Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Chemotherapeutic Activities of Dietary Phytoestrogens against Prostate Cancer: From Observational to Clinical Studies

Author(s): Md. Sohel, Habiba Sultana, Tayeba Sultana, Abdullah Al Mamun, Mohammad Nurul Amin, Md. Arju Hossain, Md. Chayan Ali, Suraiya Aktar, Armin Sultana, Zahed Bin Rahim, Sarmistha Mitra and Raju Dash*

Volume 28, Issue 19, 2022

Published on: 28 June, 2022

Page: [1561 - 1580] Pages: 20

DOI: 10.2174/1381612828666220601153426

Price: $65

Abstract

Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically a Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment has been well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.

Keywords: Phytoestrogens, prostate cancer, anticancer effect, drug resistance, nano-formulation, synergism.

[1]
Rawla P. Epidemiology of prostate cancer. World J Oncol 2019; 10(2): 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[2]
Perdana NR, Mochtar CA, Umbas R, Hamid ARA. The risk factors of prostate cancer and its prevention: A literature review. Acta Med Indones 2016; 48(3): 228-38.
[PMID: 27840359]
[3]
Salehi B, Fokou PVT, Yamthe LRT, et al. Phytochemicals in prostate cancer: From bioactive molecules to upcoming therapeutic agents. Nutrients 2019; 11(7): E1483.
[http://dx.doi.org/10.3390/nu11071483] [PMID: 31261861]
[4]
Nelles JL, Hu WY, Prins GS. Estrogen action and prostate cancer. Expert Rev Endocrinol Metab 2011; 6(3): 437-51.
[http://dx.doi.org/10.1586/eem.11.20] [PMID: 21765856]
[5]
Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004; 25(2): 276-308.
[http://dx.doi.org/10.1210/er.2002-0032] [PMID: 15082523]
[6]
Roddam AW, Allen NE, Appleby P, Key TJ. Endogenous sex hormones and prostate cancer: A collaborative analysis of 18 prospective studies. J Natl Cancer Inst 2008; 100(3): 170-83.
[http://dx.doi.org/10.1093/jnci/djm323] [PMID: 18230794]
[7]
Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol 2010; 31(4): 400-19.
[http://dx.doi.org/10.1016/j.yfrne.2010.03.003] [PMID: 20347861]
[8]
Sohel M, Islam M, Hossain M, et al. Pharmacological properties to pharmacological insight of sesamin in breast cancer treatment: A literature-based review study. Int J Breast Cancer 2022. 2022.
[http://dx.doi.org/10.1155/2022/2599689]
[9]
Sohel M, Biswas P, Amin MA, et al. Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes (Basel) 2022; 10(2): 415.
[http://dx.doi.org/10.3390/pr10020415]
[10]
Tanwar AK, Dhiman N, Kumar A, Jaitak V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur J Med Chem 2021; 213: 113037.
[http://dx.doi.org/10.1016/j.ejmech.2020.113037] [PMID: 33257172]
[11]
Qu XL, Fang Y, Zhang M, Zhang YZ. Phytoestrogen intake and risk of ovarian cancer: A meta- analysis of 10 observational studies. Asian Pac J Cancer Prev 2014; 15(21): 9085-91.
[http://dx.doi.org/10.7314/APJCP.2014.15.21.9085] [PMID: 25422183]
[12]
Singh AV, Franke AA, Blackburn GL, Zhou JR. Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Res 2006; 66(3): 1851-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1332] [PMID: 16452247]
[13]
Yashar CM, Spanos WJ, Taylor DD, Gercel-Taylor C. Potentiation of the radiation effect with genistein in cervical cancer cells. Gynecol Oncol 2005; 99(1): 199-205.
[http://dx.doi.org/10.1016/j.ygyno.2005.07.002] [PMID: 16083949]
[14]
Torrens-Mas M, Roca P. Phytoestrogens for cancer prevention and treatment. Biology (Basel) 2020; 9(12): 1-19.
[http://dx.doi.org/10.3390/biology9120427] [PMID: 33261116]
[15]
Ko KP, Park SK, Cho LY, et al. Soybean product intake modifies the association between interleukin-10 genetic polymorphisms and gastric cancer risk. J Nutr 2009; 139(5): 1008-12.
[http://dx.doi.org/10.3945/jn.108.101865] [PMID: 19321591]
[16]
Morrissey C, Watson RW. Phytoestrogens and prostate cancer. Curr Drug Targets 2003; 4(3): 231-41.
[http://dx.doi.org/10.2174/1389450033491154] [PMID: 12643473]
[17]
Virk-Baker MK, Nagy TR, Barnes S. Role of phytoestrogens in cancer therapy. Planta Med 2010; 76(11): 1132-42.
[http://dx.doi.org/10.1055/s-0030-1250074] [PMID: 20597043]
[18]
Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Castoria G. Estrogens and their receptors in prostate cancer: Therapeutic implica-tions. Front Oncol 2018; 8: 2.
[http://dx.doi.org/10.3389/fonc.2018.00002] [PMID: 29404276]
[19]
Lafront C, Germain L, Weidmann C, Audet-Walsh É. A systematic study of the impact of estrogens and selective estrogen receptor mod-ulators on prostate cancer cell proliferation. Sci Rep 2020; 10(1): 4024.
[http://dx.doi.org/10.1038/s41598-020-60844-3] [PMID: 32132580]
[20]
Bosland MC. The role of estrogens in prostate carcinogenesis: A rationale for chemoprevention. Rev Urol 2005; 7(Suppl. 3): S4-S10.
[PMID: 16985878]
[21]
Zava DT, Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer 1997; 27(1): 31-40.
[http://dx.doi.org/10.1080/01635589709514498] [PMID: 8970179]
[22]
Santell RC, Chang YC, Nair MG, Helferich WG. Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hy-pothalamic/pituitary axis in rats. J Nutr 1997; 127(2): 263-9.
[http://dx.doi.org/10.1093/jn/127.2.263] [PMID: 9039826]
[23]
Miksicek RJ. Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J Steroid Biochem Mol Biol 1994; 49(2-3): 153-60.
[http://dx.doi.org/10.1016/0960-0760(94)90005-1] [PMID: 8031711]
[24]
Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JÅ. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93(12): 5925-30.
[http://dx.doi.org/10.1073/pnas.93.12.5925] [PMID: 8650195]
[25]
Enmark E, Pelto-Huikko M, Grandien K, et al. Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 1997; 82(12): 4258-65.
[http://dx.doi.org/10.1210/jc.82.12.4258] [PMID: 9398750]
[26]
Dey P, Ström A, Gustafsson JA. Estrogen receptor β upregulates FOXO3a and causes induction of apoptosis through PUMA in prostate cancer. Oncogene 2014; 33(33): 4213-25.
[http://dx.doi.org/10.1038/onc.2013.384] [PMID: 24077289]
[27]
Di Lorenzo G, Buonerba C, Kantoff PW. Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 2011; 8(9): 551-61.
[http://dx.doi.org/10.1038/nrclinonc.2011.72] [PMID: 21606971]
[28]
Janiczek M. Szylberg Ł, Kasperska A, et al. Immunotherapy as a promising treatment for prostate cancer: A systematic review. J Immunol Res 2017; 2017: 4861570.
[http://dx.doi.org/10.1155/2017/4861570] [PMID: 29109964]
[29]
Bauman G, Rumble RB, Chen J, Loblaw A, Warde P. Intensity-modulated radiotherapy in the treatment of prostate cancer. Clin Oncol (R Coll Radiol) 2012; 24(7): 461-73.
[http://dx.doi.org/10.1016/j.clon.2012.05.002] [PMID: 22673744]
[30]
Nader R, El Amm J, Aragon-Ching JB. Role of chemotherapy in prostate cancer. Asian J Androl 2018; 20(3): 221-9.
[http://dx.doi.org/10.4103/aja.aja_40_17] [PMID: 29063869]
[31]
MacDuffie E, D’Amico AV. Adjuvant vs salvage radiation therapy for high-risk prostate cancer following radical prostatectomy. JAMA Oncol 2020; 6(8): 1165-6.
[http://dx.doi.org/10.1001/jamaoncol.2020.0565] [PMID: 32525510]
[32]
Brucić LJ, Juretić A, Solarić M, et al. Hormonal therapy of prostate cancer: Are there any dilemmas left? Lijec Vjesn 2012; 134(34): 94-104.
[PMID: 22768684]
[33]
Cox RL, Crawford ED. Estrogens in the treatment of prostate cancer. J Urol 1995; 154(6): 1991-8.
[http://dx.doi.org/10.1016/S0022-5347(01)66670-9] [PMID: 7500443]
[34]
Eissa A, Elsherbiny A, Coelho RF, et al. The role of 68Ga-PSMA PET/CT scan in biochemical recurrence after primary treatment for prostate cancer: A systematic review of the literature. Minerva Urol Nefrol 2018; 70(5): 462-78.
[http://dx.doi.org/10.23736/S0393-2249.18.03081-3] [PMID: 29664244]
[35]
Chaussy CG, Thüroff S. High-intensity focused ultrasound for the treatment of prostate cancer: A review. J Endourol 2017; 31(S1): S30-7.
[http://dx.doi.org/10.1089/end.2016.0548] [PMID: 28355119]
[36]
Napoli A, Alfieri G, Scipione R, et al. High-intensity focused ultrasound for prostate cancer. Expert Rev Med Devices 2020; 17(5): 427-33.
[http://dx.doi.org/10.1080/17434440.2020.1755258] [PMID: 32275187]
[37]
Walz J, Graefen M, Huland H. Basic principles of anatomy for optimal surgical treatment of prostate cancer. World J Urol 2007; 25(1): 31-8.
[http://dx.doi.org/10.1007/s00345-007-0159-6] [PMID: 17333199]
[38]
Moule RN, Hoskin PJ. Non-surgical treatment of localised prostate cancer. Surg Oncol 2009; 18(3): 255-67.
[http://dx.doi.org/10.1016/j.suronc.2009.03.006] [PMID: 19442516]
[39]
Lintz K, Moynihan C, Steginga S, et al. Prostate cancer patients’ support and psychological care needs: Survey from a non-surgical on-cology clinic. Psychooncology 2003; 12(8): 769-83.
[http://dx.doi.org/10.1002/pon.702] [PMID: 14681951]
[40]
Hamilton Z, Parsons JK. Prostate cancer prevention: Concepts and clinical trials. Curr Urol Rep 2016; 17(4): 35.
[http://dx.doi.org/10.1007/s11934-016-0587-1] [PMID: 26957512]
[41]
Scotté F, Ratta R, Beuzeboc P. Side effects of immunotherapy. Curr Opin Oncol 2019. Available from: https://www.cancer.net/navigating-cancer-care/how-cancer-treated/immunotherapy-and-vaccines/side-effects-immunotherapy
[42]
Pirtskhalaishvili G, Hrebinko RL, Nelson JB. The treatment of prostate cancer: An overview of current options. Cancer Pract 2001; 9(6): 295-306.
[http://dx.doi.org/10.1046/j.1523-5394.2001.96009.x] [PMID: 11879332]
[43]
Mitra S, Dash R. Natural products for the management and prevention of breast cancer. Evid Based Complement Alternat Med 2018; 2018: 8324696.
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[44]
Kim HS, Jeon YT, Kim YB. The effect of adjuvant hormonal therapy on the endometrium and ovary of breast cancer patients. J Gynecol Oncol 2008; 19(4): 256-60.
[http://dx.doi.org/10.3802/jgo.2008.19.4.256] [PMID: 19471651]
[45]
Cheung K. Intensity modulated radiotherapy: Advantages, limitations and future developments. Biij 2006; 2(1): e19.
[http://dx.doi.org/10.2349/biij.2.1.e19] [PMID: 21614217]
[46]
Armstrong CM, Gao AC. Drug resistance in castration resistant prostate cancer: Resistance mechanisms and emerging treatment strategies. Am J Clin Exp Urol 2015; 3(2): 64-76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26309896%0Awww.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4539108
[47]
Lephart ED. Modulation of aromatase by phytoestrogens. Enzyme Res 2015; 2015: 594656.
[http://dx.doi.org/10.1155/2015/594656] [PMID: 26798508]
[48]
Ososki AL, Kennelly EJ. Phytoestrogens: A review of the present state of research. Phytother Res 2003; 17(8): 845-69.
[http://dx.doi.org/10.1002/ptr.1364] [PMID: 13680814]
[49]
Peluso I, Palmery M. Flavonoids at the pharma-nutrition interface: Is a therapeutic index in demand? Biomed Pharmacother 2015; 71: 102-7.
[http://dx.doi.org/10.1016/j.biopha.2015.02.028] [PMID: 25960223]
[50]
Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020; 12(2): E457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[51]
Kuiper GGJM, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 1998; 139(10): 4252-63.
[http://dx.doi.org/10.1210/endo.139.10.6216] [PMID: 9751507]
[52]
Franke AA, Custer LJ, Cerna CM, Narala K. Rapid HPLC analysis of dietary phytoestrogens from legumes and from human urine. Proc Soc Exp Biol Med 1995; 208(1): 18-26.
[http://dx.doi.org/10.3181/00379727-208-43826] [PMID: 7892289]
[53]
Perlmutter MA, Lepor H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol 2007; 9(Suppl. 1): S3-8.
[PMID: 17387371]
[54]
Setchell KDR. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 1998; 68(6)(Suppl.): 1333S-46S.
[http://dx.doi.org/10.1093/ajcn/68.6.1333S]
[55]
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82(4): 600-10.
[http://dx.doi.org/10.1080/09168451.2018.1444467] [PMID: 29504827]
[56]
Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 2017; 105(1): 10-22.
[http://dx.doi.org/10.3945/ajcn.116.136051] [PMID: 27881391]
[57]
Yuan B, Wang L, Jin Y, et al. Role of metabolism in the effects of genistein and its phase II conjugates on the growth of human breast cell lines. AAPS J 2012; 14(2): 329-44.
[http://dx.doi.org/10.1208/s12248-012-9338-5] [PMID: 22415614]
[58]
Tomé-Carneiro J, Gonzálvez M, Larrosa M, et al. Resveratrol in primary and secondary prevention of cardiovascular disease: A dietary and clinical perspective. Ann N Y Acad Sci 2013; 1290: 37-51.
[http://dx.doi.org/10.1111/nyas.12150] [PMID: 23855464]
[59]
Sandhir R, Singhal N, Garg P. Increasing resveratrol bioavailability: A therapeutic challenge focusing on the mitochondria. Eds. Oliveira M. In: Mitochondrial Dysfunction and Nanotherapeutics. Ist Edition Elsevier 2021.
[http://dx.doi.org/10.1016/B978-0-323-85666-9.00004-8]
[60]
Peñalvo JL, Heinonen SM, Aura AM, Adlercreutz H. Dietary sesamin is converted to enterolactone in humans. J Nutr 2005; 135(5): 1056-62.
[http://dx.doi.org/10.1093/jn/135.5.1056] [PMID: 15867281]
[61]
Yasuda K, Ikushiro S, Kamakura M, Ohta M, Sakaki T. Metabolism of sesamin by cytochrome P450 in human liver microsomes. Drug Metab Dispos 2010; 38(12): 2117-23.
[http://dx.doi.org/10.1124/dmd.110.035659] [PMID: 20851877]
[62]
Cady N, Peterson SR, Freedman SN, Mangalam AK. Beyond metabolism: The complex interplay between dietary phytoestrogens, gut bacteria, and cells of nervous and immune systems. Front Neurol 2020; 11: 150.
[http://dx.doi.org/10.3389/fneur.2020.00150] [PMID: 32231636]
[63]
Messina M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients 2016; 8(12): E754.
[http://dx.doi.org/10.3390/nu8120754] [PMID: 27886135]
[64]
Strom SS, et al. Erratum: Phytoestrogen intake and prostate cancer: A case-control study using a new database (Nutrition and Cancer (1999) 33:1 (22-23)). Nutr Cancer 2000; 36(2): 243.
[http://dx.doi.org/10.1207/S15327914NC3602_16]
[65]
Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, Hsing AW. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev 2003; 12(7): 665-8.
[PMID: 12869409]
[66]
McCann SE, Ambrosone CB, Moysich KB, et al. Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York. Nutr Cancer 2005; 53(1): 33-41.
[http://dx.doi.org/10.1207/s15327914nc5301_4] [PMID: 16351504]
[67]
Hedelin M, Klint A, Chang ET, et al. Dietary phytoestrogen, serum enterolactone and risk of prostate cancer: The cancer prostate Sweden study (Sweden). Cancer Causes Control 2006; 17(2): 169-80.
[http://dx.doi.org/10.1007/s10552-005-0342-2] [PMID: 16425095]
[68]
Heald CL, Ritchie MR, Bolton-Smith C, Morton MS, Alexander FE. Phyto-oestrogens and risk of prostate cancer in Scottish men. Br J Nutr 2007; 98(2): 388-96.
[http://dx.doi.org/10.1017/S0007114507700703] [PMID: 17403269]
[69]
Park SY, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Legume and isoflavone intake and prostate cancer risk: The Multiethnic Cohort Study. Int J Cancer 2008; 123(4): 927-32.
[http://dx.doi.org/10.1002/ijc.23594] [PMID: 18521907]
[70]
Ward HA, Kuhnle GGC, Mulligan AA, Lentjes MAH, Luben RN, Khaw KT. Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am J Clin Nutr 2010; 91(2): 440-8.
[http://dx.doi.org/10.3945/ajcn.2009.28282] [PMID: 20007303]
[71]
Russo GI, Di Mauro M, Regis F, et al. Association between dietary phytoestrogens intakes and prostate cancer risk in Sicily. Aging Male 2018; 21(1): 48-54.
[http://dx.doi.org/10.1080/13685538.2017.1365834] [PMID: 28817364]
[72]
Shibahara T, Onishi T, Franco OE, Arima K, Sugimura Y. Down-regulation of Skp2 is correlated with p27-associated cell cycle arrest induced by phenylacetate in human prostate cancer cells. Anticancer Res 2005; 25(3): 1881-8.
[73]
Zhang B, Lai Y, Li Y, et al. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur J Pharmacol 2018; 821: 57-67.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.053] [PMID: 29277717]
[74]
Lee YM, Lim DY, Choi HJ, Jung JI, Chung WY, Park JHY. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J Med Food 2009; 12(1): 8-14.
[http://dx.doi.org/10.1089/jmf.2008.0039] [PMID: 19298190]
[75]
Lu Z, Zhou R, Kong Y, et al. S-equol, a secondary metabolite of natural anticancer isoflavone daidzein, inhibits prostate cancer growth in vitro and in vivo, though activating the Akt/FOXO3a pathway. Curr Cancer Drug Targets 2016; 16(5): 455-65.
[http://dx.doi.org/10.2174/1568009616666151207105720] [PMID: 26638886]
[76]
Li T, Zhao X, Mo Z, et al. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate can-cer cells. Cell Physiol Biochem 2014; 34(4): 1351-8.
[http://dx.doi.org/10.1159/000366342] [PMID: 25301361]
[77]
Gupta S, Afaq F, Mukhtar H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 2002; 21(23): 3727-38.
[http://dx.doi.org/10.1038/sj.onc.1205474] [PMID: 12032841]
[78]
Davis JN, Singh B, Bhuiyan M, Sarkar FH. Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 1998; 32(3): 123-31.
[http://dx.doi.org/10.1080/01635589809514730] [PMID: 10050261]
[79]
Saidi L, Rocha DHA, Talhi O, et al. Synthesis of benzophenones and in vitro evaluation of their anticancer potential in breast and pros-tate cancer cells. ChemMedChem 2019; 14(10): 1041-8.
[http://dx.doi.org/10.1002/cmdc.201900127] [PMID: 30950201]
[80]
Tsai YJ, Chen BH. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3. Int J Nanomedicine 2016; 11: 1907-26.
[http://dx.doi.org/10.2147/IJN.S103759] [PMID: 27226712]
[81]
Turkekul K, Colpan RD, Baykul T, Ozdemir MD, Erdogan S. Esculetin inhibits the survival of human prostate cancer cells by inducing apoptosis and arresting the cell cycle. J Cancer Prev 2018; 23(1): 10-7.
[http://dx.doi.org/10.15430/JCP.2018.23.1.10] [PMID: 29629344]
[82]
Shirzad M, Heidarian E, Beshkar P, Gholami-Arjenaki M. Biological effects of hesperetin on Interleukin-6/phosphorylated signal trans-ducer and activator of transcription 3 pathway signaling in prostate cancer PC3 cells. Pharmacognosy Res 2017; 9(2): 188-94.
[http://dx.doi.org/10.4103/0974-8490.204655] [PMID: 28539744]
[83]
Zhu C, Zhu Q, Wu Z, et al. Isorhapontigenin induced cell growth inhibition and apoptosis by targeting EGFR-related pathways in pros-tate cancer. J Cell Physiol 2018; 233(2): 1104-19.
[http://dx.doi.org/10.1002/jcp.25968] [PMID: 28422286]
[84]
Sepporta MV, Mazza T, Morozzi G, Fabiani R. Pinoresinol inhibits proliferation and induces differentiation on human HL60 leukemia cells. Nutr Cancer 2013; 65(8): 1208-18.
[http://dx.doi.org/10.1080/01635581.2013.828089] [PMID: 24099079]
[85]
Xu P, Cai F, Liu X, Guo L. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells. Oncol Rep 2015; 33(6): 3117-23.
[http://dx.doi.org/10.3892/or.2015.3888] [PMID: 25845399]
[86]
Mu D, Zhou G, Li J, Su B, Guo H. Ursolic acid activates the apoptosis of prostate cancer via ROCK/PTEN mediated mitochondrial trans-location of cofilin-1. Oncol Lett 2018; 15(3): 3202-6.
[http://dx.doi.org/10.3892/ol.2017.7689] [PMID: 29435058]
[87]
Li D, Chen L, Zhao W, Hao J, An R. MicroRNA-let-7f-1 is induced by lycopene and inhibits cell proliferation and triggers apoptosis in prostate cancer. Mol Med Rep 2016; 13(3): 2708-14.
[http://dx.doi.org/10.3892/mmr.2016.4841] [PMID: 26847233]
[88]
Lim W, Jeong M, Bazer FW, Song G. Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J Cell Physiol 2017; 232(4): 862-71.
[http://dx.doi.org/10.1002/jcp.25494] [PMID: 27431052]
[89]
Hao Q, Diaz T, Verduzco ADR, et al. Arctigenin inhibits prostate tumor growth in high-fat diet fed mice through dual actions on adipose tissue and tumor. Sci Rep 2020; 10(1): 1403.
[http://dx.doi.org/10.1038/s41598-020-58354-3] [PMID: 31996731]
[90]
Kwak MK, Yang KM, Park J, et al. Galangin enhances TGF-β1-mediated growth inhibition by suppressing phosphorylation of threonine 179 residue in Smad3 linker region. Biochem Biophys Res Commun 2017; 494(3-4): 706-13.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.138] [PMID: 29097203]
[91]
Bilancio A, Bontempo P, Di Donato M, et al. Bisphenol A induces cell cycle arrest in primary and prostate cancer cells through EGFR/ERK/p53 signaling pathway activation. Oncotarget 2017; 8(70): 115620-31.
[http://dx.doi.org/10.18632/oncotarget.23360] [PMID: 29383186]
[92]
Da J, Xu M, Wang Y, Li W, Lu M, Wang Z. Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Anal Cell Pathol (Amst) 2019; 2019: 1907698.
[http://dx.doi.org/10.1155/2019/1907698] [PMID: 31871879]
[93]
Fu Y, Hsieh TC, Guo J, et al. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem Biophys Res Commun 2004; 322(1): 263-70.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.094] [PMID: 15313200]
[94]
Batlle R, Andrés E, Gonzalez L, et al. Regulation of tumor angiogenesis and mesenchymal-endothelial transition by p38α through TGF-β and JNK signaling. Nat Commun 2019; 10(1): 3071.
[http://dx.doi.org/10.1038/s41467-019-10946-y] [PMID: 31296856]
[95]
Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines 2017; 5(2): E34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[96]
Itsumi M, Shiota M, Takeuchi A, et al. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase ki-nase-associated protein 2. Cancer Sci 2016; 107(7): 1022-8.
[http://dx.doi.org/10.1111/cas.12948] [PMID: 27088761]
[97]
Pratheeshkumar P, Son YO, Budhraja A, et al. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One 2012; 7(12): e52279.
[http://dx.doi.org/10.1371/journal.pone.0052279] [PMID: 23300633]
[98]
Seo Y, Ryu K, Park J, et al. Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS One 2017; 12(3): e0174935.
[http://dx.doi.org/10.1371/journal.pone.0174935] [PMID: 28362855]
[99]
Franzen CA, Amargo E, Todorović V. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev Res (Phila) 2009; 2(9): 830-41.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0066] [PMID: 19737984]
[100]
Aktas HG, Ayan H. Oleuropein: A potential inhibitor for prostate cancer cell motility by blocking voltage-gated sodium channels. Nutr Cancer 2020; 73(9): 1758-67.
[http://dx.doi.org/10.1080/01635581.2020.1807575] [PMID: 32842786]
[101]
Li K, Dias SJ, Rimando AM, et al. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One 2013; 8(3): e57542.
[http://dx.doi.org/10.1371/journal.pone.0057542] [PMID: 23469203]
[102]
Sarveswaran S, Ghosh R, Parikh R, Ghosh J. Wedelolactone, an anti-inflammatory botanical, interrupts c-Myc oncogenic signaling and synergizes with enzalutamide to induce apoptosis in prostate cancer cells. Mol Cancer Ther 2016; 15(11): 2791-801.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0861] [PMID: 27474149]
[103]
Robertson CN, Roberson KM, Padilla GM, et al. Induction of apoptosis by diethylstilbestrol in hormone-insensitive prostate cancer cells. J Natl Cancer Inst 1996; 88(13): 908-17.
[http://dx.doi.org/10.1093/jnci/88.13.908] [PMID: 8656443]
[104]
Ryu S, Lim W, Bazer FW, Song G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J Cell Physiol 2017; 232(12): 3786-97.
[http://dx.doi.org/10.1002/jcp.25861] [PMID: 28213961]
[105]
Lee W, Yun J-M. Suppression of β-catenin signaling pathway in human prostate cancer PC3 cells by delphinidin. J Cancer Prev 2016; 21(2): 110-4.
[http://dx.doi.org/10.15430/JCP.2016.21.2.110] [PMID: 27390740]
[106]
Park JH, Kwon HY, Sohn EJ, et al. Inhibition of Wnt/β-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells. Pharmacol Rep 2013; 65(5): 1366-74.
[http://dx.doi.org/10.1016/S1734-1140(13)71495-6] [PMID: 24399733]
[107]
Meng Y, Lin ZM, Ge N, Zhang DL, Huang J, Kong F. Ursolic acid induces apoptosis of prostate cancer cells via the PI3K/Akt/mTOR pathway. Am J Chin Med 2015; 43(7): 1471-86.
[http://dx.doi.org/10.1142/S0192415X15500834] [PMID: 26503559]
[108]
Clubbs EA, Bomser JA. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells. J Nutr Biochem 2007; 18(8): 525-32.
[http://dx.doi.org/10.1016/j.jnutbio.2006.09.005] [PMID: 17156992]
[109]
Bandyopadhyay S, Romero JR, Chattopadhyay N. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. Mol Cell Endocrinol 2008; 287(1-2): 57-64.
[http://dx.doi.org/10.1016/j.mce.2008.01.015] [PMID: 18346843]
[110]
Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci Rep 2018; 8(1): 13902.
[http://dx.doi.org/10.1038/s41598-018-32308-2] [PMID: 30224635]
[111]
Peuhu E, Rivero-Müller A, Stykki H, et al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 2010; 29(6): 898-908.
[http://dx.doi.org/10.1038/onc.2009.386] [PMID: 19935713]
[112]
Chen LH, Fang J, Li H, Demark-Wahnefried W, Lin X. Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway. Mol Cancer Ther 2007; 6(9): 2581-90.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0220] [PMID: 17876055]
[113]
Kuwajerwala N, Cifuentes E, Gautam S, Menon M, Barrack ER, Reddy GP. Resveratrol induces prostate cancer cell entry into s phase and inhibits DNA synthesis. Cancer Res 2002; 62(9): 2488-92.
[PMID: 11980638]
[114]
Rivera M, Ramos Y, Rodríguez-Valentín M, et al. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS One 2017; 12(6): e0179587.
[http://dx.doi.org/10.1371/journal.pone.0179587] [PMID: 28628644]
[115]
Deeb D, Gao X, Jiang H, Arbab AS, Dulchavsky SA, Gautam SC. Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res 2010; 30(9): 3333-9.
[PMID: 20944105]
[116]
Kowalska K. Habrowska-Górczyńska DE, Domińska K, Urbanek KA, Piastowska-Ciesielska AW. ERβ and NFκB-modulators of zearalenone-induced oxidative stress in human prostate cancer cells. Toxins (Basel) 2020; 12(3): E199.
[http://dx.doi.org/10.3390/toxins12030199] [PMID: 32235729]
[117]
Ye Y, Hou R, Chen J, et al. Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation. Horm Metab Res 2012; 44(4): 263-7.
[http://dx.doi.org/10.1055/s-0032-1301922] [PMID: 22328166]
[118]
Kłósek M, Mertas A, Król W, Jaworska D, Szymszal J, Szliszka E. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells after treatment with xanthohumol—A natural compound present in Humulus lupulus L. Int J Mol Sci 2016; 17(6): E837.
[http://dx.doi.org/10.3390/ijms17060837] [PMID: 27338375]
[119]
Lim W, Park S, Bazer FW, Song G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem 2017; 118(5): 1118-31.
[http://dx.doi.org/10.1002/jcb.25729] [PMID: 27606834]
[120]
Nassir AM, Ibrahim IAA, Md S, et al. Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: In vitro and in vivo activity. Life Sci 2019; 220: 136-46.
[http://dx.doi.org/10.1016/j.lfs.2019.01.053] [PMID: 30710640]
[121]
Yang C, Ma X, Wang Z, et al. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des Devel Ther 2017; 11: 431-9.
[http://dx.doi.org/10.2147/DDDT.S126964] [PMID: 28243065]
[122]
Sarveswaran S, Gautam SC, Ghosh J. Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int J Oncol 2012; 41(6): 2191-9.
[http://dx.doi.org/10.3892/ijo.2012.1664] [PMID: 23076676]
[123]
Jeong MH, Ko H, Jeon H, et al. Delphinidin induces apoptosis via cleaved HDAC3-mediated p53 acetylation and oligomerization in prostate cancer cells. Oncotarget 2016; 7(35): 56767-80.
[http://dx.doi.org/10.18632/oncotarget.10790] [PMID: 27462923]
[124]
Ganapathy S, Chen Q, Singh KP, Shankar S, Srivastava RK. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xeno-grafts through activation of FOXO transcription factor. PLoS One 2010; 5(12): e15627.
[http://dx.doi.org/10.1371/journal.pone.0015627] [PMID: 21209944]
[125]
Bylund A, Saarinen N, Zhang JX, et al. Anticancer effects of a plant lignan 7-hydroxymatairesinol on a prostate cancer model in vivo. Exp Biol Med (Maywood) 2005; 230(3): 217-23.
[http://dx.doi.org/10.1177/153537020523000308] [PMID: 15734725]
[126]
Kang D, Zuo W, Wu Q, Zhu Q, Liu P. Inhibition of specificity protein 1 is involved in phloretin-induced suppression of prostate cancer. BioMed Res Int 2020; 2020: 1358674.
[http://dx.doi.org/10.1155/2020/1358674] [PMID: 32851058]
[127]
Miocinovic R, McCabe NP, Keck RW, Jankun J, Hampton JA, Selman SH. In vivo and in vitro effect of baicalein on human prostate can-cer cells. Int J Oncol 2005; 26(1): 241-6.
[http://dx.doi.org/10.3892/ijo.26.1.241] [PMID: 15586246]
[128]
Zhang G, Xu Y, Zhou HF. Esculetin inhibits proliferation, invasion, and migration of laryngeal cancer in vitro and in vivo by inhibiting janus kinas (JAK)-signal transducer and activator of transcription-3 (STAT3) activation. Med Sci Monit 2019; 25: 7853-63.
[http://dx.doi.org/10.12659/MSM.916246] [PMID: 31630150]
[129]
Sharmila G, Bhat FA, Arunkumar R, et al. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin Nutr 2014; 33(4): 718-26.
[http://dx.doi.org/10.1016/j.clnu.2013.08.011] [PMID: 24080313]
[130]
Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci USA 2001; 98(18): 10350-5.
[http://dx.doi.org/10.1073/pnas.171326098] [PMID: 11504910]
[131]
Dias SJ, Li K, Rimando AM, et al. Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate 2013; 73(11): 1135-46.
[http://dx.doi.org/10.1002/pros.22657] [PMID: 23657951]
[132]
Dorai T, Cao YC, Dorai B, Buttyan R, Katz AE. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits pro-liferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 2001; 47(4): 293-303.
[http://dx.doi.org/10.1002/pros.1074] [PMID: 11398177]
[133]
Lund TD, Blake C, Bu L, Hamaker AN, Lephart ED. Equol an isoflavonoid: Potential for improved prostate health, in vitro and in vivo evidence. Reprod Biol Endocrinol 2011; 9: 4.
[http://dx.doi.org/10.1186/1477-7827-9-4] [PMID: 21232127]
[134]
Tang L, Jin T, Zeng X, Wang JS. Lycopene inhibits the growth of human androgen-independent prostate cancer cells in vitro and in BALB/c nude mice. J Nutr 2005; 135(2): 287-90.
[http://dx.doi.org/10.1093/jn/135.2.287] [PMID: 15671228]
[135]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clin-ical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[136]
Anandhi Senthilkumar H, Fata JE, Kennelly EJ. Phytoestrogens: The current state of research emphasizing breast pathophysiology. Phytother Res 2018; 32(9): 1707-19.
[http://dx.doi.org/10.1002/ptr.6115] [PMID: 29876983]
[137]
Tanaudommongkon I, Tanaudommongkon A, Prathipati P, Nguyen JT, Keller ET, Dong X. Curcumin nanoparticles and their cytotoxicity in docetaxel-resistant castration-resistant prostate cancer cells. Biomedicines 2020; 8(8): 253.
[http://dx.doi.org/10.3390/biomedicines8080253] [PMID: 32751450]
[138]
Vodnik VV. Mojić M, Stamenović U, et al. Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. Mater Sci Eng C 2021; 124: 112078.
[http://dx.doi.org/10.1016/j.msec.2021.112078] [PMID: 33947570]
[139]
Hussain Y, Mirzaei S, Ashrafizadeh M, et al. Quercetin and its nano-scale delivery systems in prostate cancer therapy: Paving the way for cancer elimination and reversing chemoresistance. Cancers (Basel) 2021; 13(7): 1602.
[http://dx.doi.org/10.3390/cancers13071602] [PMID: 33807174]
[140]
Thipe VC, Panjtan Amiri K, Bloebaum P, et al. Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int J Nanomedicine 2019; 14: 4413-28.
[http://dx.doi.org/10.2147/IJN.S204443] [PMID: 31417252]
[141]
Shao J, Fang Y, Zhao R, et al. Evolution from small molecule to nano-drug delivery systems: An emerging approach for cancer therapy of ursolic acid. Asian Journal of Pharmaceutical Sciences 2020; 15(6): 685-700.
[http://dx.doi.org/10.1016/j.ajps.2020.03.001] [PMID: 33363625]
[142]
Mariadoss AVA, Vinayagam R, Xu B, et al. Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chem Biol Interact 2019; 308: 11-9.
[http://dx.doi.org/10.1016/j.cbi.2019.05.008] [PMID: 31071336]
[143]
Talik Sisin NN, Razak KA, Abidin ZS, et al. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int J Nanomedicine 2020; 15: 7805-23.
[http://dx.doi.org/10.2147/IJN.S269214] [PMID: 33116502]
[144]
Wu X, Ge W, Shao T, et al. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630. Int J Nanomedicine 2017; 12: 1475-83.
[http://dx.doi.org/10.2147/IJN.S125041] [PMID: 28260893]
[145]
Liang J, Yan H, Puligundla P, Gao X, Zhou Y, Wan X. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocoll 2017; 69: 286-92.
[http://dx.doi.org/10.1016/j.foodhyd.2017.01.041]
[146]
Baidya D, Kushwaha J, Mahadik K, Patil S. Chrysin-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailabil-ity and anticancer activity against human breast cancer cells. Drug Dev Ind Pharm 2019; 45(5): 852-60.
[http://dx.doi.org/10.1080/03639045.2019.1576726] [PMID: 30724621]
[147]
Sabry S. El hakim Ramadan A, Abd elghany M, Okda T, Hasan A. Formulation, characterization, and evaluation of the anti-tumor activi-ty of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats. J Drug Deliv Sci Technol 2021; 61.
[http://dx.doi.org/10.1016/j.jddst.2020.102163]
[148]
Xie YJ, Wang QL, Adu-Frimpong M, et al. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Dev Ind Pharm 2019; 45(8): 1224-32.
[http://dx.doi.org/10.1080/03639045.2019.1574812] [PMID: 30681382]
[149]
Wu G, Li J, Yue J, Zhang S, Yunusi K. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Mol Med Rep 2018; 17(2): 2456-64.
[http://dx.doi.org/10.3892/mmr.2017.8185] [PMID: 29207088]
[150]
Tian J, Guo F, Chen Y, Li Y, Yu B, Li Y. Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Lett 2019; 448: 1-10.
[http://dx.doi.org/10.1016/j.canlet.2019.01.002] [PMID: 30673592]
[151]
Singh SK, Lillard JW Jr, Singh R. Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Lett 2018; 427: 49-62.
[http://dx.doi.org/10.1016/j.canlet.2018.04.017] [PMID: 29678549]
[152]
Lin YH, Wang CC, Lin YH, Chen BH. Preparation of catechin nanoemulsion from oolong tea leaf waste and its inhibition of prostate cancer cells du-145 and tumors in mice. Molecules 2021; 26(11): 3260.
[http://dx.doi.org/10.3390/molecules26113260] [PMID: 34071530]
[153]
Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin remodels the tumor microenvironment to improve the permeation, reten-tion, and antitumor effects of nanoparticles. ACS Nano 2017; 11(5): 4916-25.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[154]
D’Amico R, Genovese T, Cordaro M, et al. Palmitoylethanolamide/Baicalein regulates the androgen receptor signaling and NF-κB/Nrf2 pathways in benign prostatic hyperplasia. Antioxidants 2021; 10(7): 1014.
[http://dx.doi.org/10.3390/antiox10071014] [PMID: 34202665]
[155]
Ughachukwu P, Unekwe P. Efflux pump-mediated resistance in chemotherapy. Ann Med Health Sci Res 2012; 2(2): 191-8.
[http://dx.doi.org/10.4103/2141-9248.105671] [PMID: 23439914]
[156]
Akhdar H, Legendre C, Aninat C, More F. Anticancer drug metabolism: Chemotherapy resistance and new therapeutic approaches. In: Topics on Drug Metabolism. 2012.
[http://dx.doi.org/10.5772/30015]
[157]
Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350(21): 2129-39.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[158]
Costea T, Vlad OC, Miclea LC, Ganea C. Szöllősi J, Mocanu MM. Alleviation of multidrug resistance by flavonoid and non-flavonoid compounds in breast, lung, colorectal and prostate cancer. Int J Mol Sci 2020; 21(2): E401.
[http://dx.doi.org/10.3390/ijms21020401] [PMID: 31936346]
[159]
Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11(1): 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[160]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull 2017; 7(3): 339-48.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[161]
More MP, Pardeshi SR, Pardeshi CV, et al. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Med Drug Discov 2021; 10: 100082.
[http://dx.doi.org/10.1016/j.medidd.2021.100082]
[162]
Vidal SJ, Rodriguez-Bravo V, Quinn SA, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 2015; 27(2): 223-39.
[http://dx.doi.org/10.1016/j.ccell.2014.11.013] [PMID: 25670080]
[163]
O’Neill AJ, Prencipe M, Dowling C, et al. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol Cancer 2011; 10: 126.
[http://dx.doi.org/10.1186/1476-4598-10-126] [PMID: 21982118]
[164]
Liu C, Zhu Y, Lou W, Cui Y, Evans CP, Gao AC. Inhibition of constitutively active Stat3 reverses enzalutamide resistance in LNCaP derivative prostate cancer cells. Prostate 2014; 74(2): 201-9.
[http://dx.doi.org/10.1002/pros.22741] [PMID: 24307657]
[165]
Stearns ME, Wang M. Synergistic effects of the green tea extract epigallocatechin-3-gallate and taxane in eradication of malignant human prostate tumors1. Transl Oncol 2011; 4(3): 147-56.
[http://dx.doi.org/10.1593/tlo.10286] [PMID: 21633670]
[166]
Wang G, Zhang D, Yang S, Wang Y, Tang Z, Fu X. Co-administration of genistein with doxorubicin-loaded polypeptide nanoparticles weakens the metastasis of malignant prostate cancer by amplifying oxidative damage. Biomater Sci 2018; 6(4): 827-35.
[http://dx.doi.org/10.1039/C7BM01201B] [PMID: 29480308]
[167]
Scarlatti F, Sala G, Ricci C, et al. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 2007; 253(1): 124-30.
[http://dx.doi.org/10.1016/j.canlet.2007.01.014] [PMID: 17321671]
[168]
Eslami SS, Jafari D, Montazeri H, Sadeghizadeh M, Tarighi P. Combination of curcumin and metformin inhibits cell growth and induces apoptosis without affecting the cell cycle in LNCaP prostate cancer cell line. Nutr Cancer 2020; 1-14.
[http://dx.doi.org/10.1080/01635581.2020.1783327] [PMID: 32657143]
[169]
Sun S, Gong F, Liu P, Miao Q. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene 2018; 664: 50-7.
[http://dx.doi.org/10.1016/j.gene.2018.04.045] [PMID: 29678660]
[170]
Manna K, Das U, Das D, et al. Naringin inhibits gamma radiation-induced oxidative DNA damage and inflammation, by modulating p53 and NF-κB signaling pathways in murine splenocytes. Free Radic Res 2015; 49(4): 422-39.
[http://dx.doi.org/10.3109/10715762.2015.1016018] [PMID: 25812588]
[171]
Du GJ, Song ZH, Lin HH, Han XF, Zhang S, Yang YM. Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells. Biochem Biophys Res Commun 2008; 372(3): 497-502.
[http://dx.doi.org/10.1016/j.bbrc.2008.05.080] [PMID: 18503759]
[172]
Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 2007; 6(9): 2544-53.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0788] [PMID: 17876051]
[173]
Luo H, Daddysman MK, Rankin GO, Jiang BH, Chen YC. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through pro-moting apoptosis caused by down regulation of cMyc. Cancer Cell Int 2010; 10: 16.
[http://dx.doi.org/10.1186/1475-2867-10-16] [PMID: 20459793]
[174]
Krajnović T, Kaluđerović GN, Wessjohann LA, Mijatović S, Maksimović-Ivanić D. Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacol Res 2016; 105: 62-73.
[http://dx.doi.org/10.1016/j.phrs.2016.01.011] [PMID: 26784390]
[175]
Liang G, Tang A, Lin X, et al. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemo-resistant liver cancer. Int J Oncol 2010; 37(1): 111-23.
[http://dx.doi.org/10.3892/ijo-00000659] [PMID: 20514403]
[176]
Hsu YN, Shyu HW, Hu TW, et al. Anti-proliferative activity of biochanin A in human osteosarcoma cells via mitochondrial-involved apoptosis. Food Chem Toxicol 2018; 112: 194-204.
[http://dx.doi.org/10.1016/j.fct.2017.12.062] [PMID: 29305928]
[177]
Dash TK, Konkimalla VB. Formulation and optimization of doxorubicin and biochanin a combinational liposomes for reversal of chemoresistance. AAPS PharmSciTech 2017; 18(4): 1116-24.
[http://dx.doi.org/10.1208/s12249-016-0614-z] [PMID: 27600324]
[178]
Merseburger AS, Hammerer P, Rozet F, et al. Androgen deprivation therapy in castrate-resistant prostate cancer: How important is GnRH agonist backbone therapy? World J Urol 2015; 33(8): 1079-85.
[http://dx.doi.org/10.1007/s00345-014-1406-2] [PMID: 25261259]
[179]
Roell D, Baniahmad A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol Cell Endocrinol 2011; 332(1-2): 1-8.
[http://dx.doi.org/10.1016/j.mce.2010.09.013] [PMID: 20965230]
[180]
Xing N, Chen Y, Mitchell SH, Young CYF. Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 2001; 22(3): 409-14.
[http://dx.doi.org/10.1093/carcin/22.3.409] [PMID: 11238180]
[181]
Singla RK, Sai CS, Chopra H, et al. Natural products for the management of castration-resistant prostate cancer: Special focus on nano-particles based studies. Front Cell Dev Biol 2021; 9: 745177.
[http://dx.doi.org/10.3389/fcell.2021.745177] [PMID: 34805155]
[182]
Sainz RM, Reiter RJ, Tan DX, et al. Critical role of glutathione in melatonin enhancement of tumor necrosis factor and ionizing radiation-induced apoptosis in prostate cancer cells in vitro. J Pineal Res 2008; 45(3): 258-70.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00585.x] [PMID: 18384530]
[183]
Prabhu KS, Achkar IW, Kuttikrishnan S, et al. Embelin: A benzoquinone possesses therapeutic potential for the treatment of human cancer. Future Med Chem 2018; 10(8): 961-76.
[http://dx.doi.org/10.4155/fmc-2017-0198] [PMID: 29620447]
[184]
Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res 2016; 60(6): 1396-405.
[http://dx.doi.org/10.1002/mnfr.201600025] [PMID: 27059089]
[185]
Huang DM, Guh JH, Chueh SC, Teng CM. Modulation of anti-adhesion molecule MUC-1 is associated with arctiin-induced growth inhi-bition in PC-3 cells. Prostate 2004; 59(3): 260-7.
[http://dx.doi.org/10.1002/pros.10364] [PMID: 15042601]
[186]
Szliszka E, Czuba ZP, Mertas A, Paradysz A, Krol W. The dietary isoflavone biochanin-A sensitizes prostate cancer cells to TRAIL-induced apoptosis. Urol Oncol Semin Orig Investig 2013; 31(3): 331-42.
[http://dx.doi.org/10.1016/j.urolonc.2011.01.019] [PMID: 21803611]
[187]
Lin X, Switzer BR, Demark-Wahnefried W. Effect of mammalian lignans on the growth of prostate cancer cell lines. Anticancer Res 2001; 21(6A): 3995-9.
[188]
Eitsuka T, Tatewaki N, Nishida H, Kurata T, Nakagawa K, Miyazawa T. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid. Biochem Biophys Res Commun 2014; 453(3): 606-11.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.126] [PMID: 25285637]
[189]
Kanazawa M, Satomi Y, Mizutani Y, et al. Isoliquiritigenin inhibits the growth of prostate cancer. Eur Urol 2003; 43(5): 580-6.
[http://dx.doi.org/10.1016/S0302-2838(03)00090-3] [PMID: 12706007]
[190]
Han K, Meng W, Zhang JJ, et al. Luteolin inhibited proliferation and induced apoptosis of prostate cancer cells through miR-301. OncoTargets Ther 2016; 9: 3085-94.
[http://dx.doi.org/10.2147/OTT.S102862] [PMID: 27307749]
[191]
Han KY, Chen PN, Hong MC, et al. Naringenin attenuated prostate cancer invasion via reversal of epithelial–to–mesenchymal transition and inhibited uPA activity. Anticancer Res 2018; 38(12): 6753-8.
[http://dx.doi.org/10.21873/anticanres.13045] [PMID: 30504386]
[192]
Ward AB, Mir H, Kapur N, Gales DN, Carriere PP, Singh S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol 2018; 16(1): 108.
[http://dx.doi.org/10.1186/s12957-018-1400-z] [PMID: 29898731]
[193]
Kim U, Kim CY, Lee JM, et al. Phloretin inhibits the human prostate cancer cells through the generation of reactive oxygen species. Pathol Oncol Res 2020; 26(2): 977-84.
[http://dx.doi.org/10.1007/s12253-019-00643-y] [PMID: 30937835]
[194]
Hsieh T-C, Lin C-Y, Lin H-Y, Wu JM. AKT/mTOR as novel targets of polyphenol piceatannol possibly contributing to inhibition of proliferation of cultured prostate cancer cells. ISRN Urol 2012; 2012: 272697.
[http://dx.doi.org/10.5402/2012/272697] [PMID: 22567414]
[195]
Li J, Xiong C, Xu P, Luo Q, Zhang R. Puerarin induces apoptosis in prostate cancer cells via inactivation of the Keap1/Nrf2/ARE signal-ing pathway. Bioengineered 2021; 12(1): 402-13.
[http://dx.doi.org/10.1080/21655979.2020.1868733] [PMID: 33356808]
[196]
Kowalska K. Habrowska-Górczyńska DE, Domińska K, Piastowska- Ciesielska AW. The dose-dependent effect of zearalenone on mito-chondrial metabolism, plasma membrane permeabilization and cell cycle in human prostate cancer cell lines. Chemosphere 2017; 180: 455-66.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.027] [PMID: 28427036]
[197]
Clubbs EA, Bomser JA. Basal cell induced differentiation of noncancerous prostate epithelial cells (RWPE-1) by glycitein. Nutr Cancer 2009; 61(3): 390-6.
[http://dx.doi.org/10.1080/01635580802582728] [PMID: 19373613]
[198]
Kouloura E, Halabalaki M, Lallemand MC, et al. Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata. J Nat Prod 2012; 75(7): 1270-6.
[http://dx.doi.org/10.1021/np201007a] [PMID: 22708987]
[199]
Killian PH, Kronski E, Michalik KM, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis 2012; 33(12): 2507-19.
[http://dx.doi.org/10.1093/carcin/bgs312] [PMID: 23042094]
[200]
Wilkins A, Shahidi M, Parker C, et al. Diethylstilbestrol in castration-resistant prostate cancer. BJU Int 2012; 110(11): 727-35.
[http://dx.doi.org/10.1111/j.1464-410X.2012.11546.x]
[201]
Sambantham S, Radha M, Paramasivam A, et al. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev 2013; 14(7): 4347-52.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4347] [PMID: 23992001]
[202]
Sohel M, Sultana H, Sultana T, et al. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A com-prehensive review. Heliyon 2022; 8(1): e08815.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08815] [PMID: 35128104]
[203]
Shirzad M, Beshkar P, Heidarian E. The effects of hesperetin on apoptosis induction and inhibition of cell proliferation in the prostate cancer PC3 cells. J HerbMed Pharmacol 2015; 4(4): 121-4.
[204]
Arya A, Khandelwal K, Ahmad H, et al. Co-delivery of hesperetin enhanced bicalutamide induced apoptosis by exploiting mitochondrial membrane potential via polymeric nanoparticles in a PC-3 cell line. RSC Advances 2016; 6(7): 5925-35.
[http://dx.doi.org/10.1039/C5RA23067E]
[205]
Yatkin E, Polari L, Laajala TD, et al. Novel Lignan and stilbenoid mixture shows anticarcinogenic efficacy in preclinical PC-3M-luc2 prostate cancer model. PLoS One 2014; 9(4): e93764.
[http://dx.doi.org/10.1371/journal.pone.0093764] [PMID: 24699425]
[206]
Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study. Mol Carcinog 2012; 51(12): 952-62.
[http://dx.doi.org/10.1002/mc.20866] [PMID: 22006862]
[207]
Hillman GG, Wang Y, Kucuk O, et al. Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic mod-el. Mol Cancer Ther 2004; 3(10): 1271-9.
[PMID: 15486194]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy