Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

An Insight into the Hepatoprotective Activity and Structure-activity Relationships of Flavonoids

Author(s): Chandana Majee*, Rupa Mazumder, Alka N. Choudhary and Salahuddin

Volume 23, Issue 2, 2023

Published on: 27 August, 2022

Page: [131 - 149] Pages: 19

DOI: 10.2174/1389557522666220602141142

Price: $65

Abstract

Background: Flavonoids are a class of polyphenolic bioactive compounds obtained from plants, which have a wide range of chemical structures and properties. More than 9000 distinct flavonoid molecules have been identified and have been found to regulate numerous developmental processes and play key biological roles in living organisms.

Objective: This review aims to highlight the hepatoprotective potentiality of flavonoids and corelate their pharmacological activity with their chemical structure.

Methods: With the advancement in the field of research related to phytochemicals, it is evident that flavonoids have versatile health benefits, viz., antioxidant property, free radical scavenging capacity, anticancer activity. The basic structures are C6-C3-C6 rings with various substitution patterns, resulting in a succession of subclass compounds, and the relationships between chemical structures and bioactivity have previously been investigated.

Results: The hepatoprotective effects of bioactive flavonoids derived from plants have been widely linked to their antioxidant activity, antiinflammatory activity, effects on Sterol Regulatory Element- binding Proteins (SREBP), Peroxisome Proliferator-activated Receptor gamma (PPARγ) receptors, and inflammatory mediator cytokines according to numerous studies. The C2-C3 double bond at the A ring, as well as the hydroxyl groups of C3′or C4′, and the carbonyl group at position C4, have been shown to augment their hepatoprotective activities; however, hydroxymethylation at C3′ and C4′ has been found to diminish the hepatoprotective activity.

Conclusion: The impact of flavonoid moieties and the structure-activity relationship of flavonoids related to combating various hepatic disorders have been vividly discussed in this review paper.

Keywords: Flavonoids, oxidative stress, liver diseases, autophagy, limitation.

Graphical Abstract

[1]
Schmucker, D.L. Liver function and phase I drug metabolism in the elderly: A paradox. Drugs Aging, 2001, 18(11), 837-851.
[http://dx.doi.org/10.2165/00002512-200118110-00005] [PMID: 11772124]
[2]
Sandermann, H., Jr Higher plant metabolism of xenobiotics: The ‘green liver’ concept. Pharmacogenetics, 1994, 4(5), 225-241.
[http://dx.doi.org/10.1097/00008571-199410000-00001] [PMID: 7894495]
[3]
Kaplowitz, N. Drug-induced liver injury. Clin. Infect. Dis., 2004, 38(Suppl. 2), S44-S48.
[http://dx.doi.org/10.1086/381446] [PMID: 14986274]
[4]
Williams, R. Global challenges in liver disease. Hepatology, 2006, 44(3), 521-526.
[http://dx.doi.org/10.1002/hep.21347] [PMID: 16941687]
[5]
Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids health benefits and their molecular mechanism. Mini Rev. Med. Chem., 2011, 11(2), 169-177.
[http://dx.doi.org/10.2174/138955711794519546] [PMID: 21222576]
[6]
Banjarnahor, S.D.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones., 2014, 23, 239-244.
[http://dx.doi.org/10.13181/mji.v23i4.1015]
[7]
Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[8]
Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[9]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[10]
Blachier, M.; Leleu, H.; Peck-Radosavljevic, M.; Valla, D.C.; Roudot-Thoraval, F. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol., 2013, 58(3), 593-608.
[http://dx.doi.org/10.1016/j.jhep.2012.12.005] [PMID: 23419824]
[11]
Lok, A.S.; Heathcote, E.J.; Hoofnagle, J.H. Management of hepatitis B: 2000--summary of a workshop. Gastroenterology, 2001, 120(7), 1828-1853.
[http://dx.doi.org/10.1053/gast.2001.24839] [PMID: 11375963]
[12]
Sharma, N.I.; Patni, V. Grewia tenax (Frosk.) Fiori.-a traditional medicinal plant with enormous economic prospects. Asian J. Pharm. Clin. Res., 2012, 5, 28-32.
[13]
Araújo, A.R.; Rosso, N.; Bedogni, G.; Tiribelli, C.; Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int., 2018, 38(Suppl. 1), 47-51.
[http://dx.doi.org/10.1111/liv.13643] [PMID: 29427488]
[14]
Byass, P. The global burden of liver disease: A challenge for methods and for public health. BMC Med., 2014, 12, 159.
[http://dx.doi.org/10.1186/s12916-014-0159-5] [PMID: 25286285]
[15]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[16]
Xiao, J.; Wang, F.; Wong, N.K.; He, J.; Zhang, R.; Sun, R.; Xu, Y.; Liu, Y.; Li, W.; Koike, K.; He, W.; You, H.; Miao, Y.; Liu, X.; Meng, M.; Gao, B.; Wang, H.; Li, C. Global liver disease burdens and research trends: Analysis from a Chinese perspective. J. Hepatol., 2019, 71(1), 212-221.
[http://dx.doi.org/10.1016/j.jhep.2019.03.004] [PMID: 30871980]
[17]
Wang, F.S.; Fan, J.G.; Zhang, Z.; Gao, B.; Wang, H.Y. The global burden of liver disease: The major impact of China. Hepatology, 2014, 60(6), 2099-2108.
[http://dx.doi.org/10.1002/hep.27406] [PMID: 25164003]
[18]
Kim, W.R.; Brown, R.S., Jr; Terrault, N.A.; El-Serag, H. Burden of liver disease in the United States: Summary of a workshop. Hepatology, 2002, 36(1), 227-242.
[http://dx.doi.org/10.1053/jhep.2002.34734] [PMID: 12085369]
[19]
Liangpunsakul, S.; Haber, P.; McCaughan, G.W. Alcoholic liver disease in Asia, Europe, and North America. Gastroenterology, 2016, 150(8), 1786-1797.
[http://dx.doi.org/10.1053/j.gastro.2016.02.043] [PMID: 26924091]
[20]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[21]
Liu, A.L.; Wang, H.D.; Lee, S.M.; Wang, Y.T.; Du, G.H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem., 2008, 16(15), 7141-7147.
[http://dx.doi.org/10.1016/j.bmc.2008.06.049] [PMID: 18640042]
[22]
Woodman, O.L.; Meeker, W.F.; Boujaoude, M. Vasorelaxant and antioxidant activity of flavonols and flavones: Structure-activity rela-tionships. J. Cardiovasc. Pharmacol., 2005, 46(3), 302-309.
[http://dx.doi.org/10.1097/01.fjc.0000175431.62626.07] [PMID: 16116335]
[23]
Haenen, G.R.; Arts, M.J.; Bast, A.; Coleman, M.D. Structure and activity in assessing antioxidant activity in vitro and in vivo A critical appraisal illustrated with the flavonoids. Environ. Toxicol. Pharmacol., 2006, 21(2), 191-198.
[http://dx.doi.org/10.1016/j.etap.2005.07.010] [PMID: 21783657]
[24]
Yokozawa, T.; Chen, C.P.; Dong, E.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem. Pharmacol., 1998, 56(2), 213-222.
[http://dx.doi.org/10.1016/S0006-2952(98)00128-2] [PMID: 9698075]
[25]
Tu, B.; Chen, Z.F.; Liu, Z.J.; Li, R.R.; Ouyang, Y.; Hu, Y.J. Study of the structure-activity relationship of flavonoids based on their inter-action with human serum albumin. RSC Adv, 2015, 5, 73290-73300.
[http://dx.doi.org/10.1039/C5RA12824B]
[26]
Kesarkar, S.; Bhandage, A.; Deshmukh, S.; Shevkar, K.; Abhyankar, M. Flavonoids: An overview. J. Pharm. Res., 2009, 2(6), 1148-1154.
[27]
Chen, Y.H.; Yang, Z.S.; Wen, C.C.; Chang, Y.S.; Wang, B.C.; Hsiao, C.A.; Shih, T.L. Evaluation of the structure-activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem., 2012, 134(2), 717-724.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.166] [PMID: 23107683]
[28]
Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci., 2012, 196, 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[29]
Peng, Z.F.; Strack, D.; Baumert, A.; Subramaniam, R.; Goh, N.K.; Chia, T.F.; Tan, S.N.; Chia, L.S. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry, 2003, 62(2), 219-228.
[http://dx.doi.org/10.1016/S0031-9422(02)00504-6] [PMID: 12482460]
[30]
Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; Michael, A.J.; Tohge, T.; Yamazaki, M.; Saito, K. Enhancement of oxidative and drought tolerance in Arabidopsis by ove-raccumulation of antioxidant flavonoids. Plant J., 2014, 77(3), 367-379.
[http://dx.doi.org/10.1111/tpj.12388] [PMID: 24274116]
[31]
During, A.; Larondelle, Y. The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: Structure-activity relationships of flavones. Biochem. Pharmacol., 2013, 86(12), 1739-1746.
[http://dx.doi.org/10.1016/j.bcp.2013.10.003] [PMID: 24134915]
[32]
Han, R.M.; Tian, Y.X.; Liu, Y.; Chen, C.H.; Ai, X.C.; Zhang, J.P.; Skibsted, L.H. Comparison of flavonoids and isoflavonoids as antioxi-dants. J. Agric. Food Chem., 2009, 57(9), 3780-3785.
[http://dx.doi.org/10.1021/jf803850p] [PMID: 19296660]
[33]
Musialik, M.; Kuzmicz, R.; Pawłowski, T.S.; Litwinienko, G. Acidity of hydroxyl groups: An overlooked influence on antiradical proper-ties of flavonoids. J. Org. Chem., 2009, 74(7), 2699-2709.
[http://dx.doi.org/10.1021/jo802716v] [PMID: 19275193]
[34]
Heijnen, C.G.M.; Haenen, G.R.M.M.; van Acker, F.A.A.; van der Vijgh, W.J.F.; Bast, A. Flavonoids as peroxynitrite scavengers: The role of the hydroxyl groups. Toxicol. In Vitro, 2001, 15(1), 3-6.
[http://dx.doi.org/10.1016/S0887-2333(00)00053-9] [PMID: 11259863]
[35]
Zheng, Y.Z.; Deng, G.; Liang, Q.; Chen, D.F.; Guo, R.; Lai, R.C. Antioxidant activity of quercetin and its glucosides from propolis: A theo-retical study. Sci. Rep., 2017, 7(1), 7543.
[http://dx.doi.org/10.1038/s41598-017-08024-8] [PMID: 28790397]
[36]
De, Q.; Ferreira, R.; Greco, S.J.; Delarmelina, M.; Weber, K.C. Electrochemical quantification of the structure/antioxidant activity rela-tionship of flavonoids. Electrochim. Acta, 2015, 163, 161-166.
[http://dx.doi.org/10.1016/j.electacta.2015.02.164]
[37]
Spiegel, M.; Andruniów, T.; Sroka, Z. Flavones’ and flavonols’ antiradical structure-activity relationship-A quantum chemical study. Antioxidants, 2020, 9(6), 461-474.
[http://dx.doi.org/10.3390/antiox9060461] [PMID: 32471289]
[38]
Mendes, A.P.; Borges, R.S.; Neto, A.M.; de Macedo, L.G.; da Silva, A.B. The basic antioxidant structure for flavonoid derivatives. J. Mol. Model., 2012, 18(9), 4073-4080.
[http://dx.doi.org/10.1007/s00894-012-1397-0] [PMID: 22527272]
[39]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[40]
Duthie, G.; Morrice, P. Antioxidant capacity of flavonoids in hepatic microsomes is not reflected by antioxidant effects in vivo. Oxid. Med. Cell. Longev., 2012, 2012, 165127.
[http://dx.doi.org/10.1155/2012/165127] [PMID: 22919437]
[41]
Gomes, A.; Fernandes, E.; Lima, J.L.; Mira, L.; Corvo, M.L. Molecular mechanisms of anti-inflammatory activity mediated by flavonoids. Curr. Med. Chem., 2008, 15(16), 1586-1605.
[http://dx.doi.org/10.2174/092986708784911579] [PMID: 18673226]
[42]
Amić, D.; Davidović-Amić, D.; Beslo, D.; Rastija, V.; Lucić, B.; Trinajstić, N. SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem., 2007, 14(7), 827-845.
[http://dx.doi.org/10.2174/092986707780090954] [PMID: 17346166]
[43]
He, Y.; Xia, Z.; Yu, D.; Wang, J.; Jin, L.; Huang, D.; Ye, X.; Li, X.; Zhang, B. Hepatoprotective effects and structure-activity relationship of five flavonoids against lipopolysaccharide/d-galactosamine induced acute liver failure in mice. Int. Immunopharmacol., 2019, 68, 171-178.
[http://dx.doi.org/10.1016/j.intimp.2018.12.059] [PMID: 30641432]
[44]
Wu, T.; He, M.; Zang, X.; Zhou, Y.; Qiu, T.; Pan, S.; Xu, X. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta, 2013, 1828(11), 2751-2756.
[http://dx.doi.org/10.1016/j.bbamem.2013.07.029] [PMID: 23938956]
[45]
Seeram, N.P.; Nair, M.G. Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agric. Food Chem., 2002, 50(19), 5308-5312.
[http://dx.doi.org/10.1021/jf025671q] [PMID: 12207466]
[46]
Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules, 2007, 12(3), 593-606.
[http://dx.doi.org/10.3390/12030593] [PMID: 17851414]
[47]
Xiong, Q.; Fan, W.; Tezuka, Y.; Adnyana, I.K.; Stampoulis, P.; Hattori, M.; Namba, T.; Kadota, S. Hepatoprotective effect of Apocynum venetum and its active constituents. Planta Med., 2000, 66(2), 127-133.
[http://dx.doi.org/10.1055/s-2000-11135] [PMID: 10763585]
[48]
Akanitapichat, P.; Phraibung, K.; Nuchklang, K.; Prompitakkul, S. Antioxidant and hepatoprotective activities of five eggplant varieties. Food Chem. Toxicol., 2010, 48(10), 3017-3021.
[http://dx.doi.org/10.1016/j.fct.2010.07.045] [PMID: 20691749]
[49]
De, M.; Marzioni, M.; Saccomanno, S.; Rychlicki, C.; Agostinelli, L.; Trozzi, L.; Benedetti, A.; Svegliati-Baroni, G. Cellular and molecular mechanisms of hepatic fibrogenesis leading to liver cancer. Transl. Gastrointest. Cancer, 2012, 1, 88-89.
[50]
Geetha, A. Lakshmi, Priya M.D.;Jeyachristy, S.A.;Surendran, R. Level of oxidative stress in the red blood cells of patients with liver ci-rrhosis. Indian J. Med. Res., 2007, 126, 20-24.
[51]
Chen, L.; Liu, J.; Mei, G.; Chen, H.; Peng, S.; Zhao, Y.; Yao, P.; Tang, Y. Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis. Food Chem. Toxicol., 2021, 154, 112314.
[http://dx.doi.org/10.1016/j.fct.2021.112314] [PMID: 34087406]
[52]
Lee, Y.J.; Beak, S.Y.; Choi, I.; Sung, J.S. Quercetin and its metabolites protect hepatocytes against ethanol-induced oxidative stress by activation of Nrf2 and AP-1. Food Sci. Biotechnol., 2017, 27(3), 809-817.
[http://dx.doi.org/10.1007/s10068-017-0287-8] [PMID: 30263806]
[53]
Guillet-Deniau, I.; Mieulet, V.; Le Lay, S.; Achouri, Y.; Carré, D.; Girard, J.; Foufelle, F.; Ferré, P. Sterol regulatory element binding pro-tein-1c expression and action in rat muscles: Insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene ex-pression. Diabetes, 2002, 51(6), 1722-1728.
[http://dx.doi.org/10.2337/diabetes.51.6.1722] [PMID: 12031958]
[54]
Shin, E.S.; Lee, H.H.; Cho, S.Y.; Park, H.W.; Lee, S.J.; Lee, T.R. Genistein downregulates SREBP-1 regulated gene expression by inhibi-ting site-1 protease expression in HepG2 cells. J. Nutr., 2007, 137(5), 1127-1131.
[http://dx.doi.org/10.1093/jn/137.5.1127] [PMID: 17449569]
[55]
Wu, C.H.; Lin, M.C.; Wang, H.C.; Yang, M.Y.; Jou, M.J.; Wang, C.J. Rutin inhibits oleic acid induced lipid accumulation via reducing lipo-genesis and oxidative stress in hepatocarcinoma cells. J. Food Sci., 2011, 76(2), T65-T72.
[http://dx.doi.org/10.1111/j.1750-3841.2010.02033.x] [PMID: 21535797]
[56]
Hao, M.; Li, Y.; Liu, L.; Yuan, X.; Gao, Y.; Guan, Z.; Li, W. The design and synthesis of a novel compound of berberine and baicalein that inhibits the efficacy of lipid accumulation in 3T3-L1 adipocytes. Bioorg. Med. Chem., 2017, 25(20), 5506-5512.
[http://dx.doi.org/10.1016/j.bmc.2017.08.013] [PMID: 28818460]
[57]
Sun, W.; Liu, P.; Wang, T.; Wang, X.; Zheng, W.; Li, J. Baicalein reduces hepatic fat accumulation by activating AMPK in oleic acid-induced HepG2 cells and high-fat diet-induced non-insulin-resistant mice. Food Funct., 2020, 11(1), 711-721.
[http://dx.doi.org/10.1039/C9FO02237F] [PMID: 31909773]
[58]
Beekmann, K.; Rubió, L.; de Haan, L.H.; Actis-Goretta, L.; van der Burg, B.; van Bladeren, P.J.; Rietjens, I.M. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-γ). Food Funct., 2015, 6(4), 1098-1107.
[http://dx.doi.org/10.1039/C5FO00076A] [PMID: 25765892]
[59]
Bouhlel, M.A.; Derudas, B.; Rigamonti, E.; Dièvart, R.; Brozek, J.; Haulon, S.; Zawadzki, C.; Jude, B.; Torpier, G.; Marx, N.; Staels, B.; Chinetti-Gbaguidi, G. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory proper-ties. Cell Metab., 2007, 6(2), 137-143.
[http://dx.doi.org/10.1016/j.cmet.2007.06.010] [PMID: 17681149]
[60]
Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta, 2011, 1812(8), 1007-1022.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.014] [PMID: 21382489]
[61]
Kunasegaran, T.; Mustafa, M.R.; Murugan, D.D.; Achike, F.I. The bioflavonoid quercetin synergises with PPAR-γ agonist pioglitazone in reducing angiotensin-II contractile effect in fructose-streptozotocin induced diabetic rats. Biochimie, 2016, 125, 131-139.
[http://dx.doi.org/10.1016/j.biochi.2016.03.008] [PMID: 27012965]
[62]
Feng, X.; Weng, D.; Zhou, F.; Owen, Y.D.; Qin, H.; Zhao, J. WenYu; Huang, Y.; Chen, J.; Fu, H.; Yang, N.; Chen, D.; Li, J.; Tan, R.; Shen, P. Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of ma-crophage polarization. EBioMedicine, 2016, 9, 61-76.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.017] [PMID: 27374313]
[63]
Jian, T.; Ding, X.; Wu, Y.; Ren, B.; Li, W.; Lv, H.; Chen, J. Hepatoprotective effect of loquat leaf flavonoids in PM2. 5-induced non-alcoholic fatty liver disease via regulation of IRs-1/Akt and CYP2E1/JNK pathways. Int. J. Mol. Sci., 2018, 19(10), 300-305.
[http://dx.doi.org/10.3390/ijms19103005] [PMID: 30275422]
[64]
Hodek, P.; Trefil, P.; Stiborová, M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact., 2002, 139(1), 1-21.
[http://dx.doi.org/10.1016/S0009-2797(01)00285-X] [PMID: 11803026]
[65]
Buening, M.K.; Chang, R.L.; Huang, M.T.; Fortner, J.G.; Wood, A.W.; Conney, A.H. Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res., 1981, 41(1), 67-72.
[PMID: 7448777]
[66]
Kale, A.; Gawande, S.; Kotwal, S. Cancer phytotherapeutics: Role for flavonoids at the cellular level. Phytother. Res., 2008, 22(5), 567-577.
[http://dx.doi.org/10.1002/ptr.2283] [PMID: 18398903]
[67]
Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro, 2006, 20(2), 187-210.
[http://dx.doi.org/10.1016/j.tiv.2005.06.048] [PMID: 16289744]
[68]
Mitchell, M.J.; Keogh, D.P.; Crooks, J.R.; Smith, S.L. Effects of plant flavonoids and other allelochemicals on insect cytochrome P-450 dependent steroid hydroxylase activity. Insect Biochem. Mol. Biol., 1993, 23(1), 65-71.
[http://dx.doi.org/10.1016/0965-1748(93)90083-5] [PMID: 8485518]
[69]
Östlund, J.; Zlabek, V.; Zamaratskaia, G. In vitro inhibition of human CYP2E1 and CYP3A by quercetin and myricetin in hepatic micro-somes is not gender dependent. Toxicology, 2017, 381(381), 10-18.
[http://dx.doi.org/10.1016/j.tox.2017.02.012] [PMID: 28232125]
[70]
Czaja, M.J.; Ding, W.X.; Donohue, T.M., Jr; Friedman, S.L.; Kim, J.S.; Komatsu, M.; Lemasters, J.J.; Lemoine, A.; Lin, J.D.; Ou, J.H.; Perlmutter, D.H.; Randall, G.; Ray, R.B.; Tsung, A.; Yin, X.M. Functions of autophagy in normal and diseased liver. Autophagy, 2013, 9(8), 1131-1158.
[http://dx.doi.org/10.4161/auto.25063] [PMID: 23774882]
[71]
Czaja, M.J. Function of autophagy in nonalcoholic fatty liver disease. Dig. Dis. Sci., 2016, 61(5), 1304-1313.
[http://dx.doi.org/10.1007/s10620-015-4025-x] [PMID: 26725058]
[72]
Lascala, A.; Martino, C.; Parafati, M.; Salerno, R.; Oliverio, M.; Pellegrino, D.; Mollace, V.; Janda, E. Analysis of proautophagic activities of citrus flavonoids in liver cells reveals the superiority of a natural polyphenol mixture over pure flavones. J. Nutr. Biochem., 2018, 58, 119-130.
[http://dx.doi.org/10.1016/j.jnutbio.2018.04.005] [PMID: 29890411]
[73]
Janda, E.; Martino, C.; Riillo, C.; Parafati, M.; Lascala, A.; Mollace, V.; Boutin, J.A. Apigenin and luteolin regulate autophagy by targeting NRH-quinone oxidoreductase 2 in liver cells. Antioxidants, 2021, 10(5), 776.
[http://dx.doi.org/10.3390/antiox10050776] [PMID: 34068281]
[74]
Amodio, P.; Montagnese, S.; Gatta, A.; Morgan, M.Y. Characteristics of minimal hepatic encephalopathy. Metab. Brain Dis., 2004, 19(3-4), 253-267.
[http://dx.doi.org/10.1023/B:MEBR.0000043975.01841.de] [PMID: 15554421]
[75]
Arias, J.L.; Aller, M.A.; Sánchez-Patan, F.; Arias, J. The inflammatory bases of hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol., 2006, 18(12), 1297-1310.
[http://dx.doi.org/10.1097/01.meg.0000243873.94572.de] [PMID: 17099380]
[76]
Norenberg, M.D. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol., 1987, 6(1-2), 13-33.
[http://dx.doi.org/10.1007/BF02833599] [PMID: 3306480]
[77]
Kanimozhi, S.; Bhavani, P.; Subramanian, P. Influence of the flavonoid, quercetin on antioxidant status, lipid peroxidation and histopatho-logical changes in hyperammonemic rats. Indian J. Clin. Biochem., 2017, 32(3), 275-284.
[http://dx.doi.org/10.1007/s12291-016-0603-8] [PMID: 28811686]
[78]
Amawi, H.; Ashby, C.R.; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin. J. Cancer, 2017, 36, 1-3.
[http://dx.doi.org/10.1186/s40880-017-0217-4]
[79]
Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F.; Tomás-Barberán, F.A. In vitro availability of flavonoids and other phenolics in orange juice. J. Agric. Food Chem., 2001, 49(2), 1035-1041.
[http://dx.doi.org/10.1021/jf0000528] [PMID: 11262068]
[80]
Ueno, I.; Nakano, N.; Hirono, I. Metabolic fate of [14C] quercetin in the ACI rat. Jpn. J. Exp. Med., 1983, 53(1), 41-50.
[PMID: 6876476]
[81]
Boulton, D.W.; Walle, U.K.; Walle, T. Fate of the flavonoid quercetin in human cell lines: Chemical instability and metabolism. J. Pharm. Pharmacol., 1999, 51(3), 353-359.
[http://dx.doi.org/10.1211/0022357991772367] [PMID: 10344638]
[82]
Chaurasiya, N.D.; Gogineni, V.; Elokely, K.M.; León, F.; Núñez, M.J.; Klein, M.L.; Walker, L.A.; Cutler, S.J.; Tekwani, B.L. Isolation of acacetin from Caleaurticifolia with inhibitory properties against human monoamine oxidase-A and-B. J. Nat. Prod., 2016, 79(10), 2538-2544.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00440] [PMID: 27754693]
[83]
Jalili, C.; Akhshi, N.; Raissi, F.; Shiravi, A.; Alvani, A.; Vaezi, G.; Nedaei, S.E.; Ghanbari, A. Acacetin alleviates hepatitis following renal ischemia–reperfusion in male Balb/C mice by antioxidants regulation and inflammatory markers suppression. J. Invest. Surg., 2021, 34(5), 495-503.
[http://dx.doi.org/10.1080/08941939.2019.1656309] [PMID: 31686554]
[84]
Zheng, Q.S.; Sun, X.L.; Xu, B.; Li, G.; Song, M. Mechanisms of apigenin-7-glucoside as a hepatoprotective agent. Biomed. Environ. Sci., 2005, 18(1), 65-70.
[PMID: 15861781]
[85]
Moharram, F.A.; El Dib, R.A.E.M.; Marzouk, M.S.; El-Shenawy, S.M.; Ibrahim, H.A. New apigenin glycoside, polyphenolic constituents, anti-inflammatory and hepatoprotective activities of Gaillardia grandiflora and Gaillardia pulchella aerial parts. Pharmacogn. Mag., 2017, 13(Suppl. 2), S244-S249.
[http://dx.doi.org/10.4103/pm.pm_344_16] [PMID: 28808387]
[86]
Zhao, Y.; Li, H.; Gao, Z.; Gong, Y.; Xu, H. Effects of flavonoids extracted from Scutellaria baicalensis Georgi on hemin-nitrite-H2O2 induced liver injury. Eur. J. Pharmacol., 2006, 536(1-2), 192-199.
[http://dx.doi.org/10.1016/j.ejphar.2006.02.045] [PMID: 16574098]
[87]
Pu, P.; Wang, X.A.; Salim, M.; Zhu, L.H.; Wang, L.; Chen, K.J.; Xiao, J.F.; Deng, W.; Shi, H.W.; Jiang, H.; Li, H.L. Baicalein, a natural product, selectively activating AMPKα(2) and ameliorates metabolic disorder in diet-induced mice. Mol. Cell. Endocrinol., 2012, 362(1-2), 128-138.
[http://dx.doi.org/10.1016/j.mce.2012.06.002] [PMID: 22698522]
[88]
Mahmoodi, M.; Hosseini, R.; Kazemi, A.; Ofori-Asenso, R.; Mazidi, M.; Mazloomi, S.M. Effects of green tea or green tea catechin on liver enzymes in healthy individuals and people with nonalcoholic fatty liver disease: A systematic review and meta-analysis of randomized clinical trials. Phytother. Res., 2020, 34(7), 1587-1598.
[http://dx.doi.org/10.1002/ptr.6637] [PMID: 32067271]
[89]
Ryle, P.R.; Chakraborty, J.; Thomson, A.D. Biochemical mode of action of a hepatoprotective drug: Observations on (+)-catechin. Pharmacol. Biochem. Behav., 1983, 18(Suppl. 1), 473-478.
[http://dx.doi.org/10.1016/0091-3057(83)90220-4] [PMID: 6634856]
[90]
Pingili, R.B.; Pawar, A.K.; Challa, S.R. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of parace-tamol in rats and isolated rat hepatocytes. Chem. Biol. Interact., 2019, 302, 123-134.
[http://dx.doi.org/10.1016/j.cbi.2019.02.014] [PMID: 30794797]
[91]
Mohammadi, A.; Kazemi, S.; Hosseini, M.; Najafzadeh Varzi, H.; Feyzi, F.; Morakabati, P.; Moghadamnia, A.A. Chrysin effect in preven-tion of acetaminophen-induced hepatotoxicity in rat. Chem. Res. Toxicol., 2019, 32(11), 2329-2337.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00332] [PMID: 31625388]
[92]
Choi, E.J.; Kim, G.H. Hepatoprotective effects of daidzein against 7,12-dimetylbenz[a]anthracene-induced oxidative stress in mice. Int. J. Mol. Med., 2009, 23(5), 659-664.
[http://dx.doi.org/10.3892/ijmm_00000177] [PMID: 19360325]
[93]
Park, J.G.; Cheon, H.J.; Kim, Y.S.; Kang, S.S.; Choi, J.S.; Lee, S.M. Hepatoprotective activities of daidzin, daidzein, genistein and puerarin in primary cultured rat hepatocytes. Yakhak Hoeji, 2007, 51, 115-125.
[94]
Choi, E.J. Evaluation of equol function on anti- or prooxidant status in vivo. J. Food Sci., 2009, 74(2), H65-H71.
[http://dx.doi.org/10.1111/j.1750-3841.2008.01039.x] [PMID: 19323753]
[95]
Ni, Y.D.; Wei, X.J.; Zhang, C.X.; Zhong, Y.; Lu, L.Z.; Grossmann, R.; Zhao, R.Q. The effect of equol injection in ovo on lipid metabolism and hepatic lipogenic gene expression in broilers. Animal, 2012, 6(9), 1444-1450.
[http://dx.doi.org/10.1017/S1751731112000468] [PMID: 23031517]
[96]
Hiramitsu, M.; Shimada, Y.; Kuroyanagi, J.; Inoue, T.; Katagiri, T.; Zang, L.; Nishimura, Y.; Nishimura, N.; Tanaka, T. Eriocitrin amelio-rates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci. Rep., 2014, 4, 3708.
[http://dx.doi.org/10.1038/srep03708] [PMID: 24424211]
[97]
Minato, K.; Miyake, Y.; Fukumoto, S.; Yamamoto, K.; Kato, Y.; Shimomura, Y.; Osawa, T. Lemon flavonoid, eriocitrin, suppresses exer-cise-induced oxidative damage in rat liver. Life Sci., 2003, 72(14), 1609-1616.
[http://dx.doi.org/10.1016/S0024-3205(02)02443-8] [PMID: 12551749]
[98]
Xie, G.; Meng, X.; Wang, F.; Bao, Y.; Huo, J. Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2. Oncotarget, 2017, 8(40), 68668-68674.
[http://dx.doi.org/10.18632/oncotarget.19822] [PMID: 28978146]
[99]
Wang, Y.; Chen, Y.; Chen, Y.; Zhou, B.; Shan, X.; Yang, G. Eriodictyol inhibits IL-1β-induced inflammatory response in human os-teoarthritis chondrocytes. Biomed. Pharmacother., 2018, 107, 1128-1134.
[http://dx.doi.org/10.1016/j.biopha.2018.08.103] [PMID: 30257325]
[100]
Huang, J.; Chen, X.; Xie, A. Formononetin ameliorates IL-13-induced inflammation and mucus formation in human nasal epithelial cells by activating the SIRT1/Nrf2 signaling pathway. Mol. Med. Rep., 2021, 24, 1-9.
[http://dx.doi.org/10.3892/mmr.2021.12472]
[101]
Yang, S.; Wei, L.; Xia, R.; Liu, L.; Chen, Y.; Zhang, W.; Li, Q.; Feng, K.; Yu, M.; Zhang, W.; Qu, J.; Xu, S.; Mao, J.; Fan, G.; Ma, C. For-mononetin ameliorates cholestasis by regulating hepatic SIRT1 and PPARα. Biochem. Biophys. Res. Commun., 2019, 512(4), 770-778.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.131] [PMID: 30928103]
[102]
Sun, Q.; Zhang, W.; Zhong, W.; Sun, X.; Zhou, Z. Dietary fisetin supplementation protects against alcohol-induced liver injury in mice. Alcohol. Clin. Exp. Res., 2016, 40(10), 2076-2084.
[http://dx.doi.org/10.1111/acer.13172] [PMID: 27575873]
[103]
Liou, C.J.; Wei, C.H.; Chen, Y.L.; Cheng, C.Y.; Wang, C.L.; Huang, W.C. Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice. Cell. Physiol. Biochem., 2018, 49(5), 1870-1884.
[http://dx.doi.org/10.1159/000493650] [PMID: 30235452]
[104]
Chien, S.T.; Shi, M.D.; Lee, Y.C.; Te, C.C.; Shih, Y.W. Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int., 2015, 15, 15.
[http://dx.doi.org/10.1186/s12935-015-0168-2] [PMID: 25698902]
[105]
Zhang, X.; Deng, Y.; Xiang, J.; Liu, H.; Zhang, J.; Liao, J.; Chen, K.; Liu, B.; Liu, J.; Pu, Y. Erratum: Galangin improved non-alcoholic fatty liver disease in mice by promoting autophagy [Corrigendum]. Drug Des. Devel. Ther., 2021, 15, 231-232.
[http://dx.doi.org/10.2147/DDDT.S301054] [PMID: 33505157]
[106]
Wang, X.; Gong, G.; Yang, W.; Li, Y.; Jiang, M.; Li, L. Antifibrotic activity of galangin, a novel function evaluated in animal liver fibrosis model. Environ. Toxicol. Pharmacol., 2013, 36(2), 288-295.
[http://dx.doi.org/10.1016/j.etap.2013.04.004] [PMID: 23686009]
[107]
Mohamed Salih, S.; Nallasamy, P.; Muniyandi, P.; Periyasami, V.; Carani Venkatraman, A. Genistein improves liver function and attenua-tes non-alcoholic fatty liver disease in a rat model of insulin resistance. J. Diabetes, 2009, 1(4), 278-287.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00045.x] [PMID: 20923528]
[108]
Ganai, A.A.; Khan, A.A.; Malik, Z.A.; Farooqi, H. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol. Appl. Pharmacol., 2015, 283(2), 139-146.
[http://dx.doi.org/10.1016/j.taap.2015.01.012] [PMID: 25620059]
[109]
Tabeshpour, J.; Hosseinzadeh, H.; Hashemzaei, M.; Karimi, G. A review of the hepatoprotective effects of hesperidin, a flavanon glycosi-de in citrus fruits, against natural and chemical toxicities. Daru, 2020, 28(1), 305-317.
[http://dx.doi.org/10.1007/s40199-020-00344-x] [PMID: 32277430]
[110]
Zaghloul, R.A.; Elsherbiny, N.M.; Kenawy, H.I.; El-Karef, A.; Eissa, L.A.; El-Shishtawy, M.M. Hepatoprotective effect of hesperidin in hepatocellular carcinoma: Involvement of Wnt signaling pathways. Life Sci., 2017, 185, 114-125.
[http://dx.doi.org/10.1016/j.lfs.2017.07.026] [PMID: 28754618]
[111]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[112]
Seelinger, G.; Merfort, I.; Schempp, C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med., 2008, 74(14), 1667-1677.
[http://dx.doi.org/10.1055/s-0028-1088314] [PMID: 18937165]
[113]
Heeba, G.H.; Mahmoud, M.E. Therapeutic potential of morin against liver fibrosis in rats: Modulation of oxidative stress, cytokine pro-duction and nuclear factor kappa B. Environ. Toxicol. Pharmacol., 2014, 37(2), 662-671.
[http://dx.doi.org/10.1016/j.etap.2014.01.026] [PMID: 24583409]
[114]
Lee, H.S.; Jung, K.H.; Hong, S.W.; Park, I.S.; Lee, C.; Han, H.K.; Lee, D.H.; Hong, S.S. Morin protects acute liver damage by carbon tetra-chloride (CCl(4)) in rat. Arch. Pharm. Res., 2008, 31(9), 1160-1165.
[http://dx.doi.org/10.1007/s12272-001-1283-5] [PMID: 18806959]
[115]
Taheri, Y.; Suleria, H.A.R.; Martins, N.; Sytar, O.; Beyatli, A.; Yeskaliyeva, B.; Seitimova, G.; Salehi, B.; Semwal, P.; Painuli, S.; Kumar, A.; Azzini, E.; Martorell, M.; Setzer, W.N.; Maroyi, A.; Sharifi-Rad, J. Myricetin bioactive effects: Moving from preclinical evidence to po-tential clinical applications. BMC Complement. Med. Ther., 2020, 20(1), 241.
[http://dx.doi.org/10.1186/s12906-020-03033-z] [PMID: 32738903]
[116]
Shokrzadeh, M.; Ebrahimnejad, H.; Zear, A.; Chabra, A.; Naghshvar, F.; Ahmadi, A. In vivo protective effect of myricetin on liver bio-chemical damage induced by endosulfan. J. Maz. Univ. Med. Sci., 2016, 26, 28-3.
[117]
Pari, L.; Gnanasoundari, M. Influence of naringenin on oxytetracycline mediated oxidative damage in rat liver. Basic Clin. Pharmacol. Toxicol., 2006, 98(5), 456-461.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_351.x] [PMID: 16635103]
[118]
Lv, Y.; Zhang, B.; Xing, G.; Wang, F.; Hu, Z. Protective effect of naringenin against acetaminophen-induced acute liver injury in metallot-hionein (MT)-null mice. Food Funct., 2013, 4(2), 297-302.
[http://dx.doi.org/10.1039/C2FO30213F] [PMID: 23142768]
[119]
Esmaeili, M.A.; Alilou, M. Naringenin attenuates CCl4 -induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats. Clin. Exp. Pharmacol. Physiol., 2014, 41(6), 416-422.
[http://dx.doi.org/10.1111/1440-1681.12230] [PMID: 24684352]
[120]
Rouseff, R.L.; Martin, S.F.; Youtsey, C.O. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J. Agric. Food Chem., 1987, 35, 1027-1030.
[http://dx.doi.org/10.1021/jf00078a040]
[121]
Park, H.Y.; Ha, S.K.; Eom, H.; Choi, I. Narirutin fraction from citrus peels attenuates alcoholic liver disease in mice. Food Chem. Toxicol., 2013, 55, 637-644.
[http://dx.doi.org/10.1016/j.fct.2013.01.060] [PMID: 23416143]
[122]
Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104, 66-79.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[123]
Park, Y.; Yuk, T.; Lee, J. Nobiletin attenuates high glucose‐induced lipid accumulation in HepG2 hepatocytes through activation of AMP‐activated protein kinase‐dependent signaling. FASEB J., 2015, 29, 917-924.
[http://dx.doi.org/10.1096/fasebj.29.1_supplement.917.4]
[124]
Lekić, N.; Canová, N.K.; Hořínek, A.; Farghali, H. The involvement of heme oxygenase 1 but not nitric oxide synthase 2 in a hepatopro-tective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Fitoterapia, 2013, 87, 20-26.
[http://dx.doi.org/10.1016/j.fitote.2013.03.016] [PMID: 23537890]
[125]
Zhao, L.; Wu, J.; Yang, J.; Wei, J.; Gao, W.; Guo, C. Dietary quercetin supplementation increases serum antioxidant capacity and alters hepatic gene expression profile in rats. Exp. Biol. Med. (Maywood), 2011, 236(6), 701-706.
[http://dx.doi.org/10.1258/ebm.2011.010258] [PMID: 21565894]
[126]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[127]
Reddy, M.K.; Reddy, A.G.; Kumar, B.K.; Madhuri, D.; Boobalan, G.; Reddy, M.A. Protective effect of rutin in comparison to silymarin against induced hepatotoxicity in rats. Vet. World, 2017, 10(1), 74-80.
[http://dx.doi.org/10.14202/vetworld.2017.74-80] [PMID: 28246450]
[128]
Ma, J.Q.; Liu, C.M.; Yang, W. Protective effect of rutin against carbon tetrachloride-induced oxidative stress, inflammation and apoptosis in mouse kidney associated with the ceramide, MAPKs, p53 and calpain activities. Chem. Biol. Interact., 2018, 286, 26-33.
[http://dx.doi.org/10.1016/j.cbi.2018.03.003] [PMID: 29522708]
[129]
Liu, M.; Zhang, G.; Wu, S.; Song, M.; Wang, J.; Cai, W.; Mi, S.; Liu, C. Schaftoside alleviates HFD-induced hepatic lipid accumulation in mice via upregulating farnesoid X receptor. J. Ethnopharmacol., 2020, 255, 112776.
[http://dx.doi.org/10.1016/j.jep.2020.112776] [PMID: 32205261]
[130]
Simirgiotis, M.J.; Schmeda-Hirschmann, G.; Bórquez, J.; Kennelly, E.J. The Passiflora tripartita (Banana Passion) fruit: A source of bioac-tive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC–DAD–ESI/MS/MS. Molecules, 2013, 18(2), 1672-1692.
[http://dx.doi.org/10.3390/molecules18021672] [PMID: 23358325]
[131]
Lee, H.K.; Kim, H.S.; Kim, Y.J.; Kim, J.S.; Park, Y.S.; Kang, J.S.; Yuk, D.Y.; Hong, J.T.; Kim, Y.; Han, S.B. Sophoricoside isolated from Sophora japonica ameliorates contact dermatitis by inhibiting NF-κB signaling in B cells. Int. Immunopharmacol., 2013, 15(3), 467-473.
[http://dx.doi.org/10.1016/j.intimp.2013.01.025] [PMID: 23415872]
[132]
Li, W.; Lu, Y. Hepatoprotective effects of sophoricoside against fructose‐induced liver injury via regulating lipid metabolism, oxidation, and inflammation in mice. J. Food Sci., 2018, 83(2), 552-558.
[http://dx.doi.org/10.1111/1750-3841.14047] [PMID: 29350757]
[133]
Saller, R.; Meier, R.; Brignoli, R. The use of silymarin in the treatment of liver diseases. Drugs, 2001, 61(14), 2035-2063.
[http://dx.doi.org/10.2165/00003495-200161140-00003] [PMID: 11735632]
[134]
Marjani, M.; Baghaei, P.; Kazempour Dizaji, M.; Gorji Bayani, P.; Fahimi, F.; Tabarsi, P.; Velayati, A.A. Evaluation of hepatoprotective effect of silymarin among under treatment tuberculosis patients: A randomized clinical trial. Iran. J. Pharm. Res., 2016, 15(1), 247-252.
[PMID: 27610165]
[135]
Kim, D.C.; Quang, T.H.; Oh, H.; Kim, Y.C. Steppogenin isolated from Cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in LPS-stimulated bv2 and primary rat microglial cells. Molecules, 2017, 22, 21-30.
[http://dx.doi.org/10.3390/molecules22122130]
[136]
Ullah, H.; DeFilippis, A.; Baldi, A.; Dacrema, M.; Esposito, C.; Garzarella, E.U.; Santarcangelo, C.; Tantipongpiradet, A.; Daglia, M. Benefi-cial effects of plant extracts and bioactive food components in childhood supplementation. Nutrients, 2021, 13, 31-57.
[http://dx.doi.org/10.3390/nu13093157]
[137]
Duan, S.; Du, X.; Chen, S.; Liang, J.; Huang, S.; Hou, S.; Gao, J.; Ding, P. Effect of vitexin on alleviating liver inflammation in a Dextran Sulfate Sodium (DSS)-induced colitis model. Biomed. Pharmacother., 2020, 121, 109683.
[http://dx.doi.org/10.1016/j.biopha.2019.109683] [PMID: 31810123]
[138]
Inamdar, S.; Joshi, A.; Malik, S.; Boppana, R.; Ghaskadbi, S. Vitexin alleviates non-alcoholic fatty liver disease by activating AMPK in high fat diet fed mice. Biochem. Biophys. Res. Commun., 2019, 519(1), 106-112.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.139] [PMID: 31472955]
[139]
Du, X.S.; Li, H.D.; Yang, X.J.; Li, J.J.; Xu, J.J.; Chen, Y.; Xu, Q.Q.; Yang, L.; He, C.S.; Huang, C.; Meng, X.M.; Li, J. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol., 2019, 75, 105671.
[http://dx.doi.org/10.1016/j.intimp.2019.05.056] [PMID: 31377590]
[140]
Chaumontet, C.; Droumaguet, C.; Bex, V.; Heberden, C.; Gaillard-Sanchez, I.; Martel, P. Flavonoids (apigenin, tangeretin) counteract tumor promoter-induced inhibition of intercellular communication of rat liver epithelial cells. Cancer Lett., 1997, 114(1-2), 207-210.
[http://dx.doi.org/10.1016/S0304-3835(97)04664-8] [PMID: 9103293]
[141]
Kamel, E.M.; Mahmoud, A.M.; Ahmed, S.A.; Lamsabhi, A.M.A. A phytochemical and computational study on flavonoids isolated from Trifolium resupinatum L. and their novel hepatoprotective activity. Food Funct., 2016, 7(4), 2094-2106.
[http://dx.doi.org/10.1039/C6FO00194G] [PMID: 27053086]
[142]
Kondeva-Burdina, M.; Shkondrov, A.; Simeonova, R.; Vitcheva, V.; Krasteva, I.; Ionkova, I. In vitro/in vivo antioxidant and hepatoprotec-tive potential of defatted extract and flavonoids isolated from Astragalus spruneri Boiss. (Fabaceae). Food Chem. Toxicol., 2018, 111, 631-640.
[http://dx.doi.org/10.1016/j.fct.2017.12.020] [PMID: 29247771]
[143]
Nguyen, T.P.; Tran, C.L.; Vuong, C.H.; Do, T.H.T.; Le, T.D.; Mai, D.T.; Phan, N.M. Flavonoids with hepatoprotective activity from the leaves of Cleome viscosa L. Nat. Prod. Res., 2017, 31(22), 2587-2592.
[http://dx.doi.org/10.1080/14786419.2017.1283497] [PMID: 28135851]
[144]
Kapche, G.D.; Amadou, D.; Waffo-Teguo, P.; Donfack, J.H.; Fozing, C.D.; Harakat, D.; Tchana, A.N.; Mérillon, J.M.; Moundipa, P.F.; Ngadjui, B.T.; Abegaz, B.M. Hepatoprotective and antioxidant arylbenzofurans and flavonoids from the twigs of Morus mesozygia. Planta Med., 2011, 77(10), 1044-1047.
[http://dx.doi.org/10.1055/s-0030-1270745] [PMID: 21308616]
[145]
Nguyen, T.P.; Mai, D.T.; Do, T.H.; Phan, N.M. Flavonoids with hepatoprotective activity from the leaves of Cleome chelidonii. Nat. Prod. Commun., 2017, 12, 1061-1063.
[http://dx.doi.org/10.1177/1934578X1701200715]
[146]
Kim, S.M.; Kang, K.; Jho, E.H.; Jung, Y.J.; Nho, C.W.; Um, B.H.; Pan, C.H. Hepatoprotective effect of flavonoid glycosides from Lespede-za cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother. Res., 2011, 25(7), 1011-1017.
[http://dx.doi.org/10.1002/ptr.3387] [PMID: 21226126]
[147]
Kim, J.Y.; Lee, S.; Kim, D.H.; Kim, B.R.; Park, R.; Lee, B.M. Effects of flavonoids isolated from Scutellariae radix on cytochrome P-450 activities in human liver microsomes. J. Toxicol. Environ. Health A, 2002, 65(5-6), 373-381.
[http://dx.doi.org/10.1080/15287390252808046] [PMID: 11936218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy