Abstract
Asymmetric catalysis with chiral phosphoric acids (CPAs) has impacted a wide range of organic reactions, including those that generate chiral amines of interest in medicinal and natural products chemistry. Phosphodiester derivatives (RO)2PO2H offer linkages to various chiral alcohols and diols, permitting the CPA to transmit stereochemical information to reactants via ion-pairing and/or H-bonding interactions of the P=O and O–H bonds. This minireview presents selected recent developments in CPA-catalyzed asymmetric synthesis of amines, emphasizing innovations from the literature of 2017–2021, with a few earlier examples to provide additional context. The coverage includes additions to imines, asymmetric protonation, induction of axial asymmetry, asymmetric Ugi and Passerini multicomponent coupling reactions, hydroaminations, and Minisci-type additions to heteroaromatic systems.
Keywords: Asymmetric synthesis, chiral amines, organocatalysts, chiral phosphoric acids, stereocontrol, enantioselectivity.
Graphical Abstract
[http://dx.doi.org/10.1021/ja980139y]
[http://dx.doi.org/10.1021/cr068374j] [PMID: 17983247]
(b) Terada, M. Chiral phosphoric acids as versatile catalysts for enantioselective transformations. Synthesis, 2010, 2010(12), 1929-1982.
[http://dx.doi.org/10.1055/s-0029-1218801]
(c) Parmar, D.; Sugiono, E.; Sadiya, R.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: History and classification by mode of activation; Brønsted acidity, Hydrogen bonding, Ion pairing, and Metal phosphates. Chem. Rev.2014, 114, 9047-9153 (corrigendum. Chem. Rev., 2017, 117, 10608-10620.
[http://dx.doi.org/10.1021/acs.chemrev.7b00197] [PMID: 28737901]
(d) Akiyama, T.; Mori, K. Stronger Brønsted acids: Recent progress. Chem. Rev., 2015, 115(17), 9277-9306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00041] [PMID: 26182163]
(e) Maji, R.; Mallojjala, S.C.; Wheeler, S.E. Chiral phosphoric acid catalysis: From numbers to insights. Chem. Soc. Rev., 2018, 47(4), 1142-1158.
[http://dx.doi.org/10.1039/C6CS00475J] [PMID: 29355873]
(f) Li, X.; Song, Q. Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids. Chin. Chem. Lett., 2018, 29(8), 1181-1192.
[http://dx.doi.org/10.1016/j.cclet.2018.01.045]
(g)Kolodiazhnyi, O.I. Asymmetric synthesis in organophosphorus chemistry; Wiley: Weinheim, 2016.
[http://dx.doi.org/10.1002/9783527341542]
(h)Wang, P-S.; Chen, D-F.; Gong, L-Z. Recent progress in asymmetric relay catalysis of metal complex with chiral phosphoric acid. Top. Curr. Chem. (Cham), 2019, 378(1), 9.
[http://dx.doi.org/10.1007/s41061-019-0263-2] [PMID: 31879793]
(i)Woldegiorgis, A.G.; Lin, X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J. Org. Chem., 2021, 17, 2729-2764.
[http://dx.doi.org/10.3762/bjoc.17.185] [PMID: 34876929]
[http://dx.doi.org/10.1002/anie.200353240] [PMID: 15022235]
(b) Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. Chiral Brønsted acid catalyzed enantioselective Mannich-type reaction. J. Am. Chem. Soc., 2007, 129(21), 6756-6764.
[http://dx.doi.org/10.1021/ja0684803] [PMID: 17477527]
[http://dx.doi.org/10.1021/ja0491533] [PMID: 15113196]
[http://dx.doi.org/10.1021/acs.orglett.9b01127] [PMID: 31042397]
[http://dx.doi.org/10.1021/jacs.0c07210] [PMID: 32697915]
[http://dx.doi.org/10.1002/anie.201701947] [PMID: 28332764]
[http://dx.doi.org/10.1039/D1SC02122B] [PMID: 34447532]
[http://dx.doi.org/10.1002/anie.201603929] [PMID: 27265881]
[http://dx.doi.org/10.1002/chem.201901020] [PMID: 30848851]
[http://dx.doi.org/10.1002/adsc.202100408]
[http://dx.doi.org/10.1021/ja8071034] [PMID: 18975905]
[http://dx.doi.org/10.1002/anie.200804770] [PMID: 19101974]
(b) Saito, K.; Moriya, Y.; Akiyama, T. Chiral phosphoric acid catalyzed asymmetric synthesis of 2-substituted 2,3-dihydro-4-quinolones by a protecting-group-free approach. Org. Lett., 2015, 17(13), 3202-3205.
[http://dx.doi.org/10.1021/acs.orglett.5b01654] [PMID: 26102368]
(c) Huang, D.; Li, X.; Xu, F.; Li, L.; Lin, X. Highly enantioselective synthesis of dihydroquinazolinones catalyzed by SPINOL-phosphoric acids. ACS Catal., 2013, 3(10), 2244-2247.
[http://dx.doi.org/10.1021/cs400591u]
[http://dx.doi.org/10.1021/acscatal.0c02578]
[http://dx.doi.org/10.1021/jacs.1c03915] [PMID: 33955753]
[http://dx.doi.org/10.1021/jo00014a015]
[http://dx.doi.org/10.1021/jm950654w] [PMID: 8627597]
[http://dx.doi.org/10.1246/bcsj.20200350]
(b) Oudeyer, S.; Brière, J-F.; Levacher, V. Progress in Catalytic Asymmetric Protonation. Eur. J. Org. Chem., 2014, 2014(28), 6103-6119.
[http://dx.doi.org/10.1002/ejoc.201402213]
(c) Mohr, J.T.; Hong, A.Y.; Stoltz, B.M. Enantioselective protonation. Nat. Chem., 2009, 1(5), 359-369.
[http://dx.doi.org/10.1038/nchem.297] [PMID: 20428461]
(d) Fehr, C. Enantioselective protonation of enolates and enols. Angew. Chem. Int. Ed. Engl., 1996, 35(22), 2566-2587.
[http://dx.doi.org/10.1002/anie.199625661]
[http://dx.doi.org/10.1002/anie.201709182] [PMID: 29024305]
[http://dx.doi.org/10.1016/j.bmc.2008.07.075] [PMID: 18694644]
[http://dx.doi.org/10.1021/ol202271k] [PMID: 21902238]
[http://dx.doi.org/10.1021/acscatal.9b01502]
[http://dx.doi.org/10.1016/j.fitote.2012.06.005] [PMID: 22735600]
[http://dx.doi.org/10.1021/np980511n] [PMID: 10217735]
(b) Rahbaek, L.; Breinholt, J.; Circumdatins, D. Circumdatins D, E, and F: Further fungal benzodiazepine analogues from Aspergillus ochraceus. J. Nat. Prod., 1999, 62(6), 904-905.
[http://dx.doi.org/10.1021/np980495u] [PMID: 10395516]
[http://dx.doi.org/10.1038/ncomms15489] [PMID: 28524863]
[http://dx.doi.org/10.1002/anie.202000585] [PMID: 32017378]
[http://dx.doi.org/10.1002/anie.202100363] [PMID: 33651459]
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
(b) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
(c) de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[http://dx.doi.org/10.1002/anie.200902385]
(b) Novikov, A.S.; Kuznetsov, M.L. Theoretical study of Re(IV) and Ru(II) bis-isocyanide complexes and their reactivity in cycloaddition reactions with nitrones. Inorg. Chim. Acta, 2012, 380, 78-89.
[http://dx.doi.org/10.1016/j.ica.2011.08.016]
(c) Novikov, A.S.; Kuznetsov, M.L.; Pombeiro, A.J. Theory of the formation and decomposition of N-heterocyclic aminooxycarbenes through metal-assisted [2+3]-dipolar cycloaddition/retro-cycloaddition. Chemistry, 2013, 19(8), 2874-2888.
[http://dx.doi.org/10.1002/chem.201203098] [PMID: 23296691]
[http://dx.doi.org/10.1021/jacs.5b09117] [PMID: 26488384]
[http://dx.doi.org/10.1002/anie.201400169] [PMID: 24888674]
(b) Monaco, M.R.; Prévost, S.; List, B. Organocatalytic asymmetric hydrolysis of epoxides. Angew. Chem. Int. Ed. Engl., 2014, 53(31), 8142-8145.
[http://dx.doi.org/10.1002/anie.201400170] [PMID: 24961995]
[http://dx.doi.org/10.1126/science.aas8707] [PMID: 30213886]
[http://dx.doi.org/10.1002/anie.201600751] [PMID: 26997306]
[http://dx.doi.org/10.1021/cr960433d] [PMID: 11848912]
(b) Müller, T.E.; Hultzsch, K.C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination: Direct addition of amines to alkenes and alkynes. Chem. Rev., 2008, 108(9), 3795-3892.
[http://dx.doi.org/10.1021/cr0306788] [PMID: 18729420]
(c) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L.J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev., 2015, 115(7), 2596-2697.
[http://dx.doi.org/10.1021/cr300389u] [PMID: 25721762]
[http://dx.doi.org/10.1126/science.aal3010] [PMID: 28209894]
(b) Adamson, N.J.; Hull, E.; Malcolmson, S.J. Enantioselective intermolecular addition of aliphatic amines to acyclic dienes with a Pd–PHOX catalyst. J. Am. Chem. Soc., 2017, 139(21), 7180-7183.
[http://dx.doi.org/10.1021/jacs.7b03480] [PMID: 28453290]
(c) Long, J.; Wang, P.; Wang, W.; Li, Y.; Yin, G. Nickel/Bronsted acid-catalyzed chemo- and enantioselective intermolecular hydroamination of conjugated dienes. iScience, 2019, 22, 369-379.
[http://dx.doi.org/10.1016/j.isci.2019.11.008] [PMID: 31812807]
(d) Tran, G.; Shao, W.; Mazet, C. Ni-catalyzed enantioselective intermolecular hydroamination of branched 1,3-dienes using primary aliphatic amines. J. Am. Chem. Soc., 2019, 141, 14814-14822.
(e) Xi, Y.; Ma, S.; Hartwig, J.F. Catalytic asymmetric addition of an amine N–H bond across internal alkenes. Nature, 2020, 588, 254-261.
[http://dx.doi.org/10.1021/jacs.6b12307] [PMID: 28128936]
(b) Liu, X.; Feng, X. Dual nickel and brønsted acid catalysis for hydroalkenylation. Angew. Chem. Int. Ed. Engl., 2018, 57(51), 16604-16605.
[http://dx.doi.org/10.1002/anie.201810708] [PMID: 30431212]
(c) Han, X-W.; Zhang, T.; Zheng, Y-L.; Yao, W-W.; Li, J-F.; Pu, Y-G.; Ye, M.; Zhou, Q-L. Bronsted acid enabled nickel-catalyzed hydroalkenylation of aldehydes with styrene and its derivatives. Angew. Chem. Int. Ed. Engl., 2018, 57(18), 5068-5071.
[http://dx.doi.org/10.1002/anie.201801817] [PMID: 29498163]
(d) Kathe, P.; Fleischer, I. Cooperative use of brønsted acids and metal catalysts in tandem isomerization reactions of olefins. ChemCatChem, 2019, 11(15), 3343-3354.
[http://dx.doi.org/10.1002/cctc.201900830]
[http://dx.doi.org/10.1055/s-2008-1072505]
[http://dx.doi.org/10.1126/science.aaq0445] [PMID: 29599238]
[http://dx.doi.org/10.1038/nature09723] [PMID: 21307938]
[http://dx.doi.org/10.1002/anie.201900955] [PMID: 30919531]
[http://dx.doi.org/10.1021/acs.joc.0c02956] [PMID: 33617248]
[http://dx.doi.org/10.1016/S0040-4020(01)00384-2]
(b) Yamada, K.; Tomioka, K. Copper-catalyzed asymmetric alkylation of imines with dialkylzinc and related reactions. Chem. Rev., 2008, 108(8), 2874-2886.
[http://dx.doi.org/10.1021/cr078370u] [PMID: 18652515]
Friestad, G.K. Control of asymmetry in the radical addition approach to chiral amine synthesis. In: Topics In Current Chemistry: Stereoselective Formation of Amines; Li, W.; Zhang, X., Eds.; Springer-Verlag: Berlin, 2014; Vol. 343, pp. 1-32.
(b) Ni, S.; Garrido-Castro, A.F.; Merchant, R.R.; De Gruyter, J.N.; Schmitt, D.C.; Mousseau, J.J.; Gallego, G.M.; Yang, S.; Collins, M.R.; Qiao, J.X..; Yeung, K.-S.; Langley, D.R.; Poss, M.A.; Scola, P.M.; Qin, T.; Baran, P.S. A General Amino Acid Synthesis Enabled by Innate Radical Cross-Coupling. Angew. Chem., Int. Ed., 2018, 57, 14560-14565.
(c) Matos, J.L.M.; Vásquez-Céspedes, S.; Gu, J.; Oguma, T.; Shenvi, R.A. Branch-Selective Addition of Unactivated Olefins into Imines and Aldehydes. J. Am. Chem. Soc., 2018, 140, 16976-16981.
(d) Wang, Y.-Y.; Bode, J.W. Olefin Amine (OLA) Reagents for the Synthesis of Bridged Bicyclic and Spirocyclic Saturated N-Heterocycles by Catalytic Hydrogen Atom Transfer (HAT) Reactions. J. Am. Chem. Soc., 2019, 141, 9739-9745.
[http://dx.doi.org/10.1126/science.aar6376] [PMID: 29622723]
[http://dx.doi.org/10.1002/anie.201908987] [PMID: 31489747]