexes incorporating straight-chain aliphatic diamine linker groups. J Med Chem 1992; 35(24): 4526-32.
[http://dx.doi.org/10.1021/jm00102a003] [PMID: 1335074]
[9]
Brabec V, Kasparkova J. Molecular aspects of resistance to antitumor platinum drugs. Drug Resist Updat 2002; 5(3-4): 147-61.
[http://dx.doi.org/10.1016/S1368-7646(02)00047-X] [PMID: 12237082]
[10]
Massimino M, Spreafico F, Cefalo G, et al. High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J Clin Oncol 2002; 20(20): 4209-16.
[http://dx.doi.org/10.1200/JCO.2002.08.087] [PMID: 12377964]
[11]
Silvani A, Eoli M, Salmaggi A, et al. Phase II trial of cisplatin plus temozolomide, in recurrent and progressive malignant glioma patients. J Neurooncol 2004; 66(1-2): 203-8.
[http://dx.doi.org/10.1023/B:NEON.0000013479.64348.69] [PMID: 15015788]
[12]
Wang JL, Barth RF, Cavaliere R, et al. Phase I trial of intracerebral convection-enhanced delivery of carboplatin for treatment of recurrent high-grade gliomas. PLoS One 2020; 15(12): e0244383.
[http://dx.doi.org/10.1371/journal.pone.0244383] [PMID: 33373402]
[13]
Nellan A, Wright E, Campbell K, et al. Retrospective analysis of combination carboplatin and vinblastine for pediatric low-grade glioma. J Neurooncol 2020; 148(3): 569-75.
[http://dx.doi.org/10.1007/s11060-020-03549-x] [PMID: 32506370]
[14]
Dilruba S, Kalayda GV. Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol 2016; 77(6): 1103-24.
[http://dx.doi.org/10.1007/s00280-016-2976-z] [PMID: 26886018]
[15]
Johnstone TC, Wilson JJ, Lippard SJ. Monofunctional and higher-valent platinum anticancer agents. Inorg Chem 2013; 52(21): 12234-49.
[http://dx.doi.org/10.1021/ic400538c] [PMID: 23738524]
[16]
Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31(15): 1869-83.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[17]
Dabholkar M, Bostick-Bruton F, Weber C, Egwuagu C, Bohr VA, Reed E. Expression of excision repair genes in non-malignant bone marrow from cancer patients. Mutat Res 1993; 293(2): 151-60.
[http://dx.doi.org/10.1016/0921-8777(93)90066-P] [PMID: 7678143]
[18]
Sugasawa K, Ng JM, Masutani C, et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 1998; 2(2): 223-32.
[http://dx.doi.org/10.1016/S1097-2765(00)80132-X] [PMID: 9734359]
[19]
Britten RA, Liu D, Tessier A, Hutchison MJ, Murray D. ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer 2000; 89(5): 453-7.
[http://dx.doi.org/10.1002/1097-0215(20000920)89:5<453:AID-IJC9>3.0.CO;2-E] [PMID: 11008208]
[20]
Rosell R, Cecere F, Santarpia M, Reguart N, Taron M. Predicting the outcome of chemotherapy for lung cancer. Curr Opin Pharmacol 2006; 6(4): 323-31.
[http://dx.doi.org/10.1016/j.coph.2006.01.011] [PMID: 16765644]
[21]
Chen H, Shao C, Shi H, Mu Y, Sai K, Chen Z. Single nucleotide polymorphisms and expression of ERCC1 and ERCC2 vis-à-vis chemotherapy drug cytotoxicity in human glioma. J Neurooncol 2007; 82(3): 257-62.
[http://dx.doi.org/10.1007/s11060-006-9290-2] [PMID: 17151930]
[22]
Chen HY, Shao CJ, Chen FR, Kwan AL, Chen ZP. Role of ERCC1 promoter hypermethylation in drug resistance to cisplatin in human gliomas. Int J Cancer 2010; 126(8): 1944-54.
[http://dx.doi.org/10.1002/ijc.24772] [PMID: 19626585]
[23]
Saha P, Verma S, Pathak RU, Mishra RK. Long noncoding RNAs in mammalian development and diseases. Adv Exp Med Biol 2017; 1008: 155-98.
[http://dx.doi.org/10.1007/978-981-10-5203-3_6] [PMID: 28815540]
[24]
Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol 2017; 1008: 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[25]
Liu H, Lv Z, Guo E. Knockdown of long noncoding RNA SPRY4-IT1 suppresses glioma cell proliferation, metastasis and epithelial-mesenchymal transition. Int J Clin Exp Pathol 2015; 8(8): 9140-6.
[PMID: 26464658]
[26]
Liu F, Ou Y, Lin QS, Qiu C, Luo HL, Zhu PQ. Low expression of long non-coding RNA-LET can indicate metastasis and a poor prognosis: A meta-analysis. Minerva Med 2016.
[PMID: 26842764]
[27]
Min W, Dai D, Wang J, et al. Long noncoding RNA miR210HG as a potential biomarker for the diagnosis of glioma. PLoS One 2016; 11(9): e0160451.
[http://dx.doi.org/10.1371/journal.pone.0160451] [PMID: 27673330]
[28]
Zhou H, Ma Y, Zhong D, Yang L. Knockdown of lncRNA HOXD-AS1 suppresses proliferation, migration and invasion and enhances cisplatin sensitivity of glioma cells by sponging miR-204. Biomed Pharmacother 2019; 112: 108633.
[http://dx.doi.org/10.1016/j.biopha.2019.108633] [PMID: 30784927]
[29]
Jiang N, Wang X, Xie X, et al. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett 2017; 405: 46-55.
[http://dx.doi.org/10.1016/j.canlet.2017.06.009] [PMID: 28642170]
[30]
Jin L, Fu H, Quan J, et al. Overexpression of long non-coding RNA differentiation antagonizing non-protein coding RNA inhibits the proliferation, migration and invasion and promotes apoptosis of renal cell carcinoma. Mol Med Rep 2017; 16(4): 4463-8.
[http://dx.doi.org/10.3892/mmr.2017.7135] [PMID: 28765964]
[31]
Fan Q, Aksoy O, Wong RA, et al. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. Cancer Cell 2017; 31(3): 424-35.
[http://dx.doi.org/10.1016/j.ccell.2017.01.014] [PMID: 28292440]
[32]
Giampazolias E, Zunino B, Dhayade S, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol 2017; 19(9): 1116-29.
[http://dx.doi.org/10.1038/ncb3596] [PMID: 28846096]
[33]
Ma Y, Zhou G, Li M, et al. Long noncoding RNA DANCR mediates cisplatin resistance in glioma cells via activating AXL/PI3K/Akt/NF-κB signaling pathway. Neurochem Int 2018; 118: 233-41.
[http://dx.doi.org/10.1016/j.neuint.2018.03.011] [PMID: 29572052]
[34]
Miyoshi N, Wagatsuma H, Wakana S, et al. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 2000; 5(3): 211-20.
[http://dx.doi.org/10.1046/j.1365-2443.2000.00320.x] [PMID: 10759892]
[35]
Balik V, Srovnal J, Sulla I, et al. MEG3: A novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol 2013; 112(1): 1-8.
[http://dx.doi.org/10.1007/s11060-012-1038-6] [PMID: 23307326]
[36]
Ying L, Huang Y, Chen H, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 2013; 9(3): 407-11.
[http://dx.doi.org/10.1039/c2mb25386k] [PMID: 23295831]
[37]
Ma B, Gao Z, Lou J, et al. Long non-coding RNA MEG3 contributes to cisplatin-induced apoptosis via inhibition of autophagy in human glioma cells. Mol Med Rep 2017; 16(3): 2946-52.
[http://dx.doi.org/10.3892/mmr.2017.6897] [PMID: 28677749]
[38]
Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009; 7(4): 147-54.
[http://dx.doi.org/10.1016/S1672-0229(08)60044-3] [PMID: 20172487]
[39]
Patnaik S, Mallick R, Kannisto E, et al. MiR-205 and MiR-375 microRNA assays to distinguish squamous cell carcinoma from adenocarcinoma in lung cancer biopsies. J Thorac Oncol 2015; 10(3): 446-53.
[http://dx.doi.org/10.1097/JTO.0000000000000423] [PMID: 25695220]
[40]
Khan S, Wall D, Curran C, Newell J, Kerin MJ, Dwyer RM. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 2015; 15: 345.
[http://dx.doi.org/10.1186/s12885-015-1374-y] [PMID: 25934412]
[41]
Lai NS, Wu DG, Fang XG, et al. Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br J Cancer 2015; 112(7): 1241-6.
[http://dx.doi.org/10.1038/bjc.2015.91] [PMID: 25756397]
[42]
Yue X, Lan F, Hu M, Pan Q, Wang Q, Wang J. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma. J Neurosurg 2016; 124(1): 122-8.
[http://dx.doi.org/10.3171/2015.1.JNS141577] [PMID: 26230475]
[43]
Li FF, Xing C, Wu LL, Xue F. MiR-205 enhances cisplatin sensitivity of glioma cells by targeting E2F1. Eur Rev Med Pharmacol Sci 2018; 22(2): 299-306.
[http://dx.doi.org/10.26355/eurrev_201801_14172] [PMID: 29424887]
[44]
Chen W, Yang Y, Chen B, et al. MiR-136 targets E2F1 to reverse cisplatin chemosensitivity in glioma cells. J Neurooncol 2014; 120(1): 43-53.
[http://dx.doi.org/10.1007/s11060-014-1535-x] [PMID: 25139024]
[45]
Chen X, Zhang Y, Shi Y, et al. MiR-873 acts as a novel sensitizer of glioma cells to cisplatin by targeting Bcl-2. Int J Oncol 2015; 47(4): 1603-11.
[http://dx.doi.org/10.3892/ijo.2015.3143] [PMID: 26323558]
[46]
Bao L, Jaramillo MC, Zhang Z, et al. Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol Med Rep 2015; 11(1): 91-8.
[http://dx.doi.org/10.3892/mmr.2014.2671] [PMID: 25322694]
[47]
Ren JH, He WS, Nong L, et al. Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy. Cancer Biother Radiopharm 2010; 25(1): 75-80.
[http://dx.doi.org/10.1089/cbr.2009.0701] [PMID: 20187799]
[48]
Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 2008; 8(9): 671-82.
[http://dx.doi.org/10.1038/nrc2399] [PMID: 18650841]
[49]
Liu X, Sun K, Wang H, Dai Y. Knockdown of retinoblastoma protein may sensitize glioma cells to cisplatin through inhibition of autophagy. Neurosci Lett 2016; 620: 137-42.
[http://dx.doi.org/10.1016/j.neulet.2016.04.001] [PMID: 27048711]
[50]
Su J, Xu Y, Zhou L, et al. Suppression of chloride channel 3 expression facilitates sensitivity of human glioma U251 cells to cisplatin through concomitant inhibition of Akt and autophagy. Anat Rec (Hoboken) 2013; 296(4): 595-603.
[http://dx.doi.org/10.1002/ar.22665] [PMID: 23408563]
[51]
Righetti SC, Perego P, Carenini N, et al. Molecular alterations of cells resistant to platinum drugs: Role of PKCalpha. Biochim Biophys Acta 2006; 1763(1): 93-100.
[http://dx.doi.org/10.1016/j.bbamcr.2005.12.007] [PMID: 16473140]
[52]
Mohanty S, Huang J, Basu A. Enhancement of cisplatin sensitivity of cisplatin-resistant human cervical carcinoma cells by bryostatin 1. Clin Cancer Res 2005; 11(18): 6730-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0450] [PMID: 16166454]
[53]
Coles BF, Kadlubar FF. Detoxification of electrophilic compounds by glutathione S-transferase catalysis: Determinants of individual response to chemical carcinogens and chemotherapeutic drugs? Biofactors 2003; 17(1-4): 115-30.
[http://dx.doi.org/10.1002/biof.5520170112] [PMID: 12897434]
[54]
Ishikawa T, Ali-Osman F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 1993; 268(27): 20116-25.
[http://dx.doi.org/10.1016/S0021-9258(20)80702-9] [PMID: 8376370]
[55]
Singh S, Okamura T, Ali-Osman F. Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol 2010; 80(9): 1343-55.
[http://dx.doi.org/10.1016/j.bcp.2010.07.019] [PMID: 20654585]
[56]
Blommaert FA, van Dijk-Knijnenburg HC, Dijt FJ, et al. Formation of DNA adducts by the anticancer drug carboplatin: Different nucleotide sequence preferences in vitro and in cells. Biochemistry 1995; 34(26): 8474-80.
[http://dx.doi.org/10.1021/bi00026a031] [PMID: 7599137]
[57]
Lokich J, Anderson N. Carboplatin versus cisplatin in solid tumors: An analysis of the literature. Ann Oncol 1998; 9(1): 13-21.
[http://dx.doi.org/10.1023/A:1008215213739] [PMID: 9541678]
[58]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-93.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[59]
Poore B, Yuan M, Arnold A, et al. Inhibition of mTORC1 in pediatric low-grade glioma depletes glutathione and therapeutically synergizes with carboplatin. Neuro-oncol 2019; 21(2): 252-63.
[http://dx.doi.org/10.1093/neuonc/noy150] [PMID: 30239952]
[60]
Seo SU, Cho HK, Min KJ, et al. Thioridazine enhances sensitivity to carboplatin in human head and neck cancer cells through downregulation of c-FLIP and Mcl-1 expression. Cell Death Dis 2017; 8(2): e2599.
[http://dx.doi.org/10.1038/cddis.2017.8] [PMID: 28182008]
[61]
Metselaar DS, Meel MH, Benedict B, et al. Celastrol-induced degradation of FANCD2 sensitizes pediatric high-grade gliomas to the DNA-crosslinking agent carboplatin. EBioMedicine 2019; 50: 81-92.
[http://dx.doi.org/10.1016/j.ebiom.2019.10.062] [PMID: 31735550]
[62]
Liang CC, Li Z, Lopez-Martinez D, Nicholson WV, Vénien-Bryan C, Cohn MA. The FANCD2-FANCI complex is recruited to DNA interstrand crosslinks before monoubiquitination of FANCD2. Nat Commun 2016; 7: 12124.
[http://dx.doi.org/10.1038/ncomms12124] [PMID: 27405460]
[63]
Patil AA, Sayal P, Depondt ML, et al. FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents. Oncotarget 2014; 5(15): 6414-24.
[http://dx.doi.org/10.18632/oncotarget.2225] [PMID: 25071006]
[64]
Lesterhuis WJ, Punt CJ, Hato SV, et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest 2011; 121(8): 3100-8.
[http://dx.doi.org/10.1172/JCI43656] [PMID: 21765211]
[65]
Hato SV, de Vries IJ, Lesterhuis WJ. STATing the importance of immune modulation by platinum chemotherapeutics. OncoImmunology 2012; 1(2): 234-6.
[http://dx.doi.org/10.4161/onci.1.2.18126] [PMID: 22720254]
[66]
Bruno PM, Liu Y, Park GY, et al. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 2017; 23(4): 461-71.
[http://dx.doi.org/10.1038/nm.4291] [PMID: 28263311]
[67]
Roberts NB, Wadajkar AS, Winkles JA, Davila E, Kim AJ, Woodworth GF. Repurposing platinum-based chemotherapies for multi-modal treatment of glioblastoma. OncoImmunology 2016; 5(9): e1208876.
[http://dx.doi.org/10.1080/2162402X.2016.1208876] [PMID: 27757301]
[68]
Wang Q, Wang Z, Chu L, et al. The effects and molecular mechanisms of MiR-106a in multidrug resistance reversal in human glioma U87/DDP and U251/G cell lines. PLoS One 2015; 10(5): e0125473.
[http://dx.doi.org/10.1371/journal.pone.0125473] [PMID: 25950430]
[69]
Wang Q, Zhu Y, Yang P. Is mda-7/IL-24 a potential target and biomarker for enhancing drug sensitivity in human glioma U87 cell line? Anat Rec (Hoboken) 2013; 296(8): 1154-60.
[http://dx.doi.org/10.1002/ar.22723] [PMID: 23794295]
[70]
Han S, Lv X, Wang Y, et al. Effect and mechanism of peroxisome proliferator-activated receptor-γ on the drug resistance of the U-87 MG/CDDP human malignant glioma cell line. Mol Med Rep 2015; 12(2): 2239-46.
[http://dx.doi.org/10.3892/mmr.2015.3625] [PMID: 25891367]
[71]
Cui Y, Yang F, He L. Cytokine-induced killer cells induce apoptosis and inhibit the Akt/nuclear factor-κB signaling pathway in cisplatin-resistant human glioma U87MG cells. Mol Med Rep 2015; 12(5): 7027-32.
[http://dx.doi.org/10.3892/mmr.2015.4236] [PMID: 26299434]
[72]
Harper BW, Krause-Heuer AM, Grant MP, Manohar M, Garbutcheon-Singh KB, Aldrich-Wright JR. Advances in platinum chemotherapeutics. Chemistry 2010; 16(24): 7064-77.
[http://dx.doi.org/10.1002/chem.201000148] [PMID: 20533453]
[73]
Haxton KJ, Burt HM. Polymeric drug delivery of platinum-based anticancer agents. J Pharm Sci 2009; 98(7): 2299-316.
[http://dx.doi.org/10.1002/jps.21611] [PMID: 19009590]
[74]
Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003; 42(5): 439-62.
[http://dx.doi.org/10.1016/S0163-7827(03)00032-8] [PMID: 12814645]
[75]
Zhang J, Pan Y, Shi Q, et al. Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first-line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open-label, parallel controlled clinical study. Cancer Commun (Lond) 2022; 42(1): 3-16.
[http://dx.doi.org/10.1002/cac2.12225] [PMID: 34699693]
[76]
Zahednezhad F, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. The latest advances of cisplatin liposomal formulations: Essentials for preparation and analysis. Expert Opin Drug Deliv 2020; 17(4): 523-41.
[http://dx.doi.org/10.1080/17425247.2020.1737672] [PMID: 32116060]
[77]
Kim ES, Lu C, Khuri FR, et al. A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 2001; 34(3): 427-32.
[http://dx.doi.org/10.1016/S0169-5002(01)00278-1] [PMID: 11714540]
[78]
Heger M. Amgen deal triggers watchful waiting in targeted nanomedicine. Nat Med 2013; 19(2): 120.
[http://dx.doi.org/10.1038/nm0213-120b] [PMID: 23389595]
[79]
Zamboni WC, Torchilin V, Patri AK, et al. Best practices in cancer nanotechnology: Perspective from NCI nanotechnology alliance. Clin Cancer Res 2012; 18(12): 3229-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2938] [PMID: 22669131]
[80]
Cabral H, Nishiyama N, Okazaki S, Koyama H, Kataoka K. Preparation and biological properties of dichloro(1,2-diaminocyclohexane) platinum(II) (DACHPt)-loaded polymeric micelles. J Control Release 2005; 101(1-3): 223-32.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.022] [PMID: 15588907]
[81]
Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220(3): 640-6.
[http://dx.doi.org/10.1148/radiol.2202001804] [PMID: 11526261]
[82]
McDannold N, Zhang Y, Supko JG, et al. Acoustic feedback enables safe and reliable carboplatin delivery across the blood-brain barrier with a clinical focused ultrasound system and improves survival in a rat glioma model. Theranostics 2019; 9(21): 6284-99.
[http://dx.doi.org/10.7150/thno.35892] [PMID: 31534551]

© 2024 Bentham Science Publishers | Privacy Policy