Abstract
Aims: This work uses the MACE method to synthesize SiNWs- NiNPs/NiONPs to degrade organic pollutants by photocatalysis.
Background: Photocatalytic degradation has been applied as an attractive solution to remove several organic pollutants. Heterostructured nanomaterials have become an interesting platform for investigation. Metal-assisted chemical etching (MACE) stands out as a promising technique because it is simple, low cost, and fast.
Objective: Attain the degradation of methyl orange (MO) in the presence of silicon nanowires (SiNWs) in heterojunction with Nickel/Nickel Oxide nanoparticles (NiNPs-NiONPs).
Methods: SiNWs were synthesized by metal (Ag) assisted chemical etching (MACE) of monocrystalline silicon wafers. NiNPs were non-electrolytically deposited on the SiNWs (electroless method). The morphology of the SiNWs- NiNPs/NiONPs was observed by SEM.
Results: Heterogeneous photocatalytic degradation of methyl orange (C14H14N3NaO3S) in an aqueous solution at a concentration of 20 ppm had an efficiency of 66.5% after 180 min under UV irradiation. The MO degradation percentage was determined using UV-visible spectrophotometry.
Conclusion: The SiNWs-NiNPs/NiONPs were obtained composed mainly of Si covered by SiO2 decorated on the tips with Ni (II) in the form of NiO and a small amount of nickel metal. The removal efficiency obtained at 180 min of light exposure was 66.5%. After the photocatalysis tests, further oxidation of the NiNPS into NiONPs, was attributed to the reactive oxygen species in the aqueous medium based on the changes of the oxygen and Ni2p3/2 peaks by XPS.
Other: Through XPS, the oxidation state of the SiNWs- NiNPs/NiONPs was analyzed.
Keywords: Silicon nanowires, nickel oxide, photocatalysis, methyl orange, metal-assisted chemical etching, MACE.
Graphical Abstract
[http://dx.doi.org/10.1016/j.jiec.2021.02.017]
[http://dx.doi.org/10.1088/2053-1591/ab6c22]
[http://dx.doi.org/10.1088/1755-1315/514/5/052001]
[http://dx.doi.org/10.1108/RJTA-08-2020-0098]
[http://dx.doi.org/10.1016/j.inoche.2021.108763]
[http://dx.doi.org/10.1186/s11671-019-3093-9] [PMID: 31338679]
[http://dx.doi.org/10.1039/C6RA05738A]
[http://dx.doi.org/10.1039/C6RA15149C]
[http://dx.doi.org/10.1016/j.matchemphys.2009.02.004]
[http://dx.doi.org/10.1016/j.tsf.2021.138595]
[http://dx.doi.org/10.1021/acsami.0c12828] [PMID: 32931240]
[http://dx.doi.org/10.2174/1573413717666210505122435]
[http://dx.doi.org/10.1002/ppsc.201700321]
[http://dx.doi.org/10.1007/s11581-016-1717-y]
[http://dx.doi.org/10.1016/j.jes.2020.08.010] [PMID: 33334508]
[http://dx.doi.org/10.3390/nano10030404] [PMID: 32106503]
[http://dx.doi.org/10.1088/1361-6528/ab80fa] [PMID: 32187584]
[http://dx.doi.org/10.1039/C9NH00709A] [PMID: 32100775]
[http://dx.doi.org/10.1007/s13204-020-01429-4]
[http://dx.doi.org/10.1021/jp302008k]
[http://dx.doi.org/10.1039/C5NR08265J] [PMID: 27001286]
[http://dx.doi.org/10.1016/j.tsf.2008.10.090]
[http://dx.doi.org/10.1021/am100618h] [PMID: 20936796]
[http://dx.doi.org/10.1016/j.jcat.2010.03.020]
[http://dx.doi.org/10.1021/am507138b] [PMID: 25325731]
[http://dx.doi.org/10.1021/jp4055457]
[http://dx.doi.org/10.1002/aenm.201401387]
[http://dx.doi.org/10.1021/acsami.5b10207] [PMID: 26619966]
[http://dx.doi.org/10.1016/0040-6090(93)90636-4]
[http://dx.doi.org/10.7567/APEX.9.091101]
[http://dx.doi.org/10.1016/j.mssp.2019.104784]
[http://dx.doi.org/10.1016/j.jallcom.2018.10.029]
[http://dx.doi.org/10.1016/j.mssp.2017.11.036]
[http://dx.doi.org/10.1557/adv.2018.641]
[http://dx.doi.org/10.1002/adfm.20150275]
[http://dx.doi.org/10.1016/j.ijhydene.2018.02.141]
[http://dx.doi.org/10.1016/j.ijhydene.2016.09.106]
[http://dx.doi.org/10.1016/j.nantod.2017.10.013]
[http://dx.doi.org/10.1088/0268-1242/31/1/014011]
[http://dx.doi.org/10.1007/s12274-018-2070-4]
[http://dx.doi.org/10.1039/C9RA03273H]
[http://dx.doi.org/10.1177/0003702819881222] [PMID: 31617371]
[http://dx.doi.org/10.1002/solr.202000754]
[http://dx.doi.org/10.1016/j.jcis.2018.07.123] [PMID: 30099309]
[http://dx.doi.org/10.1116/1.582388]
[http://dx.doi.org/10.1007/BF02757985]
[http://dx.doi.org/10.1016/j.cjph.2019.12.008]
[http://dx.doi.org/10.1088/2053-1591/ab6c11]
[http://dx.doi.org/10.1039/C5TA05644F]
[http://dx.doi.org/10.1016/j.nanoen.2017.02.004]
[http://dx.doi.org/10.1016/j.talanta.2020.120891] [PMID: 32312436]
[http://dx.doi.org/10.1016/j.jallcom.2020.154455]
[http://dx.doi.org/10.1016/j.jallcom.2020.155134]
[http://dx.doi.org/10.5006/3371]
[http://dx.doi.org/10.1007/s11356-020-08589-4] [PMID: 32342412]
[http://dx.doi.org/10.1016/j.corsci.2018.01.041]
[http://dx.doi.org/10.1016/j.matlet.2012.08.108]
[http://dx.doi.org/10.5935/0103-5053.20160100]
[http://dx.doi.org/10.1016/j.apsusc.2019.04.232]
[http://dx.doi.org/10.1007/s00449-020-02315-7] [PMID: 32144597]
[http://dx.doi.org/10.1016/j.ceramint.2017.08.035]
[http://dx.doi.org/10.1016/j.mssp.2016.10.006]
[http://dx.doi.org/10.1016/j.apcatb.2019.117798]
[http://dx.doi.org/10.1016/j.chemosphere.2015.09.067] [PMID: 26421622]
[http://dx.doi.org/10.1016/j.apenergy.2017.07.032]
[http://dx.doi.org/10.1039/c4ta00119b]
[http://dx.doi.org/10.1007/s40820-017-0133-9] [PMID: 30393725]
[http://dx.doi.org/10.1016/j.apmt.2021.101007]
[http://dx.doi.org/10.1016/j.enchem.2020.100047]
[http://dx.doi.org/10.1016/j.jallcom.2015.0]
[http://dx.doi.org/10.1039/C4NJ00883A]
[http://dx.doi.org/10.1039/C4NJ00569D]
[http://dx.doi.org/10.1016/j.apcata.2008.05.003]
[http://dx.doi.org/10.1016/j.cej.2014.09.078]
[http://dx.doi.org/10.1021/acs.jpclett.8b02892] [PMID: 30990726]