Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

New Developments in Chiral Phosphoric Acid Catalysis for Amine Synthesis

Author(s): Bishnu P. Neupane and Gregory K. Friestad*

Volume 26, Issue 10, 2022

Published on: 30 June, 2022

Page: [991 - 1001] Pages: 11

DOI: 10.2174/1385272826666220602102616

Price: $65

Abstract

Asymmetric catalysis with chiral phosphoric acids (CPAs) has impacted a wide range of organic reactions, including those that generate chiral amines of interest in medicinal and natural products chemistry. Phosphodiester derivatives (RO)2PO2H offer linkages to various chiral alcohols and diols, permitting the CPA to transmit stereochemical information to reactants via ion-pairing and/or H-bonding interactions of the P=O and O–H bonds. This minireview presents selected recent developments in CPA-catalyzed asymmetric synthesis of amines, emphasizing innovations from the literature of 2017–2021, with a few earlier examples to provide additional context. The coverage includes additions to imines, asymmetric protonation, induction of axial asymmetry, asymmetric Ugi and Passerini multicomponent coupling reactions, hydroaminations, and Minisci-type additions to heteroaromatic systems.

Keywords: Asymmetric synthesis, chiral amines, organocatalysts, chiral phosphoric acids, stereocontrol, enantioselectivity.

Graphical Abstract

[1]
Sigman, M.S.; Jacobsen, E.N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc., 1998, 120(19), 4901-4902.
[http://dx.doi.org/10.1021/ja980139y]
[2]
(a) Akiyama, T. Stronger Brønsted acids. Chem. Rev., 2007, 107(12), 5744-5758.
[http://dx.doi.org/10.1021/cr068374j] [PMID: 17983247]
(b) Terada, M. Chiral phosphoric acids as versatile catalysts for enantioselective transformations. Synthesis, 2010, 2010(12), 1929-1982.
[http://dx.doi.org/10.1055/s-0029-1218801]
(c) Parmar, D.; Sugiono, E.; Sadiya, R.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: History and classification by mode of activation; Brønsted acidity, Hydrogen bonding, Ion pairing, and Metal phosphates. Chem. Rev.2014, 114, 9047-9153 (corrigendum. Chem. Rev., 2017, 117, 10608-10620.
[http://dx.doi.org/10.1021/acs.chemrev.7b00197] [PMID: 28737901]
(d) Akiyama, T.; Mori, K. Stronger Brønsted acids: Recent progress. Chem. Rev., 2015, 115(17), 9277-9306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00041] [PMID: 26182163]
(e) Maji, R.; Mallojjala, S.C.; Wheeler, S.E. Chiral phosphoric acid catalysis: From numbers to insights. Chem. Soc. Rev., 2018, 47(4), 1142-1158.
[http://dx.doi.org/10.1039/C6CS00475J] [PMID: 29355873]
(f) Li, X.; Song, Q. Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids. Chin. Chem. Lett., 2018, 29(8), 1181-1192.
[http://dx.doi.org/10.1016/j.cclet.2018.01.045]
(g)Kolodiazhnyi, O.I. Asymmetric synthesis in organophosphorus chemistry; Wiley: Weinheim, 2016.
[http://dx.doi.org/10.1002/9783527341542]
(h)Wang, P-S.; Chen, D-F.; Gong, L-Z. Recent progress in asymmetric relay catalysis of metal complex with chiral phosphoric acid. Top. Curr. Chem. (Cham), 2019, 378(1), 9.
[http://dx.doi.org/10.1007/s41061-019-0263-2] [PMID: 31879793]
(i)Woldegiorgis, A.G.; Lin, X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J. Org. Chem., 2021, 17, 2729-2764.
[http://dx.doi.org/10.3762/bjoc.17.185] [PMID: 34876929]
[3]
(a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed., 2004, 43(12), 1566-1568.
[http://dx.doi.org/10.1002/anie.200353240] [PMID: 15022235]
(b) Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. Chiral Brønsted acid catalyzed enantioselective Mannich-type reaction. J. Am. Chem. Soc., 2007, 129(21), 6756-6764.
[http://dx.doi.org/10.1021/ja0684803] [PMID: 17477527]
[4]
Uraguchi, D.; Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc., 2004, 126(17), 5356-5357.
[http://dx.doi.org/10.1021/ja0491533] [PMID: 15113196]
[5]
Experimentally measured acidities of CPAs are pKa 12–14 in MeCN. Under the same conditions, HCl and TsOH have pKa 10.3 and 8.5, respectively. Kaupmees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.; Leito, I. On the acidity and reactivity of highly effective chiral Brønsted acid catalysts: Establishment of an acidity scale. Angew. Chem. Int. Ed., 2013, 52, 11569.
[6]
Xie, E.; Huang, S.; Lin, X. Design of planar chiral phosphoric acids with a [2.2]Paracyclophanyl backbone as organocatalysts for the highly enantioselective aza-friedel-crafts reaction. Org. Lett., 2019, 21(10), 3682-3686.
[http://dx.doi.org/10.1021/acs.orglett.9b01127] [PMID: 31042397]
[7]
Guo, W.; Luo, Y.; Sung, H.H-Y.; Williams, I.D.; Li, P.; Sun, J. Chiral phosphoric acid catalyzed enantioselective synthesis of α-tertiary amino ketones from sulfonium ylides. J. Am. Chem. Soc., 2020, 142(33), 14384-14390.
[http://dx.doi.org/10.1021/jacs.0c07210] [PMID: 32697915]
[8]
Chen, M.; Sun, J. Catalytic asymmetric N-Alkylation of indoles and carbazoles through 1,6-Conjugate addition of Aza-para-quinone methides. Angew. Chem. Int. Ed. Engl., 2017, 56(16), 4583-4587.
[http://dx.doi.org/10.1002/anie.201701947] [PMID: 28332764]
[9]
Toda, Y.; Korenaga, T.; Obayashi, R.; Kikuchi, J.; Terada, M. Dynamic parallel kinetic resolution of α-ferrocenyl cation initiated by chiral Brønsted acid catalyst. Chem. Sci. (Camb.), 2021, 12(30), 10306-10312.
[http://dx.doi.org/10.1039/D1SC02122B] [PMID: 34447532]
[10]
Zhou, F.; Yamamoto, H. A powerful chiral phosphoric acid catalyst for enantioselective Mukaiyama–Mannich reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(31), 8970-8974.
[http://dx.doi.org/10.1002/anie.201603929] [PMID: 27265881]
[11]
Selected early examples: (a) Taylor, M. S.; Jacobsen, E. N. Highly Enantioselective Catalytic Acyl-Pictet−Spengler Reaction. J. Am. Chem. Soc.2004, 126, 10558-10559. Uraguchi, D.; Sorimachi, K.; Terada, M. Organocatalytic Asymmetric Aza-Friedel-Crafts Alkylation of Furan. J. Am. Chem. Soc.2004, 126, 11804-11805. (b) Seayad, J.; Seayad, A. M.; List, B. Catalytic Asymmetric Pictet−Spengler Reaction. J. Am. Chem. Soc., 2006, 128, 1086-1087.
[12]
Miyagawa, M.; Yoshida, M.; Kiyota, Y.; Akiyama, T. Enantioselective friedel-crafts alkylation reaction of heteroarenes with N-Unprotected trifluoromethyl ketimines by means of chiral phosphoric acid. Chemistry, 2019, 25(22), 5677-5681.
[http://dx.doi.org/10.1002/chem.201901020] [PMID: 30848851]
[13]
Cheng, Y-S.; Chan, S-H.; Rao, G.A.; Gurubrahamam, R.; Chen, K. Enantioselective aza-friedel-crafts reaction of heteroarenes with in situ generated isoxazolium ions via chiral phosphoric acid catalysis. Adv. Synth. Catal., 2021, 363(14), 3502-3506.
[http://dx.doi.org/10.1002/adsc.202100408]
[14]
Cheng, X.; Vellalath, S.; Goddard, R.; List, B. Direct catalytic asymmetric synthesis of cyclic aminals from aldehydes. J. Am. Chem. Soc., 2008, 130(47), 15786-15787.
[http://dx.doi.org/10.1021/ja8071034] [PMID: 18975905]
[15]
(a) Rueping, M.; Antonchick, A.P.; Sugiono, E.; Grenader, K. Asymmetric Brønsted acid catalysis: Catalytic enantioselective synthesis of highly biologically active dihydroquinazolinones. Angew. Chem. Int. Ed. Engl., 2009, 48(5), 908-910.
[http://dx.doi.org/10.1002/anie.200804770] [PMID: 19101974]
(b) Saito, K.; Moriya, Y.; Akiyama, T. Chiral phosphoric acid catalyzed asymmetric synthesis of 2-substituted 2,3-dihydro-4-quinolones by a protecting-group-free approach. Org. Lett., 2015, 17(13), 3202-3205.
[http://dx.doi.org/10.1021/acs.orglett.5b01654] [PMID: 26102368]
(c) Huang, D.; Li, X.; Xu, F.; Li, L.; Lin, X. Highly enantioselective synthesis of dihydroquinazolinones catalyzed by SPINOL-phosphoric acids. ACS Catal., 2013, 3(10), 2244-2247.
[http://dx.doi.org/10.1021/cs400591u]
[16]
Laconsay, C.J.; Seguin, T.J.; Wheeler, S.E. Modulating Stereoselectivity through Electrostatic Interactions in a SPINOL-Phosphoric Acid-Catalyzed Synthesis of 2, 3-Dihydroquinazolinones. ACS Catal., 2020, 10(20), 12292-12299.
[http://dx.doi.org/10.1021/acscatal.0c02578]
[17]
He, Y-P.; Wu, H.; Wang, Q.; Zhu, J. Catalytic enantioselective synthesis of morpholinones enabled by aza-benzilic ester rearrangement. J. Am. Chem. Soc., 2021, 143(19), 7320-7325.
[http://dx.doi.org/10.1021/jacs.1c03915] [PMID: 33955753]
[18]
Bobzin, S.C.; Faulkner, D.J. Aromatic alkaloids from the marine sponge Chelonaplysilla sp. J. Org. Chem., 1991, 56(14), 4403-4407.
[http://dx.doi.org/10.1021/jo00014a015]
[19]
Nelson, T.D. Synthesis of Aprepitant. In: Strategies and Tactics in Organic Synthesis; Harmata, M., Ed.; Academic Press, 2005; Vol. 6, pp. 321-351.
[20]
Hale, J.J.; Mills, S.G.; MacCoss, M.; Shah, S.K.; Qi, H.; Mathre, D.J.; Cascieri, M.A.; Sadowski, S.; Strader, C.D.; MacIntyre, D.E.; Metzger, J.M. 2(S)-((3,5-bis(trifluoromethyl)benzyl)-oxy)-3(S)-phenyl-4- ((3-oxo-1,2,4-triazol-5-yl)methyl)morpholine (1): A potent, orally active, morpholine-based human neurokinin-1 receptor antagonist. J. Med. Chem., 1996, 39(9), 1760-1762.
[http://dx.doi.org/10.1021/jm950654w] [PMID: 8627597]
[21]
(a) Cao, J.; Zhu, S.F. Catalytic enantioselective proton transfer reactions. Bull. Chem. Soc. Jpn., 2021, 94(3), 767-789.
[http://dx.doi.org/10.1246/bcsj.20200350]
(b) Oudeyer, S.; Brière, J-F.; Levacher, V. Progress in Catalytic Asymmetric Protonation. Eur. J. Org. Chem., 2014, 2014(28), 6103-6119.
[http://dx.doi.org/10.1002/ejoc.201402213]
(c) Mohr, J.T.; Hong, A.Y.; Stoltz, B.M. Enantioselective protonation. Nat. Chem., 2009, 1(5), 359-369.
[http://dx.doi.org/10.1038/nchem.297] [PMID: 20428461]
(d) Fehr, C. Enantioselective protonation of enolates and enols. Angew. Chem. Int. Ed. Engl., 1996, 35(22), 2566-2587.
[http://dx.doi.org/10.1002/anie.199625661]
[22]
Min, C.; Lin, Y.; Seidel, D. Catalytic enantioselective synthesis of mariline a and related isoindolinones through a biomimetic approach. Angew. Chem. Int. Ed. Engl., 2017, 56(48), 15353-15357.
[http://dx.doi.org/10.1002/anie.201709182] [PMID: 29024305]
[23]
Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg. Med. Chem., 2008, 16(17), 7894-7899.
[http://dx.doi.org/10.1016/j.bmc.2008.07.075] [PMID: 18694644]
[24]
Augner, D.; Gerbino, D.C.; Slavov, N.; Neudörfl, J-M.; Schmalz, H-G. N-Capping of primary amines with 2-acyl-benzaldehydes to give isoindolinones. Org. Lett., 2011, 13(19), 5374-5377.
[http://dx.doi.org/10.1021/ol202271k] [PMID: 21902238]
[25]
Li, Y-P.; Li, Z-Q.; Zhou, B.; Li, M-L.; Xue, X-S.; Zhu, S-F.; Zhou, Q-L. Chiral spiro phosphoric acid-catalyzed friedel-crafts conjugate addition/enantioselective protonation reactions. ACS Catal., 2019, 9(7), 6522-6529.
[http://dx.doi.org/10.1021/acscatal.9b01502]
[26]
Jiang, H-L.; Luo, X-H.; Wang, X-Z.; Yang, J-L.; Yao, X-J.; Crews, P.; Valeriote, F.A.; Wu, Q-X. New isocoumarins and alkaloid from Chinese insect medicine, Eupolyphaga sinensis Walker. Fitoterapia, 2012, 83(7), 1275-1280.
[http://dx.doi.org/10.1016/j.fitote.2012.06.005] [PMID: 22735600]
[27]
(a) Joshi, B.K.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Sclerotigenin: A new antiinsectan benzodiazepine from the sclerotia of Penicillium sclerotigenum. J. Nat. Prod., 1999, 62(4), 650-652.
[http://dx.doi.org/10.1021/np980511n] [PMID: 10217735]
(b) Rahbaek, L.; Breinholt, J.; Circumdatins, D. Circumdatins D, E, and F: Further fungal benzodiazepine analogues from Aspergillus ochraceus. J. Nat. Prod., 1999, 62(6), 904-905.
[http://dx.doi.org/10.1021/np980495u] [PMID: 10395516]
[28]
Wang, Y-B.; Zheng, S-C.; Hu, Y-M.; Tan, B. Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nat. Commun., 2017, 8(1), 15489.
[http://dx.doi.org/10.1038/ncomms15489] [PMID: 28524863]
[29]
Xia, W.; An, Q.J.; Xiang, S.H.; Li, S.; Wang, Y.B.; Tan, B. Chiral phosphoric acid catalyzed atroposelective C-H amination of arenes. Angew. Chem. Int. Ed. Engl., 2020, 59(17), 6775-6779.
[http://dx.doi.org/10.1002/anie.202000585] [PMID: 32017378]
[30]
Kim, A.; Kim, A.; Park, S.; Kim, S.; Jo, H.; Ok, K.M.; Lee, S.K.; Song, J.; Kwon, Y. Catalytic and enantioselective control of the C-N stereogenic axis via the pictet-spengler reaction. Angew. Chem. Int. Ed. Engl., 2021, 60(22), 12279-12283.
[http://dx.doi.org/10.1002/anie.202100363] [PMID: 33651459]
[31]
(a) Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
(b) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
(c) de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[32]
(a) Yue, T.; Wang, M-X.; Wang, D-X.; Masson, G.; Zhu, J.; Yue, T.; Wang, M.X.; Wang, D.X.; Masson, G.; Zhu, J. Brønsted acid catalyzed enantioselective three‐component reaction involving the α addition of isocyanides to imines. Angew. Chem. Int. Ed., 2009, 48(36), 6717-6721. [Metal-catalyzed reactions of isocyanides also offer potential for chiral amine synthesis].
[http://dx.doi.org/10.1002/anie.200902385]
(b) Novikov, A.S.; Kuznetsov, M.L. Theoretical study of Re(IV) and Ru(II) bis-isocyanide complexes and their reactivity in cycloaddition reactions with nitrones. Inorg. Chim. Acta, 2012, 380, 78-89.
[http://dx.doi.org/10.1016/j.ica.2011.08.016]
(c) Novikov, A.S.; Kuznetsov, M.L.; Pombeiro, A.J. Theory of the formation and decomposition of N-heterocyclic aminooxycarbenes through metal-assisted [2+3]-dipolar cycloaddition/retro-cycloaddition. Chemistry, 2013, 19(8), 2874-2888.
[http://dx.doi.org/10.1002/chem.201203098] [PMID: 23296691]
[33]
Zhang, J.; Lin, S-X.; Cheng, D-J.; Liu, X-Y.; Tan, B. Phosphoric acid-catalyzed asymmetric classic Passerini reaction. J. Am. Chem. Soc., 2015, 137(44), 14039-14042.
[http://dx.doi.org/10.1021/jacs.5b09117] [PMID: 26488384]
[34]
(a) Monaco, M.R.; Poladura, B.; Diaz de Los Bernardos, M.; Leutzsch, M.; Goddard, R.; List, B. Activation of carboxylic acids in asymmetric organocatalysis. Angew. Chem. Int. Ed. Engl., 2014, 53(27), 7063-7067.
[http://dx.doi.org/10.1002/anie.201400169] [PMID: 24888674]
(b) Monaco, M.R.; Prévost, S.; List, B. Organocatalytic asymmetric hydrolysis of epoxides. Angew. Chem. Int. Ed. Engl., 2014, 53(31), 8142-8145.
[http://dx.doi.org/10.1002/anie.201400170] [PMID: 24961995]
[35]
Zhang, J.; Yu, P.; Li, S-Y.; Sun, H.; Xiang, S-H.; Wang, J.J.; Houk, K.N.; Tan, B. Asymmetric phosphoric acid-catalyzed four-component Ugi reaction. Science, 2018, 361(6407), eaas8707.
[http://dx.doi.org/10.1126/science.aas8707] [PMID: 30213886]
[36]
Zhang, Y.; Ao, Y-F.; Huang, Z-T.; Wang, D-X.; Wang, M-X.; Zhu, J. Chiral phosphoric acid catalyzed asymmetric ugi reaction by dynamic kinetic resolution of the primary multicomponent adduct. Angew. Chem. Int. Ed. Engl., 2016, 55(17), 5282-5285.
[http://dx.doi.org/10.1002/anie.201600751] [PMID: 26997306]
[37]
(a) Müller, T.E.; Beller, M. Metal-initiated amination of alkenes and alkynes. Chem. Rev., 1998, 98(2), 675-704.
[http://dx.doi.org/10.1021/cr960433d] [PMID: 11848912]
(b) Müller, T.E.; Hultzsch, K.C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination: Direct addition of amines to alkenes and alkynes. Chem. Rev., 2008, 108(9), 3795-3892.
[http://dx.doi.org/10.1021/cr0306788] [PMID: 18729420]
(c) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L.J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev., 2015, 115(7), 2596-2697.
[http://dx.doi.org/10.1021/cr300389u] [PMID: 25721762]
[38]
(a) Musacchio, A.J.; Lainhart, B.C.; Zhang, X.; Naguib, S.G.; Sherwood, T.C.; Knowles, R.R. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science, 2017, 355(6326), 727-730.
[http://dx.doi.org/10.1126/science.aal3010] [PMID: 28209894]
(b) Adamson, N.J.; Hull, E.; Malcolmson, S.J. Enantioselective intermolecular addition of aliphatic amines to acyclic dienes with a Pd–PHOX catalyst. J. Am. Chem. Soc., 2017, 139(21), 7180-7183.
[http://dx.doi.org/10.1021/jacs.7b03480] [PMID: 28453290]
(c) Long, J.; Wang, P.; Wang, W.; Li, Y.; Yin, G. Nickel/Bronsted acid-catalyzed chemo- and enantioselective intermolecular hydroamination of conjugated dienes. iScience, 2019, 22, 369-379.
[http://dx.doi.org/10.1016/j.isci.2019.11.008] [PMID: 31812807]
(d) Tran, G.; Shao, W.; Mazet, C. Ni-catalyzed enantioselective intermolecular hydroamination of branched 1,3-dienes using primary aliphatic amines. J. Am. Chem. Soc., 2019, 141, 14814-14822.
(e) Xi, Y.; Ma, S.; Hartwig, J.F. Catalytic asymmetric addition of an amine N–H bond across internal alkenes. Nature, 2020, 588, 254-261.
[39]
(a) Yang, X-H.; Dong, V.M. Rhodium-catalyzed hydrofunctionalization: enantioselective coupling of indolines and 1,3-dienes. J. Am. Chem. Soc., 2017, 139(5), 1774-1777.
[http://dx.doi.org/10.1021/jacs.6b12307] [PMID: 28128936]
(b) Liu, X.; Feng, X. Dual nickel and brønsted acid catalysis for hydroalkenylation. Angew. Chem. Int. Ed. Engl., 2018, 57(51), 16604-16605.
[http://dx.doi.org/10.1002/anie.201810708] [PMID: 30431212]
(c) Han, X-W.; Zhang, T.; Zheng, Y-L.; Yao, W-W.; Li, J-F.; Pu, Y-G.; Ye, M.; Zhou, Q-L. Bronsted acid enabled nickel-catalyzed hydroalkenylation of aldehydes with styrene and its derivatives. Angew. Chem. Int. Ed. Engl., 2018, 57(18), 5068-5071.
[http://dx.doi.org/10.1002/anie.201801817] [PMID: 29498163]
(d) Kathe, P.; Fleischer, I. Cooperative use of brønsted acids and metal catalysts in tandem isomerization reactions of olefins. ChemCatChem, 2019, 11(15), 3343-3354.
[http://dx.doi.org/10.1002/cctc.201900830]
[40]
Ackermann, L.; Althammer, A. Phosphoric acid diesters as efficient catalysts for hydroaminations of nonactivated alkenes and an application to asymmetric hydroaminations. Synlett, 2008, 2008(7), 995-998.
[http://dx.doi.org/10.1055/s-2008-1072505]
[41]
Tsuji, N.; Kennemur, J.L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P.S.J.; Bykov, D.; Farès, C.; List, B. Activation of olefins via asymmetric Brønsted acid catalysis. Science, 2018, 359(6383), 1501-1505.
[http://dx.doi.org/10.1126/science.aaq0445] [PMID: 29599238]
[42]
Shapiro, N.D.; Rauniyar, V.; Hamilton, G.L.; Wu, J.; Toste, F.D. Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature, 2011, 470(7333), 245-249.
[http://dx.doi.org/10.1038/nature09723] [PMID: 21307938]
[43]
Lin, J.S.; Li, T.T.; Jiao, G.Y.; Gu, Q.S.; Cheng, J.T.; Lv, L.; Liu, X.Y. Chiral brønsted acid catalyzed dynamic kinetic asymmetric hydroamination of racemic allenes and asymmetric hydroamination of dienes. Angew. Chem. Int. Ed. Engl., 2019, 58(21), 7092-7096.
[http://dx.doi.org/10.1002/anie.201900955] [PMID: 30919531]
[44]
Qiu, Y.; Yuan, H.; Zhang, X.; Zhang, J. Insights into the chiral phosphoric acid-catalyzed dynamic kinetic asymmetric hydroamination of racemic allenes: An allyl carbocation/phosphate pair mechanism. J. Org. Chem., 2021, 86(5), 4121-4130.
[http://dx.doi.org/10.1021/acs.joc.0c02956] [PMID: 33617248]
[45]
(a) Friestad, G.K. Addition of carbon-centered radicals to imines and related compounds. Tetrahedron, 2001, 57(26), 5461-5496.
[http://dx.doi.org/10.1016/S0040-4020(01)00384-2]
(b) Yamada, K.; Tomioka, K. Copper-catalyzed asymmetric alkylation of imines with dialkylzinc and related reactions. Chem. Rev., 2008, 108(8), 2874-2886.
[http://dx.doi.org/10.1021/cr078370u] [PMID: 18652515]
Friestad, G.K. Control of asymmetry in the radical addition approach to chiral amine synthesis. In: Topics In Current Chemistry: Stereoselective Formation of Amines; Li, W.; Zhang, X., Eds.; Springer-Verlag: Berlin, 2014; Vol. 343, pp. 1-32.
[46]
Seminal examples: . (a)Friestad, G.K.; Shen, Y.; Ruggles, E.L. Enantioselective Radical Addition to N-Acyl Hydrazones Mediated by Chiral Lewis Acids. Angew. Chem. Int. Ed., 2003, 42, 5061-5063. Selected recent examples:
(b) Ni, S.; Garrido-Castro, A.F.; Merchant, R.R.; De Gruyter, J.N.; Schmitt, D.C.; Mousseau, J.J.; Gallego, G.M.; Yang, S.; Collins, M.R.; Qiao, J.X..; Yeung, K.-S.; Langley, D.R.; Poss, M.A.; Scola, P.M.; Qin, T.; Baran, P.S. A General Amino Acid Synthesis Enabled by Innate Radical Cross-Coupling. Angew. Chem., Int. Ed., 2018, 57, 14560-14565.
(c) Matos, J.L.M.; Vásquez-Céspedes, S.; Gu, J.; Oguma, T.; Shenvi, R.A. Branch-Selective Addition of Unactivated Olefins into Imines and Aldehydes. J. Am. Chem. Soc., 2018, 140, 16976-16981.
(d) Wang, Y.-Y.; Bode, J.W. Olefin Amine (OLA) Reagents for the Synthesis of Bridged Bicyclic and Spirocyclic Saturated N-Heterocycles by Catalytic Hydrogen Atom Transfer (HAT) Reactions. J. Am. Chem. Soc., 2019, 141, 9739-9745.
[47]
Proctor, R.S.J.; Davis, H.J.; Phipps, R.J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science, 2018, 360(6387), 419-422.
[http://dx.doi.org/10.1126/science.aar6376] [PMID: 29622723]
[48]
Zheng, D.; Studer, A. Asymmetric synthesis of heterocyclic γ-amino-acid and diamine derivatives by three-component radical cascade reactions. Angew. Chem. Int. Ed. Engl., 2019, 58(44), 15803-15807.
[http://dx.doi.org/10.1002/anie.201908987] [PMID: 31489747]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy