Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Mini-Review Article

Tumor Suppressor microRNAs in Gastrointestinal Cancers: A Mini-Review

Author(s): Ganesan Jothimani, Meenu Bhatiya, Surajit Pathak, Sujay Paul* and Antara Banerjee*

Volume 16, Issue 1, 2022

Published on: 15 July, 2022

Page: [5 - 15] Pages: 11

DOI: 10.2174/2772270816666220606112727

Price: $65

Abstract

Background: Gastrointestinal (GI) cancer is associated with a group of cancers affecting the organs in the GI tract, with a high incidence and mortality rate. This type of cancer development involves a series of molecular events that arise by the dysregulation of gene expressions and microRNAs (miRNAs).

Objectives: This mini-review focuses on elucidating the mechanism of tumor suppressor miRNA–mediated oncogenic gene silencing, which may contribute to a better understanding of miRNA-mediated gene expression regulation of cell cycle, proliferation, invasion, and apoptosis in GI cancers. In this review, the biological significance of tumor suppressor miRNAs involved in gastrointestinal cancers is briefly explained.

Methods: The articles were searched with the keywords ‘miRNA’, ‘gastrointestinal cancers’, ‘esophageal cancer’, ‘gastric cancer’, ‘colorectal cancer’, ‘pancreatic cancer’, ‘liver cancer’, and ‘gall bladder cancer’ from the Google Scholar and PubMed databases. A total of 71 research and review articles have been collected and referred for this study.

Results: This review summarises recent research enhancing the effectiveness of miRNAs as novel prognostic, diagnostic, and therapeutic markers for GI cancer treatment strategies. The expression pattern of various miRNAs has been dysregulated in GI cancers, which are associated with proliferation, cell cycle regulation, apoptosis, migration, and invasion.

Conclusion: The role of tumor suppressor miRNAs in the negative regulation of oncogenic gene expression was thoroughly explained in this review. Its potential role as a microRNA therapeutic candidate is also discussed. Profiling and regulating tumor suppressor miRNA expression in gastrointestinal cancers using miRNA mimics could be used as a prognostic, diagnostic, and therapeutic marker, as well as an elucidating molecular therapeutic approach to tumor suppression.

Keywords: Gastrointestinal cancer, miRNAs, tumor suppressor, oncogenes, gene silencing, proliferation.

Graphical Abstract

[1]
Link A, Goel A. MicroRNA in gastrointestinal cancer: A step closer to reality. Adv Clin Chem 2013; 62: 221-68.
[http://dx.doi.org/10.1016/B978-0-12-800096-0.00006-8] [PMID: 24772669]
[2]
Huether SE, McCance KL. Pathophysiology: The Biologic Basis for Disease in Adults and Children. (6th ed.), Elsevier 2014.
[3]
Carroll RG. Elsevier’s Integrated Physiology E-Book. Elsevier Health Sciences 2006.
[4]
Paul S, Bravo Vázquez LA, Reyes-Pérez PR, et al. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res 2022; 308: 198631.
[http://dx.doi.org/10.1016/j.virusres.2021.198631] [PMID: 34788642]
[5]
Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, et al. The emerging role of MicroRNAs in bone diseases and their therapeutic potential. Molecules 2021; 27(1): 211.
[http://dx.doi.org/10.3390/molecules27010211] [PMID: 35011442]
[6]
Paul S, Bravo Vázquez LA, Uribe SP, et al. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021; 187: 83-93.
[http://dx.doi.org/10.1016/j.biochi.2021.05.015] [PMID: 34082043]
[7]
Paul S, Licona-Vázquez I, Serrano-Cano FI, et al. Current insight into the functions of microRNAs in common human hair loss disorders: A mini review. Hum Cell 2021; 34(4): 1040-50.
[http://dx.doi.org/10.1007/s13577-021-00540-0] [PMID: 33908022]
[8]
Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco SJ, et al. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch Biochem Biophys 2021; 699: 108763.
[http://dx.doi.org/10.1016/j.abb.2021.108763] [PMID: 33460581]
[9]
Ruiz‐Manriquez LM, Estrada‐Meza C, Benavides‐Aguilar JA, et al. Phytochemicals mediated modulation of microRNAs and long non‐coding RNAs in cancer prevention and therapy. Phytother Res 2021.
[PMID: 34932245]
[10]
Paul S, Ruiz-Manriquez LM, Serrano-Cano FI, Estrada-Meza C, Solorio-Diaz KA, Srivastava A. Human microRNAs in host–parasite interaction: A review. 3 Biotech 2020; 10(12): 1-6.
[11]
Paul S, Reyes PR, Garza BS, Sharma A. MicroRNAs and child neuropsychiatric disorders: A brief review. Neurochem Res 2020; 45(2): 232-40.
[http://dx.doi.org/10.1007/s11064-019-02917-y] [PMID: 31773374]
[12]
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cells 2020; 9(7): 1698.
[http://dx.doi.org/10.3390/cells9071698] [PMID: 32679881]
[13]
Busslinger GA, Weusten BLA, Bogte A, Begthel H, Brosens LAA, Clevers H. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep 2021; 34(10): 108819.
[http://dx.doi.org/10.1016/j.celrep.2021.108819] [PMID: 33691112]
[14]
Geesman G, Gesiotto QJ, Lalani Z, Tejani N. Anatomy of the gastrointestinal system.In: Surgical and Perioperative Management of Patients with Anatomic Anomalies. Cham: Springer 2021; pp. 145-77.
[15]
Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010; 19(8): 1893-907.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0437] [PMID: 20647400]
[16]
Goel A, Boland CR. Epigenetics of colorectal cancer. Gastroenterology 2012; 143(6): 1442-1460.e1.
[http://dx.doi.org/10.1053/j.gastro.2012.09.032] [PMID: 23000599]
[17]
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
[18]
Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: An epigenetic overview. Int J Mol Sci 2013; 14(10): 21087-113.
[http://dx.doi.org/10.3390/ijms141021087] [PMID: 24152442]
[19]
Dastmalchi N, Safaralizadeh R, Banan Khojasteh SM, et al. An updated review of the cross-talk between microRNAs and epigenetic factors in cancers. Curr Med Chem 2021; 28(42): 8722-32.
[http://dx.doi.org/10.2174/0929867328666210514125955] [PMID: 33992051]
[20]
Humphries B, Wang Z, Yang C. MicroRNA regulation of epigenetic modifiers in breast cancer. Cancers (Basel) 2019; 11(7): 897.
[http://dx.doi.org/10.3390/cancers11070897] [PMID: 31252590]
[21]
Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic regulation of microRNAs in cancer: Shortening the distance from bench to bedside. Int J Mol Sci 2021; 22(14): 7350.
[http://dx.doi.org/10.3390/ijms22147350] [PMID: 34298969]
[22]
Farooqi AA, Fuentes-Mattei E, Fayyaz S, et al. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Seminars in Cancer Biology 2019; 58: 47-55.
[http://dx.doi.org/10.1016/j.semcancer.2019.02.003]
[23]
Jothimani G, Sriramulu S, Chabria Y, Sun XF, Banerjee A, Pathak S. A review on theragnostic applications of microRNAs and long non-coding RNAs in colorectal cancer. Curr Top Med Chem 2018; 18(30): 2614-29.
[http://dx.doi.org/10.2174/1568026619666181221165344] [PMID: 30582478]
[24]
Shi Y, Liu Z, Lin Q, et al. MiRNAs and cancer: Key link in diagnosis and therapy. Genes (Basel) 2021; 12(8): 1289.
[http://dx.doi.org/10.3390/genes12081289] [PMID: 34440464]
[25]
Quévillon Huberdeau M, Simard MJ. A guide to microRNA-mediated gene silencing. FEBS J 2019; 286(4): 642-52.
[http://dx.doi.org/10.1111/febs.14666] [PMID: 30267606]
[26]
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17(1): 64.
[http://dx.doi.org/10.1186/s12943-018-0765-5] [PMID: 29471827]
[27]
Bottini S, Hamouda-Tekaya N, Mategot R, et al. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun 2017; 8(1): 1189.
[http://dx.doi.org/10.1038/s41467-017-01126-x] [PMID: 29084942]
[28]
Bruce JP, Hui AB, Shi W, et al. Identification of a microRNA signature associated with risk of distant metastasis in nasopharyngeal carcinoma. Oncotarget 2015; 6(6): 4537-50.
[http://dx.doi.org/10.18632/oncotarget.3005] [PMID: 25738365]
[29]
Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett 2018; 15(3): 2735-42.
[PMID: 29434998]
[30]
Jeansonne D, DeLuca M, Marrero L, et al. Anti-tumoral effects of miR-3189-3p in glioblastoma. J Biol Chem 2015; 290(13): 8067-80.
[http://dx.doi.org/10.1074/jbc.M114.633081] [PMID: 25645911]
[31]
Pinatel EM, Orso F, Penna E, et al. miR-223 is a coordinator of breast cancer progression as revealed by bioinformatics predictions. PLoS One 2014; 9(1): e84859.
[http://dx.doi.org/10.1371/journal.pone.0084859] [PMID: 24400121]
[32]
Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int 2015; 15(1): 38.
[http://dx.doi.org/10.1186/s12935-015-0185-1] [PMID: 25960691]
[33]
Wong NW, Chen Y, Chen S, Wang X. OncomiR: An online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics 2018; 34(4): 713-5.
[http://dx.doi.org/10.1093/bioinformatics/btx627] [PMID: 29028907]
[34]
Shirjang S, Mansoori B, Asghari S, et al. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139: 1-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.05.017] [PMID: 31102709]
[35]
Yang F, Ning Z, Ma L, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer 2017; 16(1): 148.
[http://dx.doi.org/10.1186/s12943-017-0718-4] [PMID: 28851377]
[36]
Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: An overview. MicroRNA Profiling 2017; pp. 1-0.
[37]
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019; 25(1): 1-16.
[http://dx.doi.org/10.1261/rna.068692.118] [PMID: 30333195]
[38]
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2019; 20(1): 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[39]
Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science 2001; 294(5548): 1945-8.
[http://dx.doi.org/10.1126/science.1065057] [PMID: 11729324]
[40]
Sarshad AA, Juan AH, Muler AIC, et al. Argonaute-miRNA complexes silence target mRNAs in the nucleus of mammalian stem cells. Mol Cell 2018; 71(6): 1040-1050.e8.
[http://dx.doi.org/10.1016/j.molcel.2018.07.020] [PMID: 30146314]
[41]
King VM, Borchert GM. MicroRNA expression: Protein participants in MicroRNA regulation. Bioinformatics in MicroRNA Research 2017; pp. 27-37.
[42]
Lee RC, Feinbaum RL, Ambros V. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[43]
Braga TV, Evangelista FCG, Gomes LC, Araújo SSDS, Carvalho MDG, Sabino AP. Evaluation of MiR-15a and MiR-16-1 as prognostic biomarkers in chronic lymphocytic leukemia. Biomed Pharmacother 2017; 92: 864-9.
[http://dx.doi.org/10.1016/j.biopha.2017.05.144] [PMID: 28599250]
[44]
Lovat F, Fassan M, Sacchi D, et al. Knockout of both miR-15/16 loci induces acute myeloid leukemia. Proc Natl Acad Sci USA 2018; 115(51): 13069-74.
[http://dx.doi.org/10.1073/pnas.1814980115] [PMID: 30478046]
[45]
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74(11): 2913-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[46]
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70(3): 145-64.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[47]
Frampton AE, Krell J, Jacob J, Stebbing J, Castellano L, Jiao LR. Loss of miR-126 is crucial to pancreatic cancer progression. Expert Rev Anticancer Ther 2012; 12(7): 881-4.
[http://dx.doi.org/10.1586/era.12.67] [PMID: 22845403]
[48]
Li X, Deng SJ, Zhu S, et al. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget 2016; 7(5): 6000-14.
[http://dx.doi.org/10.18632/oncotarget.6830] [PMID: 26755660]
[49]
Jin X, Sun Y, Yang H, et al. Deregulation of the MiR-193b-KRAS axis contributes to impaired cell growth in pancreatic cancer. PLoS One 2015; 10(4): e0125515.
[http://dx.doi.org/10.1371/journal.pone.0125515] [PMID: 25905463]
[50]
Keklikoglou I, Hosaka K, Bender C, et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 2015; 34(37): 4867-78.
[http://dx.doi.org/10.1038/onc.2014.408] [PMID: 25500542]
[51]
Cao W, Jin H, Zhang L, Chen X, Qian H. Identification of miR-601 as a novel regulator in the development of pancreatic cancer. Biochem Biophys Res Commun 2017; 483(1): 638-44.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.090] [PMID: 27993677]
[52]
Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010; 70(14): 6015-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4531] [PMID: 20610624]
[53]
Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007; 26(30): 4442-52.
[http://dx.doi.org/10.1038/sj.onc.1210228] [PMID: 17237814]
[54]
Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53(4): 549-54.
[http://dx.doi.org/10.1016/0092-8674(88)90571-5] [PMID: 2453289]
[55]
Campbell PM, Groehler AL, Lee KM, Ouellette MM, Khazak V, Der CJ. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res 2007; 67(5): 2098-106.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3752] [PMID: 17332339]
[56]
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002; 12(1): 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[57]
Zhao G, Zhang JG, Liu Y, et al. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 2013; 12(1): 83-93.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0534-T] [PMID: 23171948]
[58]
Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocelular carcinoma. Hepatology 2009; 49: 1571-82.
[http://dx.doi.org/10.1002/hep.22806] [PMID: 19296470]
[59]
Song Y, He S, Zhuang J, et al. MicroRNA 601 serves as a potential tumor suppressor in hepatocellular carcinoma by directly targeting PIK3R3. Mol Med Rep 2019; 19(3): 2431-9.
[http://dx.doi.org/10.3892/mmr.2019.9857] [PMID: 30664174]
[60]
Bae HJ, Noh JH, Kim JK, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene 2014; 33(20): 2557-67.
[http://dx.doi.org/10.1038/onc.2013.216] [PMID: 23728341]
[61]
Song WH, Feng XJ, Gong SJ, et al. microRNA-622 acts as a tumor suppressor in hepatocellular carcinoma. Cancer Biol Ther 2015; 16(12): 1754-63.
[http://dx.doi.org/10.1080/15384047.2015.1095402] [PMID: 26467022]
[62]
Nie J, Ge X, Geng Y, et al. miR-34a inhibits the migration and invasion of esophageal squamous cell carcinoma by targeting Yin Yang-1. Oncol Rep 2015; 34(1): 311-7.
[http://dx.doi.org/10.3892/or.2015.3962] [PMID: 25954903]
[63]
Wang X, Zhao Y, Lu Q, et al. MiR-34a-5p inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in esophageal squamous cell carcinoma by targeting LEF1 and inactivation of the hippo-YAP1/TAZ signaling pathway. J Cancer 2020; 11(10): 3072-81.
[http://dx.doi.org/10.7150/jca.39861] [PMID: 32226522]
[64]
Asadi M, Shanehbandi D, Mohammadpour H, Hashemzadeh S, Sepehri B. Expression level of miR-34a in tumor tissue from patients with esophageal squamous cell carcinoma. J Gastrointest Cancer 2019; 50(2): 304-7.
[http://dx.doi.org/10.1007/s12029-018-0060-0] [PMID: 29453761]
[65]
Zuo J, Zhu K, Wang Y, Yu Z. MicroRNA-34a suppresses invasion and metastatic in esophageal squamous cell carcinoma by regulating CD44. Mol Cell Biochem 2018; 443(1-2): 139-49.
[http://dx.doi.org/10.1007/s11010-017-3218-3] [PMID: 29094237]
[66]
Chen X, Hu H, Guan X, et al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int J Cancer 2012; 130(7): 1607-13.
[http://dx.doi.org/10.1002/ijc.26171] [PMID: 21547903]
[67]
Liang Y, Zhang P, Li S, Li H, Song S, Lu B. MicroRNA-873 acts as a tumor suppressor in esophageal cancer by inhibiting differentiated embryonic chondrocyte expressed gene 2. Biomed Pharmacother 2018; 105: 582-9.
[http://dx.doi.org/10.1016/j.biopha.2018.05.152] [PMID: 29890466]
[68]
Lang B, Zhao S. miR-486 functions as a tumor suppressor in esophageal cancer by targeting CDK4/BCAS2. Oncol Rep 2018; 39(1): 71-80.
[PMID: 29115564]
[69]
Wernberg JA, Lucarelli DD. Gallbladder cancer. Surg Clin North Am 2014; 94(2): 343-60.
[http://dx.doi.org/10.1016/j.suc.2014.01.009] [PMID: 24679425]
[70]
Tian H, Hou L, Xiong YM, et al. miR-218 suppresses tumor growth and enhances the chemosensitivity of esophageal squamous cell carcinoma to cisplatin. Oncol Rep 2015; 33(2): 981-9.
[http://dx.doi.org/10.3892/or.2014.3657] [PMID: 25482044]
[71]
Jin K, Xiang Y, Tang J, et al. miR-34 is associated with poor prognosis of patients with gallbladder cancer through regulating telomere length in tumor stem cells. Tumour Biol 2014; 35(2): 1503-10.
[http://dx.doi.org/10.1007/s13277-013-1207-z] [PMID: 24078448]
[72]
Ma MZ, Li CX, Zhang Y, et al. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Mol Cancer 2014; 13(1): 156.
[http://dx.doi.org/10.1186/1476-4598-13-156] [PMID: 24953832]
[73]
Niu J, Li Z, Li F. Overexpressed microRNA-136 works as a cancer suppressor in gallbladder cancer through suppression of JNK signaling pathway via inhibition of MAP2K4. Am J Physiol Gastrointest Liver Physiol 2019; 317(5): G670-81.
[http://dx.doi.org/10.1152/ajpgi.00055.2019] [PMID: 31369289]
[74]
Xu G, Wei X, Tu Q, Zhou C. Up-regulated microRNA-33b inhibits epithelial-mesenchymal transition in gallbladder cancer through down-regulating CROCC. Biosci Rep 2020; 40(1): BSR20190108.
[http://dx.doi.org/10.1042/BSR20190108] [PMID: 31799620]
[75]
Zhao X, Dou W, He L, et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013; 32(11): 1363-72.
[http://dx.doi.org/10.1038/onc.2012.156] [PMID: 22614005]
[76]
Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: A potential therapeutic target in human cancer. Cell Death Dis 2014; 5(7): e1327.
[http://dx.doi.org/10.1038/cddis.2014.270] [PMID: 25032850]
[77]
Peng Y, Guo JJ, Liu YM, Wu XL. MicroRNA-34A inhibits the growth, invasion and metastasis of gastric cancer by targeting PDGFR and MET expression. Biosci Rep 2014; 34(3): e00112.
[http://dx.doi.org/10.1042/BSR20140020] [PMID: 24837198]
[78]
Deng X, Zheng H, Li D, et al. MicroRNA-34a regulates proliferation and apoptosis of gastric cancer cells by targeting silent information regulator 1. Exp Ther Med 2018; 15(4): 3705-14.
[http://dx.doi.org/10.3892/etm.2018.5920] [PMID: 29581731]
[79]
Wu S, Jiang J, Liu J, Wang X, Gan Y, Tang Y. Meta-analysis of SIRT1 expression as a prognostic marker for overall survival in gastrointestinal cancer. Oncotarget 2017; 8(37): 62589-99.
[http://dx.doi.org/10.18632/oncotarget.19880] [PMID: 28977971]
[80]
Zhang W, Liao K, Liu D. MiRNA-12129 suppresses cell proliferation and block cell cycle progression by targeting SIRT1 in GASTRIC cancer. Technol Cancer Res Treat 2020; 19: 1533033820928144.
[http://dx.doi.org/10.1177/1533033820928144] [PMID: 32508267]
[81]
Zhang L, Wang X, Chen P. MiR-204 down regulates SIRT1 and reverts SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer 2013; 13(1): 290.
[http://dx.doi.org/10.1186/1471-2407-13-290] [PMID: 23768087]
[82]
Wang Y, Cao Z, Wang L, Liu S, Cai J. Downregulation of microRNA-142-3p and its tumor suppressor role in gastric cancer. Oncol Lett 2018; 15(5): 8172-80.
[http://dx.doi.org/10.3892/ol.2018.8330] [PMID: 29849811]
[83]
Yao Q, Gu A, Wang Z, Xue Y. MicroRNA-144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase-2. Exp Ther Med 2018; 15(3): 3088-95.
[http://dx.doi.org/10.3892/etm.2018.5763] [PMID: 29456712]
[84]
Sun F, Yu M, Yu J, et al. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis 2018; 9(5): 522.
[http://dx.doi.org/10.1038/s41419-018-0611-0] [PMID: 29743567]
[85]
Murphy N, Moreno V, Hughes DJ, et al. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med 2019; 69: 2-9.
[http://dx.doi.org/10.1016/j.mam.2019.06.005] [PMID: 31233770]
[86]
Hughes LAE, Simons CCJM, van den Brandt PA, van Engeland M, Weijenberg MP. Lifestyle, diet, and colorectal cancer risk according to (epi) genetic instability: Current evidence and future directions of molecular pathological epidemiology. Curr Colorectal Cancer Rep 2017; 13(6): 455-69.
[http://dx.doi.org/10.1007/s11888-017-0395-0] [PMID: 29249914]
[87]
Friedenreich CM, Ryder-Burbidge C, McNeil J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol Oncol 2021; 15(3): 790-800.
[http://dx.doi.org/10.1002/1878-0261.12772] [PMID: 32741068]
[88]
Muller M, Hansmannel F, Arnone D, et al. Genomic and molecular alterations in human inflammatory bowel disease-associated colorectal cancer. United European Gastroenterol J 2020; 8(6): 675-84.
[http://dx.doi.org/10.1177/2050640620919254] [PMID: 32268844]
[89]
Zhu L, Huang Y, Fang X, et al. A novel and reliable method to detect microsatellite instability in colorectal cancer by next-generation sequencing. J Mol Diagn 2018; 20(2): 225-31.
[http://dx.doi.org/10.1016/j.jmoldx.2017.11.007] [PMID: 29277635]
[90]
Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020; 17(2): 111-30.
[http://dx.doi.org/10.1038/s41575-019-0230-y] [PMID: 31900466]
[91]
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18(1): 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[92]
Banerjee A, Jothimani G, Prasad SV, Marotta F, Pathak S. Targeting Wnt signaling through small molecules in governing stem cell fate and diseases. Endocrine, Metabolic & Immune Disorders Drug Targets 2019; 19(3): 233-46.
[http://dx.doi.org/10.2174/1871530319666190118103907]
[93]
Jothimani G, Di Liddo R, Pathak S, Piccione M, Sriramulu S, Banerjee A. Wnt signaling regulates the proliferation potential and lineage commitment of human umbilical cord derived mesenchymal stem cells. Mol Biol Rep 2020; 47(2): 1293-308.
[http://dx.doi.org/10.1007/s11033-019-05232-5] [PMID: 31853765]
[94]
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 2018; 25(1): 104-13.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[95]
Lezaja A, Altmeyer M. Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle 2018; 17(1): 24-32.
[http://dx.doi.org/10.1080/15384101.2017.1383578] [PMID: 28980862]
[96]
Akter J, Katai Y, Sultana P, et al. Loss of p53 suppresses replication stress-induced DNA damage in ATRX-deficient neuroblastoma. Oncogenesis 2021; 10(11): 73.
[http://dx.doi.org/10.1038/s41389-021-00363-6] [PMID: 34743173]
[97]
Xie Y, Song J, Zong Q, et al. Decreased Expression of MIR-134 and its Clinical Significance in Human Colorectal Cancer. Hepatogastroenterology 2015; 62(139): 615-9.
[PMID: 26897940]
[98]
El-Daly SM, Abba ML, Patil N, Allgayer H. miRs-134 and-370 function as tumor suppressors in colorectal cancer by independently suppressing EGFR and PI3K signalling. Sci Rep 2016; 6(1): 1-1.
[http://dx.doi.org/10.1038/srep24720] [PMID: 28442746]
[99]
Huang CW, Chen YT, Tsai HL, et al. EGFR expression in patients with stage III colorectal cancer after adjuvant chemotherapy and on cancer cell function. Oncotarget 2017; 8(70): 114663-76.
[http://dx.doi.org/10.18632/oncotarget.23072] [PMID: 29383110]
[100]
Porębska I, Harlozińska A, Bojarowski T. Expression of the tyrosine kinase activity growth factor receptors (EGFR, ERB B2, ERB B3) in colorectal adenocarcinomas and adenomas. Tumour Biol 2000; 21(2): 105-15.
[http://dx.doi.org/10.1159/000030116] [PMID: 10686540]
[101]
Del Carmen S, Corchete LA, Gervas R, et al. Prognostic implications of EGFR protein expression in sporadic colorectal tumors: Correlation with copy number status, mRNA levels and miRNA regulation. Sci Rep 2020; 10(1): 4662.
[http://dx.doi.org/10.1038/s41598-020-61688-7] [PMID: 32170146]
[102]
Charlton ME, Kahl AR, Greenbaum AA, et al. KRAS testing, tumor location, and survival in patients with stage IV colorectal cancer: SEER 2010–2013. J Natl Compr Canc Netw 2017; 15(12): 1484-93.
[http://dx.doi.org/10.6004/jnccn.2017.7011] [PMID: 29223986]
[103]
Vu T, Datta PK. Regulation of EMT in colorectal cancer: A culprit in metastasis. Cancers (Basel) 2017; 9(12): 171.
[http://dx.doi.org/10.3390/cancers9120171] [PMID: 29258163]
[104]
Ye Q, Su L, Chen D, Zheng W, Liu Y. Astragaloside IV induced miR-134 expression reduces EMT and increases chemotherapeutic sensitivity by suppressing CREB1 signaling in colorectal cancer cell line SW-480. Cell Physiol Biochem 2017; 43(4): 1617-26.
[http://dx.doi.org/10.1159/000482025] [PMID: 29041002]
[105]
Huang W, Liu X, Cao J, et al. miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J Mol Neurosci 2015; 55(4): 821-9.
[http://dx.doi.org/10.1007/s12031-014-0434-0] [PMID: 25316150]
[106]
Ahmed FE, Ahmed NC, Vos PW, et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics 2013; 10(3): 93-113.
[PMID: 23741026]
[107]
Li J, Wang K, Chen X, et al. Transcriptional activation of microRNA-34a by NF-kappa B in human esophageal cancer cells. BMC Mol Biol 2012; 13(4): 1-10.
[http://dx.doi.org/10.1186/1471-2199-13-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy