Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking, Dynamics Simulation, and Physicochemical Analysis of Some Phytochemicals as Antiplatelet Agents

Author(s): Shabnam Pourhanafi* and Vildan Adar Gürsoy

Volume 20, Issue 9, 2023

Published on: 20 August, 2022

Page: [1343 - 1359] Pages: 17

DOI: 10.2174/1570180819666220602090408

Price: $65

Abstract

Background: Antiplatelet drugs are key tools for the prevention and elimination of cardiovascular diseases. However, currently available agents are associated with a variety of adverse effects, and new therapeutically effective drugs with fewer or no side effects are urgently needed for effective medication.

Objective: The present in silico research aimed to determine the inhibitory potential of 50 phytochemicals on platelet function using computational methods.

Methods: The compounds first were subjected to molecular docking analysis with five chosen antiplatelet targets and the best compound with the lowest energy against each target was selected and analyzed in detail. These complexes were then considered for molecular dynamics simulation and binding free energy analysis. SwissADME and ADMETlab servers were also used to evaluate their drug-likeness and ADMET properties.

Results: Ligands that exhibited the lowest energy with the corresponding target were: graveolinine against COX-1, sanguinarine against P2Y12 and PDE-3, rutin against GP-VI, and bisdemethoxycurcumin against PAR-1. Simulation of these complexes affirmed the binding stability between the ligands and the proteins. Root mean square deviation and root mean square fluctuation showed that in the case of PAR-1- bisdemethoxycurcumin, some fluctuations were observed during the simulation process. Calculation of the binding free energy indicated that in all systems, the van der Waals energy made a significant contribution to the binding and stability of the system.

Conclusion: The result of this study could provide useful insights into the development of new lead antiplatelet agents.

Keywords: Antiplatelet, phytochemicals, molecular docking, molecular dynamics simulation, binding free energy, ADMET.

Graphical Abstract

[1]
Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Doe, R.; de Ferranti, S.D; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T; Lutsey, P.L; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O'Flaherty, M.; Palaniappan, L. P.; Pandey, A.; Pandey, D. K.; Reeves, M. J.; Ritchey, M. D.; Rodriguez, C. J.; Roth, G. A.; Rosamond, W. D.; Sampson, U. A.; Satou, G. M.; Shah, S. H.; Spartano, N. L.; Tirschwell, D. L.; Tsao, C. W.; Voeks, J. H.; Willey, J. Z.; Wilkins, J. T.; Wu, J. H.; Alger, H. M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics. Update: A report from the American Heart Association, 2018, 137(12), E61-E492.
[http://dx.doi.org/10.1161/CIR.0000000000000558]
[2]
Mensah, G.A.; Roth, G.A.; Fuster, V. The global burden of cardiovascular diseases and risk factors:2020 and beyond. J. Am. Coll. Cardiol., 2019, 74(20), 2529-2532.
[http://dx.doi.org/10.1016/j.jacc.2019.10.009] [PMID: 31727292]
[3]
Ueno, M.; Kodali, M.; Tello-Montoliu, A.; Angiolillo, D.J. Role of platelets and antiplatelet therapy in cardiovascular disease. J. Atheroscler. Thromb., 2011, 18(6), 431-442.
[http://dx.doi.org/10.5551/jat.7633] [PMID: 21427504]
[4]
Chen, Y.; Zhang, N.; Ma, J.; Zhu, Y.; Wang, M.; Wang, X.; Zhang, P.A. Platelet/CMC coupled with offline UPLC-QTOF-MS/MS for screening antiplatelet activity components from aqueous extract of Danshen. J. Pharm. Biomed. Anal., 2016, 117, 178-183.
[http://dx.doi.org/10.1016/j.jpba.2015.06.009] [PMID: 26355772]
[5]
Bultas, J. Antiplatelet therapy-a pharmacologist’s perspective. Cor Vasa, 2013, 55(2), E86-E94.
[http://dx.doi.org/10.1016/j.crvasa.2013.03.003]
[6]
Xiang, Q.; Pang, X.; Liu, Z.; Yang, G.; Tao, W.; Pei, Q.; Cui, Y. Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. Pharmacol. Ther., 2019, 203, 107393.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107393] [PMID: 31356909]
[7]
Grover, S.P.; Bergmeier, W.; Mackman, N. Platelet signaling pathways and new inhibitors. Arterioscler. Thromb. Vasc. Biol., 2018, 38(4), e28-e35.
[http://dx.doi.org/10.1161/ATVBAHA.118.310224] [PMID: 29563117]
[8]
Majithia, A.; Bhatt, D.L. Novel antiplatelet therapies for atherothrombotic diseases. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4), 546-557.
[http://dx.doi.org/10.1161/ATVBAHA.118.310955] [PMID: 30760019]
[9]
Patrono, C.; García Rodríguez, L.A.; Landolfi, R.; Baigent, C. Low-dose aspirin for the prevention of atherothrombosis. N. Engl. J. Med., 2005, 353(22), 2373-2383.
[http://dx.doi.org/10.1056/NEJMra052717] [PMID: 16319386]
[10]
Nemerovski, C.W.; Salinitri, F.D.; Morbitzer, K.A.; Moser, L.R. Aspirin for primary prevention of cardiovascular disease events. Pharmacotherapy, 2012, 32(11), 1020-1035.
[http://dx.doi.org/10.1002/phar.1127] [PMID: 23019080]
[11]
Cattaneo, M. The platelet P2Y12 receptor for adenosine diphosphate: Congenital and drug-induced defects. Blood, 2011, 117(7), 2102-2112.
[http://dx.doi.org/10.1182/blood-2010-08-263111] [PMID: 20966167]
[12]
Cattaneo, M.; Lecchi, A. Inhibition of the platelet P2Y12 receptor for adenosine diphosphate potentiates the antiplatelet effect of prostacyclin. J. Thromb. Haemost., 2007, 5(3), 577-582.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02356.x] [PMID: 17155953]
[13]
Baqi, Y.; Müller, C.E. Antithrombotic P2Y12 receptor antagonists: Recent developments in drug discovery. Drug Discov. Today, 2019, 24(1), 325-333.
[http://dx.doi.org/10.1016/j.drudis.2018.09.021] [PMID: 30291899]
[14]
Schulze, A.; Hartung, P.; Schaefer, M.; Hill, K. Transient receptor potential ankyrin 1 (TRPA1) channel activation by the thienopyridine-type drugs ticlopidine, clopidogrel, and prasugrel. Cell Calcium, 2014, 55(4), 200-207.
[http://dx.doi.org/10.1016/j.ceca.2014.02.014] [PMID: 24636274]
[15]
Armstrong, P.C.; Peter, K. GPIIb/IIIa inhibitors: From bench to bedside and back to bench again. Thromb. Haemost., 2012, 107(5), 808-814.
[http://dx.doi.org/10.1160/TH11-10-0727] [PMID: 22370973]
[16]
Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP signaling: New phosphodiesterases and new functions. Curr. Opin. Cell Biol., 2000, 12(2), 174-179.
[http://dx.doi.org/10.1016/S0955-0674(99)00073-3] [PMID: 10712916]
[17]
Dickinson, N.T.; Jang, E.K.; Haslam, R.J. Activation of cGMP-stimulated phosphodiesterase by nitroprusside limits cAMP accumulation in human platelets: Effects on platelet aggregation. Biochem. J., 1997, 323(Pt 2), 371-377.
[http://dx.doi.org/10.1042/bj3230371] [PMID: 9163326]
[18]
Rondina, M.T.; Weyrich, A.S. Targeting phosphodiesterases in anti-platelet therapy. Handb. Exp. Pharmacol., 2012, 210(210), 225-238.
[http://dx.doi.org/10.1007/978-3-642-29423-5_9] [PMID: 22918733]
[19]
Cho, J.R.; Rollini, F.; Franchi, F.; Ferrante, E.; Angiolillo, D.J. Unmet needs in the management of acute myocardial infarction: Role of novel protease-activated receptor-1 antagonist vorapaxar. Vasc. Health Risk Manag., 2014, 10, 177-188.
[http://dx.doi.org/10.2147/VHRM.S36045] [PMID: 24729713]
[20]
Hidayat, A.N.; Aki-Yalcin, E.; Beksac, M.; Tian, E.; Usmani, S.Z.; Ertan-Bolelli, T.; Yalcin, I. Insight into human protease activated receptor-1 as anticancer target by molecular modelling. Drugs Today (Barc), 2015, 26(10), 795-807.
[http://dx.doi.org/10.1080/1062936X.2015.1095799] [PMID: 26501801]
[21]
Franchi, F.; Rollini, F.; Park, Y.; Angiolillo, D.J. Platelet thrombin receptor antagonism with vorapaxar: Pharmacology and clinical trial development. Future Cardiol., 2015, 11(5), 547-564.
[http://dx.doi.org/10.2217/fca.15.50] [PMID: 26406386]
[22]
Klonaris, C.; Patelis, N.; Drebes, A.; Matheiken, S.; Liakakos, T. Antiplatelet treatment in peripheral arterial disease: The role of novel antiplatelet agents. Curr. Pharm. Des., 2016, 22(29), 4610-4616.
[http://dx.doi.org/10.2174/1381612822666160607065109] [PMID: 27281329]
[23]
Hall, R.; Mazer, C.D. Antiplatelet drugs: A review of their pharmacology and management in the perioperative period. Anesth. Analg., 2011, 112(2), 292-318.
[http://dx.doi.org/10.1213/ANE.0b013e318203f38d] [PMID: 21212258]
[24]
Dar, R.A.; Shahnawaz, M.; Rasool, S.; Qazi, P.H. Natural product medicines: A literature update. J Phytopharmacol., 2017, 6(6), 340-342.
[http://dx.doi.org/10.31254/phyto.2017.6606]
[25]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207.
[http://dx.doi.org/10.1016/j.drudis.2015.01.009] [PMID: 25617672]
[26]
Chen, C.; Yang, F.Q.; Zhang, Q.; Wang, F.Q.; Hu, Y.J.; Xia, Z.N. Natural products for antithrombosis. Evid. Based Complement. Alternat. Med., 2015, 2015, 876426.
[http://dx.doi.org/10.1155/2015/876426] [PMID: 26075003]
[27]
Vilahur, G.; Badimon, L. Antiplatelet properties of natural products. Vascul. Pharmacol., 2013, 59(3-4), 67-75.
[http://dx.doi.org/10.1016/j.vph.2013.08.002] [PMID: 23994642]
[28]
Islam, M.A.; Alam, F.; Khalil, M.I.; Sasongko, T.H.; Gan, S.H.H. Natural products towards the discovery of potential future antithrombotic drugs. Curr. Pharm. Des., 2016, 22(20), 2926-2946.
[http://dx.doi.org/10.2174/1381612822666160307150454] [PMID: 26951101]
[29]
McEwen, B.J. The influence of herbal medicine on platelet function and coagulation: A narrative review. Semin. Thromb. Hemost., 2015, 41(3), 300-314.
[http://dx.doi.org/10.1055/s-0035-1549089] [PMID: 25839871]
[30]
Pyo, M.K.; Lee, Y.; Yun-Choi, H.S.; Choi, Y. Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch. Pharm. Res., 2002, 25(3), 325-328.
[http://dx.doi.org/10.1007/BF02976634] [PMID: 12135105]
[31]
Wu, T.S.; Shi, L.S.; Wang, J.J.; Iou, S.C.; Chang, H.C.; Chen, Y.P.; Kuo, Y.H.; Chang, Y.L.; Tenge, C.M. Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. J. Chin. Chem. Soc. (Taipei), 2003, 50(1), 171-178.
[http://dx.doi.org/10.1002/jccs.200300024]
[32]
Huang, C.G.; Chu, Z.L.; Wei, S.J.; Jiang, H.; Jiao, B.H. Effect of berberine on arachidonic acid metabolism in rabbit platelets and endothelial cells. Thromb. Res., 2002, 106(4-5), 223-227.
[http://dx.doi.org/10.1016/S0049-3848(02)00133-0] [PMID: 12297129]
[33]
Chung, M.I.; Weng, J.R.; Wang, J.P.; Teng, C.M.; Lin, C.N. Antiplatelet and anti-inflammatory constituents and new oxygenated xanthones from Hypericum geminiflorum. Planta Med., 2002, 68(1), 25-29.
[http://dx.doi.org/10.1055/s-2002-19871] [PMID: 11842322]
[34]
Butterweck, V.; Schmidt, M.St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wien. Med. Wochenschr., 2007, 157(13-14), 356-361.
[http://dx.doi.org/10.1007/s10354-007-0440-8] [PMID: 17704987]
[35]
Jeng, J.H.; Wu, H.L.; Lin, B.R.; Lan, W.H.; Chang, H.H.; Ho, Y.S.; Lee, P.H.; Wang, Y.J.; Wang, J.S.; Chen, Y.J.; Chang, M.C. Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis, 2007, 191(2), 250-258.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.023] [PMID: 16797553]
[36]
Maheswaraiah, A.; Rao, L.J.; Naidu, K.A. Anti-platelet activity of water dispersible curcuminoids in rat platelets. Phytother. Res., 2015, 29(3), 450-458.
[http://dx.doi.org/10.1002/ptr.5274] [PMID: 25572959]
[37]
Prakash, P.; Misra, A.; Surin, W.R.; Jain, M.; Bhatta, R.S.; Pal, R.; Raj, K.; Barthwal, M.K.; Dikshit, M. Anti-platelet effects of Curcuma oil in experimental models of myocardial ischemia-reperfusion and thrombosis. Thromb. Res., 2011, 127(2), 111-118.
[http://dx.doi.org/10.1016/j.thromres.2010.11.007] [PMID: 21144557]
[38]
Shah, B.H.; Nawaz, Z.; Virani, S.S.; Ali, I.Q.; Saeed, S.A.; Gilani, A.H. The inhibitory effect of cinchonine on human platelet aggregation due to blockade of calcium influx. Biochem. Pharmacol., 1998, 56(8), 955-960.
[http://dx.doi.org/10.1016/S0006-2952(98)00094-X] [PMID: 9776305]
[39]
Jung, S.A.; Choi, M.; Kim, S.; Yu, R.; Park, T. Park, T. Cinchonine prevents high-fat-diet-induced obesity through downregulation of adipogenesis and adipose ınflammation. PPAR Res., 2012, 2012, 541204.
[http://dx.doi.org/10.1155/2012/541204] [PMID: 22675336]
[40]
Zhang, Y.X.; Yang, T.T.; Xia, L.; Zhang, W.F.; Wang, J.F.; Wu, Y.P. Inhibitory effect of propolis on platelet aggregation in vitro. J. Healthc. Eng., 2017, 2017, 3050895.
[http://dx.doi.org/10.1155/2017/3050895] [PMID: 29129989]
[41]
Fuentes, E.; Carle, R.; Astudillo, L.; Guzmán, L.; Gutiérrez, M.; Carrasco, G.; Palomo, I. Antioxidant and antiplatelet activities in extracts from green and fully ripe tomato fruits (Solanum lycopersicum) and pomace from ındustrial tomato processing. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/867578]
[42]
Fuentes, E.; Forero-Doria, O.; Carrasco, G.; Maricán, A.; Santos, L.S.; Alarcón, M.; Palomo, I. Effect of tomato industrial processing on phenolic profile and antiplatelet activity. Molecules, 2013, 18(9), 11526-11536.
[http://dx.doi.org/10.3390/molecules180911526] [PMID: 24048285]
[43]
Lee, W.; Ku, S.K.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch. Pharm. Res., 2015, 38(5), 893-903.
[http://dx.doi.org/10.1007/s12272-014-0410-9] [PMID: 24849036]
[44]
Im, J.H.; Jin, Y.R.; Lee, J.J.; Yu, J.Y.; Han, X.H. Im, S.H.; Hong, J.T.; Yoo, H.S.; Pyo, M.Y.; Yun, Y.P. Antiplatelet activity of beta-carboline alkaloids from Perganum harmala: A possible mechanism through inhibiting PLCgamma2 phosphorylation. Vascul. Pharmacol., 2009, 50(5-6), 147-152.
[http://dx.doi.org/10.1016/j.vph.2008.11.008] [PMID: 19073282]
[45]
Ko, F.N.; Lee, Y.S.; Wu, T.S.; Teng, C.M. Inhibition of cyclooxygenase activity and increase in platelet cyclic AMP by girinimbine, isolated from Murraya euchrestifolia. Biochem. Pharmacol., 1994, 48(2), 353-360.
[http://dx.doi.org/10.1016/0006-2952(94)90107-4] [PMID: 8053931]
[46]
Miraj, S. An evidence-based review on herbal remedies of Rosmarinus officinalis. Pharm. Lett., 2016, 8(19), 426-436.
[47]
Lee, J.J.; Jin, Y.R.; Lim, Y.; Hong, J.T.; Kim, T.J.; Chung, J.H.; Yun, Y.P. Antiplatelet activity of carnosol is mediated by the inhibition of TXA2 receptor and cytosolic calcium mobilization. Vascul. Pharmacol., 2006, 45(3), 148-153.
[http://dx.doi.org/10.1016/j.vph.2006.04.003] [PMID: 16916624]
[48]
Yu, S.M.; Chen, C.C.; Ko, F.N.; Huang, Y.L.; Huang, T.F.; Teng, C.M. Dicentrine, a novel antiplatelet agent inhibiting thromboxane formation and increasing the cyclic AMP level of rabbit platelets. Biochem. Pharmacol., 1992, 43(2), 323-329.
[http://dx.doi.org/10.1016/0006-2952(92)90295-T] [PMID: 1310852]
[49]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[50]
Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 2010, 49(33), 7069-7079.
[http://dx.doi.org/10.1021/bi1003298] [PMID: 20669977]
[51]
Zhang, K.; Zhang, J.; Gao, Z.G.; Zhang, D.; Zhu, L.; Han, G.W.; Moss, S.M.; Paoletta, S.; Kiselev, E.; Lu, W.; Fenalti, G.; Zhang, W.; Müller, C.E.; Yang, H.; Jiang, H.; Cherezov, V.; Katritch, V.; Jacobson, K.A.; Stevens, R.C.; Wu, B.; Zhao, Q. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature, 2014, 509(7498), 115-118.
[http://dx.doi.org/10.1038/nature13083] [PMID: 24670650]
[52]
Scapin, G.; Patel, S.B.; Chung, C.; Varnerin, J.P.; Edmondson, S.D.; Mastracchio, A.; Parmee, E.R.; Singh, S.B.; Becker, J.W.; Van der Ploeg, L.H.; Tota, M.R. Crystal structure of human phosphodiesterase 3B: Atomic basis for substrate and inhibitor specificity. Biochemistry, 2004, 43(20), 6091-6100.
[http://dx.doi.org/10.1021/bi049868i] [PMID: 15147193]
[53]
Horii, K.; Kahn, M.L.; Herr, A.B. Structural basis for platelet collagen responses by the immune-type receptor glycoprotein VI. Blood, 2006, 108(3), 936-942.
[http://dx.doi.org/10.1182/blood-2006-01-010215] [PMID: 16861347]
[54]
Zhang, C.; Srinivasan, Y.; Arlow, D.H.; Fung, J.J.; Palmer, D.; Zheng, Y.; Green, H.F.; Pandey, A.; Dror, R.O.; Shaw, D.E.; Weis, W.I.; Coughlin, S.R.; Kobilka, B.K. High-resolution crystal structure of human protease-activated receptor 1. Nature, 2012, 492(7429), 387-392.
[http://dx.doi.org/10.1038/nature11701] [PMID: 23222541]
[55]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[56]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[57]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[58]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[59]
Şterbuleac, D. Molecular dynamics: A powerful tool for studying the medicinal chemistry of ion channel modulators. RSC Med Chem, 2021, 12(9), 1503-1518.
[http://dx.doi.org/10.1039/D1MD00140J] [PMID: 34671734]
[60]
Abraham, M.J.; Murtola, T.; Schulz, R.; Pall, S.; Smith, J.C.; Hess, B.; Lindahl, E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[61]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[62]
Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958.
[http://dx.doi.org/10.1002/prot.22711] [PMID: 20408171]
[63]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[64]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[65]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[66]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[67]
Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMET lab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform., 2018, 10(1), 1-11.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29340790]
[68]
Rudnitskaya, A.; Török, B.; Török, M. Molecular docking of enzyme inhibitors: A computational tool for structure-based drug design. Biochem. Mol. Biol. Educ., 2010, 38(4), 261-265.
[http://dx.doi.org/10.1002/bmb.20392] [PMID: 21567838]
[69]
Perrone, M.G.; Scilimati, A.; Simone, L.; Vitale, P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med. Chem., 2010, 17(32), 3769-3805.
[http://dx.doi.org/10.2174/092986710793205408] [PMID: 20858219]
[70]
Wijeyeratne, Y.D.; Heptinstall, S. Anti-platelet therapy: ADP receptor antagonists. Br. J. Clin. Pharmacol., 2011, 72(4), 647-657.
[http://dx.doi.org/10.1111/j.1365-2125.2011.03999.x] [PMID: 21518389]
[71]
Jiang, P.; Loyau, S.; Tchitchinadze, M.; Ropers, J.; Jondeau, G.; Jandrot-Perrus, M. Inhibition of glycoprotein VI clustering by collagen as a mechanism of inhibiting collagen-induced platelet responses: The example of losartan. PLoS One, 2015, 10(6), e0128744.
[http://dx.doi.org/10.1371/journal.pone.0128744] [PMID: 26052700]
[72]
Zahid, M.; Mangin, P.; Loyau, S.; Hechler, B.; Billiald, P.; Gachet, C.; Jandrot-Perrus, M. The future of glycoprotein VI as an antithrombotic target. J. Thromb. Haemost., 2012, 10(12), 2418-2427.
[http://dx.doi.org/10.1111/jth.12009] [PMID: 23020554]
[73]
Sheu, J.R.; Hsiao, G.; Chou, P.H.; Shen, M.Y.; Chou, D.S. Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets. J. Agric. Food Chem., 2004, 52(14), 4414-4418.
[http://dx.doi.org/10.1021/jf040059f] [PMID: 15237945]
[74]
Joe, B.; Vijaykumar, M.; Lokesh, B.R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr., 2004, 44(2), 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[75]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[76]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[77]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]

© 2024 Bentham Science Publishers | Privacy Policy