Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Creatinine Clearance Measurement with Bioelectrical Impedance Analysis in Heart Failure Patients: Comparison with Estimated-Creatinine Clearance Formulas

Author(s): Pietro Scicchitano*, Massimo Iacoviello, Piero Guida, Micaela De Palo, Angela Potenza, Marco Basile, Paolo Sasanelli, Francesco Trotta, Mariella Sanasi, Pasquale Caldarola and Francesco Massari

Volume 23, Issue 2, 2023

Published on: 05 September, 2022

Page: [205 - 213] Pages: 9

DOI: 10.2174/1871530322666220531142126

Price: $65

Abstract

Background: Kidney disease is common in patients with heart failure (HF). The Donadio equation combines plasma creatinine and bioimpedance vector analysis (BIVA) to estimate creatinine clearance. This study aimed to compare the Donadio formula to the Cockcroft-Gault (CG), Modification of Diet in Renal Disease Study (MDRD-4), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations in patients with HF.

Methods: We analysed data from 900 patients (mean age: 76 ± 10 years) with HF. All of them underwent clinical, laboratory, BIVA, and echocardiographic evaluations.

Results: Donadio equation overestimated eGFR as compared to CG and CKD-EPI formulas (+6.8 and +12 mL/min/1.73 m2, respectively) while computing similar results to MDRD-4 (overestimation: +0.1 mL/min/1.73 m2).

According to the different formulas, the prevalence of renal insufficiency (eGFR< 30 ml/min/1.73 m2) in relation to the different formulas was as follows: 24% with Donadio, 21% with CG, 13% with MDRD-4, and 23% with CKD-EPI formulas. All the equations demonstrated a high precision rate (r>0.8 for all). There was a “good” agreement between the Donadio and CG/MDRD-4 formulas and “fair” with the CDK-EPI formula. The Donadio equation showed a high accuracy in predicting severe renal dysfunction (eGFR< 30 mL/min/1.73 m2) in patients with HF (AUC > 0.9), showing comparable performances to CG.

Conclusion: The Donadio formula provided an estimation of GFR comparable to MDRD-4 in HF patients, independently from acute or chronic HF conditions. The use of BIVA in HF patients may be adopted both for HF management and for evaluating kidney function.

Keywords: Heart failure, Cockcroft-Gault, MDRD-4, CDK-EPI, comparisons, kidney function.

Graphical Abstract

[1]
Rossignol, P.; Coats, A.J.; Chioncel, O.; Spoletini, I.; Rosano, G. Renal function, electrolytes, and congestion monitoring in heart failure. Eur. Heart J. Suppl., 2019, 21(Suppl. M), M25-M31.
[http://dx.doi.org/10.1093/eurheartj/suz220] [PMID: 31908612]
[2]
Damman, K.; Valente, M.A.; Voors, A.A.; O’Connor, C.M.; van Veldhuisen, D.J.; Hillege, H.L. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur. Heart J., 2014, 35(7), 455-469.
[http://dx.doi.org/10.1093/eurheartj/eht386] [PMID: 24164864]
[3]
Schefold, J.C.; Filippatos, G.; Hasenfuss, G.; Anker, S.D.; von Haehling, S. Heart failure and kidney dysfunction: Epidemiolo-gy, mechanisms and management. Nat. Rev. Nephrol., 2016, 12(10), 610-623.
[http://dx.doi.org/10.1038/nrneph.2016.113] [PMID: 27573728]
[4]
Mullens, W.; Damman, K.; Testani, J.M.; Martens, P.; Mueller, C.; Lassus, J.; Tang, W.H.W.; Skouri, H.; Verbrugge, F.H.; Orso, F.; Hill, L.; Ural, D.; Lainscak, M.; Rossignol, P.; Metra, M.; Mebazaa, A.; Seferovic, P.; Ruschitzka, F.; Coats, A. Evaluation of kidney function throughout the heart failure trajectory - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail., 2020, 22(4), 584-603.
[http://dx.doi.org/10.1002/ejhf.1697] [PMID: 31908120]
[5]
Grande, D.; Gioia, M.I.; Terlizzese, P.; Iacoviello, M. Heart failure and kidney disease. Adv. Exp. Med. Biol., 2018, 1067, 219-238.
[http://dx.doi.org/10.1007/5584_2017_126] [PMID: 29159789]
[6]
Takahama, H.; Kitakaze, M. Pathophysiology of cardiorenal syndrome in patients with heart failure: Potential therapeutic targets. Am. J. Physiol. Heart Circ. Physiol., 2017, 313(4), H715-H721.
[http://dx.doi.org/10.1152/ajpheart.00215.2017] [PMID: 28733448]
[7]
Smith, G.L.; Lichtman, J.H.; Bracken, M.B.; Shlipak, M.G.; Phillips, C.O.; DiCapua, P.; Krumholz, H.M. Renal impairment and outcomes in heart failure: Systematic review and meta-analysis. J. Am. Coll. Cardiol., 2006, 47(10), 1987-1996.
[http://dx.doi.org/10.1016/j.jacc.2005.11.084] [PMID: 16697315]
[8]
Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron J., 1976, 16(1), 31-41.
[http://dx.doi.org/10.1159/000180580] [PMID: 1244564]
[9]
Levey, A.S.; Greene, T.; Kusek, J.W.; Beck, G.J. A simplified equation to predict glomerular filtration rate from serum creatinine. J. Am. Soc. Nephrol., 2000, 11, 155A.
[10]
Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; Coresh, J. A new equation to estimate glomerular filtration rate. Ann. Intern. Med., 2009, 150(9), 604-612.
[http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006] [PMID: 19414839]
[11]
O’Meara, E.; Chong, K.S.; Gardner, R.S.; Jardine, A.G.; Neilly, J.B.; McDonagh, T.A. The Modification of Diet in Renal Dis-ease (MDRD) equations provide valid estimations of glomerular filtration rates in patients with advanced heart failure. Eur. J. Heart Fail., 2006, 8(1), 63-67.
[http://dx.doi.org/10.1016/j.ejheart.2005.04.013] [PMID: 16084759]
[12]
Jonsson, A.; Viklund, I.; Jonsson, A.; Valham, F.; Bergdahl, E.; Lindmark, K.; Norberg, H. Comparison of creatinine-based methods for estimating glomerular filtration rate in patients with heart failure. ESC Heart Fail., 2020, 7(3), 1150-1160.
[http://dx.doi.org/10.1002/ehf2.12643] [PMID: 32052932]
[13]
Libório, A.; Uchoa, R.; Neto, J.; Valdivia, J. Daher, Ede.F.; Mejia, J. Assessing glomerular filtration rate in patients with severe heart failure: Comparison between creatinine-based formulas. Sao Paulo Med. J., 2012, 130(5), 289-293.
[http://dx.doi.org/10.1590/S1516-31802012000500004 ] [PMID: 23174867]
[14]
Valente, M.A.; Hillege, H.L.; Navis, G.; Voors, A.A.; Dunselman, P.H.; van Veldhuisen, D.J.; Damman, K. The chronic kidney disease epidemiology collaboration equation outperforms the modification of diet in renal disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur. J. Heart Fail., 2014, 16(1), 86-94.
[http://dx.doi.org/10.1093/eurjhf/hft128] [PMID: 23901055]
[15]
Oh, J.; Kang, S.M.; Hong, N.; Youn, J.C.; Han, S.; Jeon, E.S.; Cho, M.C.; Kim, J.J.; Yoo, B.S.; Chae, S.C.; Oh, B.H.; Choi, D.J.; Lee, M.M.; Ryu, K.H.; Kor, H.F. The CKD-EPI is more accurate in clinical outcome prediction than MDRD equation in acute heart failure: Data from the Korean Heart Failure (KorHF) Registry. Int. J. Cardiol., 2013, 167(3), 1084-1087.
[http://dx.doi.org/10.1016/j.ijcard.2012.10.054] [PMID: 23192012]
[16]
Smilde, T.D.; van Veldhuisen, D.J.; Navis, G.; Voors, A.A.; Hillege, H.L. Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation, 2006, 114(15), 1572-1580.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.610642 ] [PMID: 17015793]
[17]
Hermida-Cadahia, E.F.; Lampon, N.; Tutor, J.C. Impact of creatinine production on the agreement between glomerular filtration rate estimates using cystatin C-derived, and 4- and 6-variable Modification of Diet in Renal Disease (MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations. Ups. J. Med. Sci., 2012, 117(4), 402-410.
[http://dx.doi.org/10.3109/03009734.2012.696154] [PMID: 22746300]
[18]
Fabbian, F.; De Giorgi, A.; Portaluppi, F.; Zuliani, G. Relation-ship between N-terminal pro-B-type natriuretic peptide plasma levels and renal function evaluated with different formulae in older adult subjects admitted because of dyspnea. Gerontology, 2012, 58(1), 50-55.
[http://dx.doi.org/10.1159/000326243] [PMID: 21540563]
[19]
Donadio, C. Body composition analysis allows the prediction of urinary creatinine excretion and of renal function in chronic kidney disease patients. Nutrients, 2017, 9(6), 553.
[http://dx.doi.org/10.3390/nu9060553] [PMID: 28555040]
[20]
Donadio, C.; Lucchesi, A.; Tramonti, G.; Bianchi, C. Creatinine clearance can be predicted from plasma creatinine and body composition analysis by means of electrical bioimpedance. Ren. Fail., 1998, 20(2), 285-293.
[http://dx.doi.org/10.3109/08860229809045113] [PMID: 9574454]
[21]
Massari, F.; Iacoviello, M.; Scicchitano, P.; Mastropasqua, F.; Guida, P.; Riccioni, G.; Speziale, G.; Caldarola, P.; Ciccone, M.M.; Di Somma, S. Accuracy of bioimpedance vector analysis and brain natriuretic peptide in detection of peripheral edema in acute and chronic heart failure. Heart Lung, 2016, 45(4), 319-326.
[http://dx.doi.org/10.1016/j.hrtlng.2016.03.008] [PMID: 27117421]
[22]
Massari, F.; Scicchitano, P.; Ciccone, M.M.; Caldarola, P.; Aspromonte, N.; Iacoviello, M.; Barro, S.; Pantano, I.; Valle, R. Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition, 2019, 61, 56-60.
[http://dx.doi.org/10.1016/j.nut.2018.10.028] [PMID: 30703569]
[23]
Massari, F.; Scicchitano, P.; Iacoviello, M.; Passantino, A.; Guida, P.; Sanasi, M.; Piscopo, A.; Romito, R.; Valle, R.; Cal-darola, P.; Ciccone, M.M. Multiparametric approach to conges-tion for predicting long-term survival in heart failure. J. Cardiol., 2020, 75(1), 47-52.
[http://dx.doi.org/10.1016/j.jjcc.2019.05.017] [PMID: 31326239]
[24]
Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; Jessup, M.; Linde, C.; Nihoyannopoulos, P.; Parissis, J.T.; Pieske, B.; Riley, J.P.; Rosano, G.M.C.; Ruilope, L.M.; Ruschitzka, F.; Rutten, F.H.; van der Meer, P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J., 2016, 37(27), 2129-2200.
[http://dx.doi.org/10.1093/eurheartj/ehw128] [PMID: 27206819]
[25]
Levey, A.S.; Eckardt, K.U.; Dorman, N.M.; Christiansen, S.L.; Hoorn, E.J.; Ingelfinger, J.R.; Inker, L.A.; Levin, A.; Mehrotra, R.; Palevsky, P.M.; Perazella, M.A.; Tong, A.; Allison, S.J.; Bockenhauer, D.; Briggs, J.P.; Bromberg, J.S.; Davenport, A.; Feldman, H.I.; Fouque, D.; Gansevoort, R.T.; Gill, J.S.; Greene, E.L.; Hemmelgarn, B.R.; Kretzler, M.; Lambie, M.; Lane, P.H.; Laycock, J.; Leventhal, S.E.; Mittelman, M.; Morrissey, P.; Ostermann, M.; Rees, L.; Ronco, P.; Schaefer, F.; St Clair Russell, J.; Vinck, C.; Walsh, S.B.; Weiner, D.E.; Cheung, M.; Jadoul, M.; Winkelmayer, W.C. Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int., 2020, 97(6), 1117-1129.
[http://dx.doi.org/10.1016/j.kint.2020.02.010] [PMID: 32409237]
[26]
Massari, F.; Mastropasqua, F.; Guida, P.; De Tommasi, E.; Rizzon, B.; Pontraldolfo, G.; Pitzalis, M.V.; Rizzon, P. Whole-body bioelectrical impedance analysis in patients with chronic heart failure: Reproducibility of the method and effects of body side. Ital. Heart J., 2001, 2(8), 594-598.
[PMID: 11577833]
[27]
Fleiss, J.L. Measuring agreement between two judges on the presence or absence of a trait. Biometrics, 1975, 31(3), 651-659.
[http://dx.doi.org/10.2307/2529549] [PMID: 1174623]
[28]
McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. (Zagreb), 2012, 22(3), 276-282.
[http://dx.doi.org/10.11613/BM.2012.031] [PMID: 23092060]
[29]
Fischer, J.E.; Bachmann, L.M.; Jaeschke, R. A readers’ guide to the interpretation of diagnostic test properties: Clinical example of sepsis. Intensive Care Med., 2003, 29(7), 1043-1051.
[http://dx.doi.org/10.1007/s00134-003-1761-8] [PMID: 12734652]
[30]
Curcio, F.; Testa, G.; Liguori, I.; Papillo, M.; Flocco, V.; Panicara, V.; Galizia, G.; Della-Morte, D.; Gargiulo, G.; Cacciatore, F.; Bonaduce, D.; Landi, F.; Abete, P. Sarcopenia and heart failure. Nutrients, 2020, 12(1), 211.
[http://dx.doi.org/10.3390/nu12010211] [PMID: 31947528]
[31]
Springer, J.; Springer, J.I.; Anker, S.D. Muscle wasting and sarcopenia in heart failure and beyond: Update 2017. ESC Heart Fail., 2017, 4(4), 492-498.
[http://dx.doi.org/10.1002/ehf2.12237] [PMID: 29154428]
[32]
Zhu, Y.; Ye, X.; Zhu, B.; Pei, X.; Wei, L.; Wu, J.; Zhao, W. Comparisons between the 2012 new CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations and other four approved equations. PLoS One, 2014, 9(1), e84688.
[http://dx.doi.org/10.1371/journal.pone.0084688] [PMID: 24454737]
[33]
Burkhardt, H.; Bojarsky, G.; Gretz, N.; Gladisch, R. Creatinine clearance, Cockcroft-Gault formula and cystatin C: Estimators of true glomerular filtration rate in the elderly? Gerontology, 2002, 48(3), 140-146.
[http://dx.doi.org/10.1159/000052832] [PMID: 11961366]
[34]
McFadden, E.C.; Hirst, J.A.; Verbakel, J.Y.; McLellan, J.H.; Hobbs, F.D.R.; Stevens, R.J.; O’Callaghan, C.A.; Lasserson, D.S. Systematic review and metaanalysis comparing the bias and accuracy of the modification of diet in renal disease and chronic kidney disease epidemiology collaboration equations in community-based populations. Clin. Chem., 2018, 64(3), 475-485.
[http://dx.doi.org/10.1373/clinchem.2017.276683] [PMID: 29046330]
[35]
Trevisani, F.; Di Marco, F.; Capitanio, U.; Larcher, A.; Bettiga, A.; Dosio, F.; Ghidini, M.; Del Conte, G.; Vago, R.; Cinque, A.; Gianolli, L.; Salonia, A.; Briganti, A.; Luis-Lima, S.; Negrín-Mena, N.; Montorsi, F.; Porrini, E. Renal function assessment gap in clinical practice: An awkward truth. Kidney Blood Press. Res., 2020, 45(2), 166-179.
[http://dx.doi.org/10.1159/000504649] [PMID: 31982867]
[36]
Kumar, B.V.; Mohan, T. Retrospective comparison of estimated GFR using 2006 MDRD, 2009 CKD-EPI and cockcroft-gault with 24 hour urine creatinine clearance. J. Clin. Diagn. Res., 2017, 11(5), BC09-BC12.
[http://dx.doi.org/10.7860/JCDR/2017/25124.9889] [PMID: 28658750]
[37]
Delanaye, P.; Nellessen, E.; Grosch, S.; Depas, G.; Cavalier, E.; Defraigne, J.O.; Chapelle, J.P.; Krzesinski, J.M.; Lancellotti, P. Creatinine-based formulae for the estimation of glomerular filtration rate in heart transplant recipients. Clin. Transplant., 2006, 20(5), 596-603.
[http://dx.doi.org/10.1111/j.1399-0012.2006.00523.x ] [PMID: 16968485]
[38]
Donadio, C.; Moriconi, D.; Berta, R.; Anselmino, M. Estimation of urinary creatinine excretion and prediction of renal function in morbidly obese patients: New tools from body composition analysis. Kidney Blood Press. Res., 2017, 42(4), 629-640.
[http://dx.doi.org/10.1159/000481630] [PMID: 28977791]
[39]
Donadio, C. Predicted and measured creatinine clearance for the estimation of renal graft function: New tools from body composition analysis. Intern. Med., 2014, 4, 178.
[40]
Rangaswami, J.; Bhalla, V.; Blair, J.E.A.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; Ronco, C.; Tang, W.H.W.; McCullough, P.A. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the American Heart Association. Circulation, 2019, 139(16), e840-e878.
[http://dx.doi.org/10.1161/CIR.0000000000000664] [PMID: 30852913]
[41]
Scicchitano, P.; Iacoviello, M.; Passantino, A.; Guida, P.; De Palo, M.; Piscopo, A.; Gesualdo, M.; Caldarola, P.; Massari, F. The prognostic impact of estimated creatinine clearance by bioelectrical impedance analysis in heart failure: Comparison of different eGFR formulas. Biomedicines, 2021, 9(10), 1307.
[http://dx.doi.org/10.3390/biomedicines9101307] [PMID: 34680423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy