Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Therapeutic Management of Lymphoma: Conventional Strategies and Overcoming Treatment Barriers with Nanotherapeutics

Author(s): Tien V. Le, Erica Kim, Tracy Togba-Bass, Joyce C. Bom and Robert B. Campbell*

Volume 19, Issue 2, 2023

Published on: 18 January, 2023

Page: [84 - 95] Pages: 12

DOI: 10.2174/1573394718666220601124415

Price: $65

Abstract

According to the American Cancer Society, the prevalence of lymphoma remains high in the United States with an estimated 90,390 new cases, and 21,680 deaths annually. Although current chemotherapeutic regimens approved by the FDA can effectively improve treatment outcomes, the prognosis remains poor with numerous complications. Current therapeutic strategies have faced multiple challenges limiting desired therapeutic effects. With the multitude of clinical barriers faced by conventional treatment strategies, researchers continue to explore the use of nanotherapeutics over more conventional treatment options. The engineered nanoparticles include starting materials from a number of biocompatible sources, and the final products can safely incorporate therapeutic agents, improve drug selectivity to tumor targets, and enhance efficacy profiles, all while reducing toxicity associated with the drug payload. These are tremendous potential advantages. This review summarizes the molecular basis of lymphoma, disease progression, and therapeutic challenges encountered during treatment. The discussions further highlight preclinical and clinical results at the different clinical stages, reviewing the different types of lymphoma, and summarizing how nanotherapeutics have addressed challenges confronting treatment.

Keywords: Cancer Therapy, Drug Resistance, Nanotechnology, Lymphoma, Nanoparticles

« Previous
[1]
CRC Lymphoma AN-H About non-hodgkin lymphoma: American cancer society. 2018.Available from. www.cancer.org/content/dam/CRC/PDF/Public/8717.00.pdf

[2]
Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127(20): 2375-90.
[http://dx.doi.org/10.1182/blood-2016-01-643569] [PMID: 26980727]
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Szmyd B, Mlynarski W, Pastorczak A. Genetic predisposition to lymphomas: Overview of rare syndromes and inherited familial variants. Mutat Res Rev Mutat Res 2021; 788: 108386.
[http://dx.doi.org/10.1016/j.mrrev.2021.108386] [PMID: 34893151]
[5]
American Cancer Society Non-Hodgkin Lymphoma Causes, Risk Factors, and Prevention. 2020.Available from. https://www.cancer.org/cancer/non-hodgkin-lymphoma/causes-risks-prevention/risk-factors.html
[6]
Zallio F, Limberti G, Ladetto M. Infections and Follicular Lymphoma: Is there a Link? Mediterr J Hematol Infect Dis 2017; 9(1): e2017035.
[http://dx.doi.org/10.4084/mjhid.2017.035] [PMID: 28512564]
[7]
Ansell SM, Ed. Hodgkin lymphoma: Diagnosis and treatment Mayo Clinic Proceedings. Elsevier 2015.
[8]
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics 2020; 12(1): 169.
[http://dx.doi.org/10.1186/s13148-020-00962-x] [PMID: 33160401]
[9]
Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005; 352(5): 441-9.
[http://dx.doi.org/10.1056/NEJMoa041511] [PMID: 15689582]
[10]
Campbell RB. Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med Chem 2006; 6(6): 503-12.
[http://dx.doi.org/10.2174/187152006778699077] [PMID: 17100555]
[11]
Pfreundschuh M, Müller C, Zeynalova S, et al. Suboptimal dosing of rituximab in male and female patients with DLBCL. Blood 2014; 123(5): 640-6.
[http://dx.doi.org/10.1182/blood-2013-07-517037] [PMID: 24297867]
[12]
Fridrik MA, Jaeger U, Petzer A, et al. Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma: A randomised phase-III study from the Austrian Cancer Drug Therapy Working Group (Arbeitsgemein-schaft Medikamentöse Tumortherapie AGMT)(NHL-14). Eur J Cancer 2016; 58: 112-21.
[http://dx.doi.org/10.1016/j.ejca.2016.02.004] [PMID: 26990931]
[13]
Nair R, Ramakrishnan G, Nair NN, et al. A randomized comparison of the efficacy and toxicity of epirubicin and doxorubicin in the treatment of patients with non-Hodgkin’s lymphoma. Cancer 1998; 82(11): 2282-8.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2282:AID-CNCR26>3.0.CO;2-P] [PMID: 9610711]
[14]
Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 2015; 57: 130-46.
[http://dx.doi.org/10.1016/j.jbior.2014.10.003] [PMID: 25465296]
[15]
El-Readi MZ, Althubiti MA. Cancer nanomedicine: A new era of successful targeted therapy. J Nanomater 2019; 2019: 4927312.
[http://dx.doi.org/10.1155/2019/4927312]
[16]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[17]
Blanco E, Hsiao A, Mann AP, Landry MG, Meric-Bernstam F, Ferrari M. Nanomedicine in cancer therapy: Innovative trends and prospects. Cancer Sci 2011; 102(7): 1247-52.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01941.x] [PMID: 21447010]
[18]
Chimento A, Casaburi I, Avena P, et al. Cholesterol and its metabolites in tumor growth: Therapeutic potential of statins in cancer treatment. Front Endocrinol (Lausanne) 2019; 9: 807.
[http://dx.doi.org/10.3389/fendo.2018.00807] [PMID: 30719023]
[19]
Alford SH, Divine G, Chao C, et al. Serum cholesterol trajectories in the 10 years prior to lymphoma diagnosis. Cancer Causes Control 2018; 29(1): 143-56.
[http://dx.doi.org/10.1007/s10552-017-0987-7] [PMID: 29192350]
[20]
Lim U, Gayles T, Katki HA, et al. Serum high-density lipoprotein cholesterol and risk of non-hodgkin lymphoma. Cancer Res 2007; 67(11): 5569-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0212] [PMID: 17522388]
[21]
Jafri H, Alsheikh-Ali AA, Karas RH. Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol 2010; 55(25): 2846-54.
[http://dx.doi.org/10.1016/j.jacc.2009.12.069] [PMID: 20579542]
[22]
Komiya I, Tomoyose T, Ouchi G, Yara T, Higa S. Low level of serum HDL-cholesterol with increased sIL-2R predicts a poor clinical outcome for patients with malignant lymphoma and adult T-cell leukemia-lymphoma. Cytokine 2018; 105: 57-62.
[http://dx.doi.org/10.1016/j.cyto.2018.02.005] [PMID: 29459344]
[23]
Nikolaenko L, Chen R, Herrera AF. Current strategies for salvage treatment for relapsed classical Hodgkin lymphoma. Ther Adv Hematol 2017; 8(10): 293-302.
[http://dx.doi.org/10.1177/2040620717728000] [PMID: 29051800]
[24]
Pavone V, Mele A, Carlino D, et al. Brentuximab vedotin as salvage treatment in Hodgkin lymphoma naïve transplant patients or failing ASCT: The real life experience of Rete Ematologica Pugliese (REP). Ann Hematol 2018; 97(10): 1817-24.
[http://dx.doi.org/10.1007/s00277-018-3379-5] [PMID: 30054707]
[25]
Kalakonda N, Maerevoet M, Cavallo F, et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol 2020; 7(7): e511-22.
[http://dx.doi.org/10.1016/S2352-3026(20)30120-4] [PMID: 32589977]
[26]
Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020; 382(14): 1331-42.
[http://dx.doi.org/10.1056/NEJMoa1914347] [PMID: 32242358]
[27]
Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: A study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 2010; 116(12): 2040-5.
[http://dx.doi.org/10.1182/blood-2010-03-276246] [PMID: 20548096]
[28]
Hagemeister FB. Treatment of relapsed aggressive lymphomas: Regimens with and without high-dose therapy and stem cell rescue. Cancer Chemother Pharmacol 2002; 49(0) (Suppl. 1): S13-20.
[http://dx.doi.org/10.1007/s00280-002-0447-1] [PMID: 12042984]
[29]
van Vlerken LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 2007; 67(10): 4843-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1648] [PMID: 17510414]
[30]
Flinn IW, van der Jagt R, Kahl B, et al. First-Line treatment of patients with indolent non-hodgkin lymphoma or mantle-cell lymphoma with bendamustine plus rituximab versus R-CHOP or R-CVP: Results of the BRIGHT 5-Year follow-up study. J Clin Oncol 2019; 37(12): 984-91.
[http://dx.doi.org/10.1200/JCO.18.00605] [PMID: 30811293]
[31]
Sarkozy C, Trneny M, Xerri L, et al. Risk factors and outcomes for patients with follicular lymphoma who had histologic transformation after response to first-line immunochemotherapy in the PRIMA trial. J Clin Oncol 2016; 34(22): 2575-82.
[http://dx.doi.org/10.1200/JCO.2015.65.7163] [PMID: 27298402]
[32]
Kusowska A, Kubacz M, Krawczyk M, Slusarczyk A, Winiarska M, Bobrowicz M. Molecular aspects of resistance to immunotherapies-advances in understanding and management of diffuse large B-Cell lymphoma. Int J Mol Sci 2022; 23(3): 1501.
[http://dx.doi.org/10.3390/ijms23031501] [PMID: 35163421]
[33]
Jiang Y, Zhen Y, Xu Q, He D, Chen G, Chen Y. Bone marrow versus peripheral blood stem cell transplant in lymphoma: A systematic review and meta-analysis. Exp Clin Transplant 2018; 16(5): 596-607.
[PMID: 29251579]
[34]
Hübel K, Ghielmini M, Ladetto M, Gopal AK. Controversies in the treatment of follicular lymphoma. HemaSphere 2020; 4(1): e317.
[http://dx.doi.org/10.1097/HS9.0000000000000317] [PMID: 32382707]
[35]
Sasse S, Bröckelmann PJ, Goergen H, et al. Long-Term follow-up of contemporary treatment in early-stage hodgkin lymphoma: Updated analyses of the german hodgkin study group HD7, HD8, HD10, and HD11 trials. J Clin Oncol 2017; 35(18): 1999-2007.
[http://dx.doi.org/10.1200/JCO.2016.70.9410] [PMID: 28418763]
[36]
Curti BD, Urba WJ, Alvord WG, et al. Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: Changes during treatment. Cancer Res 1993; 53(10): 2204-7.
[PMID: 8485703]
[37]
Narum SM, Le T, Le DP, et al. Chapter 4 - Passive targeting in nanomedicine: Fundamental concepts, body interactions, and clinical potential. In: Chung EJ, Leon L, Rinaldi C, Eds.; Nanoparticles for Biomedical Applications: Elsevier 2020; pp. 37-53.37-53.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00004-7]
[38]
Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med 2015; 7(291): 291ra94.
[http://dx.doi.org/10.1126/scitranslmed.aaa5447] [PMID: 26062846]
[39]
Mikada M, Sukhbaatar A, Miura Y, et al. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci 2017; 108(5): 846-52.
[http://dx.doi.org/10.1111/cas.13206] [PMID: 28211204]
[40]
Passalidou E, Stewart M, Trivella M, et al. Vascular patterns in reactive lymphoid tissue and in non-Hodgkin’s lymphoma. Br J Cancer 2003; 88(4): 553-9.
[http://dx.doi.org/10.1038/sj.bjc.6600742] [PMID: 12592369]
[41]
Moehler TM, Ho AD, Goldschmidt H, Barlogie B. Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol 2003; 45(3): 227-44.
[http://dx.doi.org/10.1016/S1040-8428(02)00135-X] [PMID: 12633837]
[42]
Hainsworth JD, Greco FA, Raefsky EL, et al. Rituximab with or without bevacizumab for the treatment of patients with relapsed follicular lymphoma. Clin Lymphoma Myeloma Leuk 2014; 14(4): 277-83.
[http://dx.doi.org/10.1016/j.clml.2014.02.010] [PMID: 24679633]
[43]
Gratzinger D, Zhao S, Marinelli RJ, et al. Microvessel density and expression of vascular endothelial growth factor and its receptors in dif-fuse large B-cell lymphoma subtypes. Am J Pathol 2007; 170(4): 1362-9.
[http://dx.doi.org/10.2353/ajpath.2007.060901] [PMID: 17392174]
[44]
Jiang L, Li N. B-cell non-Hodgkin lymphoma: Importance of angiogenesis and antiangiogenic therapy. Angiogenesis 2020; 23(4): 515-29.
[http://dx.doi.org/10.1007/s10456-020-09729-7] [PMID: 32451774]
[45]
Medinger M, Passweg J. Role of tumour angiogenesis in haematological malignancies. Swiss Med Wkly 2014; 144(4546): w14050.
[http://dx.doi.org/10.4414/smw.2014.14050] [PMID: 25375891]
[46]
Robinson K, Tiriveedhi V. Perplexing role of P-Glycoprotein in tumor microenvironment. Front Oncol 2020; 10(265): 265.
[http://dx.doi.org/10.3389/fonc.2020.00265] [PMID: 32195185]
[47]
Shen H, Xu W, Luo W, et al. Upregulation of mdr1 gene is related to activation of the MAPK/ERK signal transduction pathway and YB-1 nuclear translocation in B-cell lymphoma. Exp Hematol 2011; 39(5): 558-69.
[http://dx.doi.org/10.1016/j.exphem.2011.01.013] [PMID: 21300134]
[48]
Adams CM, Mitra R, Gong JZ, Eischen CM. Non-hodgkin and hodgkin lymphomas select for overexpression of BCLW. Clin Cancer Res 2017; 23(22): 7119-29.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1144] [PMID: 28855351]
[49]
Pérez-Blanco JS, Santos-Buelga D, Fernández de Gatta MD, Hernández-Rivas JM, Martín A, García MJ. Population pharmacokinetics of doxorubicin and doxorubicinol in patients diagnosed with non-Hodgkin’s lymphoma. Br J Clin Pharmacol 2016; 82(6): 1517-27.
[http://dx.doi.org/10.1111/bcp.13070] [PMID: 27447545]
[50]
Hohloch K, Altmann B, Pfreundschuh M, et al. Obesity negatively impacts outcome in elderly female patients with aggressive B-cell lymphomas treated with R-CHOP: results from prospective trials of the German high-grade non-Hodgkin’s lymphoma trial group. Br J Haematol 2018; 180(2): 236-45.
[http://dx.doi.org/10.1111/bjh.15029] [PMID: 29193018]
[51]
Mo CC, Njuguna N, Beum PV, et al. Rapid clearance of rituximab may contribute to the continued high incidence of autoimmune hematologic complications of chemoimmunotherapy for chronic lymphocytic leukemia. Haematologica 2013; 98(8): 1259-63.
[http://dx.doi.org/10.3324/haematol.2012.080929] [PMID: 23716541]
[52]
Rudek MA, Sparreboom A, Garrett-Mayer ES, et al. Factors affecting pharmacokinetic variability following doxorubicin and docetaxel-based therapy. Eur J Cancer 2004; 40(8): 1170-8.
[http://dx.doi.org/10.1016/j.ejca.2003.12.026] [PMID: 15110880]
[53]
Coiffier B, Lepage E, Brière J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346(4): 235-42.
[http://dx.doi.org/10.1056/NEJMoa011795] [PMID: 11807147]
[54]
Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 2012; 18(11): 1639-42.
[http://dx.doi.org/10.1038/nm.2919] [PMID: 23104132]
[55]
Hara T, Yoshikawa T, Goto H, et al. R-THP-COP versus R-CHOP in patients younger than 70 years with untreated diffuse large B cell lymphoma: A randomized, open-label, noninferiority phase 3 trial. Hematol Oncol 2018; 36(4): 638-44.
[http://dx.doi.org/10.1002/hon.2524] [PMID: 29882279]
[56]
Zhou S, Wu D, Yin X, et al. Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J Exp Clin Cancer Res 2017; 36(1): 24.
[http://dx.doi.org/10.1186/s13046-017-0492-6] [PMID: 28166836]
[57]
Beers SA, French RR, Chan HT, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: Implications for antibody selection. Blood 2010; 115(25): 5191-201.
[http://dx.doi.org/10.1182/blood-2010-01-263533] [PMID: 20223920]
[58]
Burton C, Linch D, Hoskin P, et al. A phase III trial comparing CHOP to PMitCEBO with or without G-CSF in patients aged 60 plus with aggressive non-Hodgkin’s lymphoma. Br J Cancer 2006; 94(6): 806-13.
[http://dx.doi.org/10.1038/sj.bjc.6602975] [PMID: 16508640]
[59]
Campbell RB, Ying B, Kuesters GM, Hemphill R. Fighting cancer: From the bench to bedside using second generation cationic liposomal therapeutics. J Pharm Sci 2009; 98(2): 411-29.
[http://dx.doi.org/10.1002/jps.21458] [PMID: 18563780]
[60]
Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005; 307(5706): 58-62.
[http://dx.doi.org/10.1126/science.1104819] [PMID: 15637262]
[61]
Sahakyan N, Haddad A, Richardson S, Forcha-Etieundem V, Christopher L, Alharbi H, et al. Personalized nanoparticles for cancer therapy: A call for greater precision. Anti-cancer agents in medicinal chemistry (formerly current medicinal chemistry-anti-cancer agents) 2017; 17(8): 1033-9. http://dx.doi.org/10.2174/1871520617666170102150730
[62]
Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev 2020; 156: 4-22.
[http://dx.doi.org/10.1016/j.addr.2020.06.022] [PMID: 32593642]
[63]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17-18): 812-8.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[64]
Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting Cancer nanotechnology. Springer 2010; pp. 25-37.
[65]
Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles-emerging potential for managing leukemia and lymphoma. Front Bioeng Biotechnol 2017; 5: 79.
[http://dx.doi.org/10.3389/fbioe.2017.00079] [PMID: 29326927]
[66]
Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F. Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int J Pharm 2007; 331(2): 190-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.002] [PMID: 17196347]
[67]
Zeng Z, Tung CH, Zu Y. Aptamer-equipped protamine nanomedicine for precision lymphoma therapy. Cancers (Basel) 2020; 12(4): E780.
[http://dx.doi.org/10.3390/cancers12040780] [PMID: 32218299]
[68]
Yang S, Damiano MG, Zhang H, et al. Biomimetic, synthetic HDL nanostructures for lymphoma. Proc Natl Acad Sci USA 2013; 110(7): 2511-6.
[http://dx.doi.org/10.1073/pnas.1213657110] [PMID: 23345442]
[69]
Colin de Verdière A, Dubernet C, Nemati F, Poupon MF, Puisieux F, Couvreur P. Uptake of doxorubicin from loaded nanoparticles in mul-tidrug-resistant leukemic murine cells. Cancer Chemother Pharmacol 1994; 33(6): 504-8.
[http://dx.doi.org/10.1007/BF00686509] [PMID: 8137462]
[70]
Chen AM, Zhang M, Wei D, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009; 5(23): 2673-7.
[http://dx.doi.org/10.1002/smll.200900621] [PMID: 19780069]
[71]
Kuesters GM, Campbell RB. Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond) 2010; 5(2): 181-92.
[http://dx.doi.org/10.2217/nnm.09.105] [PMID: 20148631]
[72]
Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005; 2(3): 194-205.
[http://dx.doi.org/10.1021/mp0500014] [PMID: 15934780]
[73]
Hurwitz HI, Fehrenbacher L, Hainsworth JD, et al. Bevacizumab in combination with fluorouracil and leucovorin: An active regimen for first-line metastatic colorectal cancer. J Clin Oncol 2005; 23(15): 3502-8.
[http://dx.doi.org/10.1200/JCO.2005.10.017] [PMID: 15908660]
[74]
Richards SM, Campbell RB. Piloting your nanovehicle to overcome biological barriers Cancer nanotechnology. Springer 2017; pp. 139-45.
[75]
Liu X-Q, Xiong M-H, Shu X-T, Tang R-Z, Wang J. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm 2012; 9(10): 2863-74.
[http://dx.doi.org/10.1021/mp300193f] [PMID: 22924580]
[76]
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine 2018; 13: 8487-506.
[http://dx.doi.org/10.2147/IJN.S170723] [PMID: 30587973]
[77]
Glantz MJ, LaFollette S, Jaeckle KA, et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol 1999; 17(10): 3110-6.
[http://dx.doi.org/10.1200/JCO.1999.17.10.3110] [PMID: 10506606]
[78]
Pinheiro KV, Hungria VT, Ficker ES, Valduga CJ, Mesquita CH, Maranhão RC. Plasma kinetics of a cholesterol-rich microemulsion (LDE) in patients with Hodgkin’s and non-Hodgkin’s lymphoma and a preliminary study on the toxicity of etoposide associated with LDE. Cancer Chemother Pharmacol 2006; 57(5): 624-30.
[http://dx.doi.org/10.1007/s00280-005-0090-8] [PMID: 16133527]
[79]
Ni S, Qiu L, Zhang G, Zhou H, Han Y. Lymph cancer chemotherapy: Delivery of doxorubicin-gemcitabine prodrug and vincristine by nanostructured lipid carriers. Int J Nanomedicine 2017; 12: 1565-76.
[http://dx.doi.org/10.2147/IJN.S120685] [PMID: 28280326]
[80]
Zhu B, Yu L, Yue Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed Pharmacother 2017; 91: 287-94.
[http://dx.doi.org/10.1016/j.biopha.2017.02.112] [PMID: 28463792]
[81]
Nevala WK, Butterfield JT, Sutor SL, Knauer DJ, Markovic SN. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20+ B-cell lymphoma. Sci Rep 2017; 7(1): 45682.
[http://dx.doi.org/10.1038/srep45682] [PMID: 28378801]
[82]
Boehlke L, Winter JN. Sphingomyelin/cholesterol liposomal vincristine: A new formulation for an old drug. Expert Opin Biol Ther 2006; 6(4): 409-15.
[http://dx.doi.org/10.1517/14712598.6.4.409] [PMID: 16548767]
[83]
Knapp CM, He J, Lister J, Whitehead KA. Lipidoid nanoparticle mediated silencing of Mcl-1 induces apoptosis in mantle cell lymphoma. Exp Biol Med (Maywood) 2016; 241(9): 1007-13.
[http://dx.doi.org/10.1177/1535370216640944] [PMID: 27022142]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy