Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Antihypertensive and Vasorelaxant Effects of Rumex vesicarius (L.) through Receptor-Operated Calcium Channels in Hypertensive Rats

Author(s): Ayoub Amssayef, Ismail Bouadid, Ahmed EL-Haidani and Mohamed Eddouks*

Volume 22, Issue 1, 2022

Published on: 21 June, 2022

Page: [67 - 82] Pages: 16

DOI: 10.2174/1871529X22666220531110308

Price: $65

Abstract

Aims: The aim of the study was to assess the antihypertensive activity of Rumex vesicarius. Background: The genus Rumex (sorrel, Polygonaceae), containing approximately 200 species, is distributed worldwide (African, European, Asian, and American countries). It is widely used in traditional medicine as analgesic, diuretic, antispasmodic, and antihypertensive plant.

Objectives: This study aimed to assess the possible antihypertensive vasorelaxant capacity and effect on angiotensin-converting enzyme 2 (ACE-2) of the aqueous extract of Rumex vesicarius (R. vesicarius).

Methods: In the present study, the aqueous extract of R. vesicarius (AERV) was prepared, its antihypertensive activity was examined in N(ω)-nitro-L-arginine methyl ester(L-NAME)-induced hypertensive rats, and its vasorelaxant ability along with its effect on stimulating or inhibiting ACE-2 were determined in isolated rat thoracic aorta.

Results: The results indicated that AERV decreased the systolic, diastolic, mean, and mean arterial blood pressure in hypertensive rats. The data revealed that AERV exerted its antihypertensive effect through vasodilatory properties via an endothelium-independent pathway. Interestingly, the study demonstrated that the vasorelaxation ability of AERV might be mediated through receptor-operated calcium channels (ROCC). However, AERV extract had no effect on either stimulating or inhibiting ACE-2.

Conclusion: The present study demonstrates clearly the antihypertensive and vasorelaxant activities of R. vesicarius in hypertensive rats, supporting its beneficial action as an antihypertensive agent.

Keywords: Hypertension, Rumex vesicarius, vasorelaxation, aortic ring, medicinal plant, ACE-2, receptor-operated calcium channels.

Graphical Abstract

[1]
Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; Wainford, R.D.; Williams, B.; Schutte, A.E. 2020 international society of hypertension global hypertension practice guidelines. Hypertension, 2020, 75(6), 1334-1357.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15026] [PMID: 32370572]
[2]
Kiriyama, A.; Honbo, A.; Nishimura, A.; Shibata, N.; Iga, K. Pharmacokinetic-pharmacodynamic analyses of antihypertensive drugs, nifedipine and propranolol, in spontaneously hypertensive rats to investigate characteristics of effect and side effects. Regul. Toxicol. Pharmacol., 2016, 76, 21-29.
[http://dx.doi.org/10.1016/j.yrtph.2016.01.003] [PMID: 26773344]
[3]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[4]
Ahmad, L.; Semotiuk, A.; Zafar, M.; Ahmad, M.; Sultana, S.; Liu, Q-R.; Zada, M.P.; Ul Abidin, S.Z.; Yaseen, G. Ethnopharmacolo-gical documentation of medicinal plants used for hypertension among the local communities of DIR Lower, Pakistan. J. Ethnopharmacol., 2015, 175, 138-146.
[http://dx.doi.org/10.1016/j.jep.2015.09.014] [PMID: 26392329]
[5]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[6]
Vasas, A.; Orbán-Gyapai, O.; Hohmann, J. The genus rumex: Review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2015, 175(4), 198-228.
[http://dx.doi.org/10.1016/j.jep.2015.09.001] [PMID: 26384001]
[7]
Beddou, F.; Bekhechi, C.; Ksouri, R.; Chabane Sari, D.; Atik Bekkara, F. Potential assessment of Rumex vesicarius L. as a source of natural antioxidants and bioactive compounds. J. Food Sci. Technol., 2015, 52(6), 3549-3560.
[PMID: 26028737]
[8]
El-Hawary, S.A.; Sokkar, N.M.; Ali, Z.Y.; Yehia, M.M. A profile of bioactive compounds of Rumex vesicarius L. J. Food Sci., 2011, 76(8), C1195-C1202.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02370.x] [PMID: 22417584]
[9]
Khan, T.H.; Ganaie, M.A.; Siddiqui, N.A.; Alam, A.; Ansari, M.N. Antioxidant potential of Rumex vesicarius L.: In vitro approach. Asian Pac. J. Trop. Biomed., 2014, 4(7), 538-544.
[http://dx.doi.org/10.12980/APJTB.4.2014C1168] [PMID: 25183273]
[10]
Farooq, M.; Abutaha, N.; Mahboob, S.; Baabbad, A.; Almoutiri, N.D.; Wadaan, M.A.A.M. Investigating the antiangiogenic potential of Rumex vesicarius (humeidh), anticancer activity in cancer cell lines and assessment of developmental toxicity in zebrafish embryos. Saudi J. Biol. Sci., 2020, 27(2), 611-622.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.042] [PMID: 32210679]
[11]
Rao, K.N.V.; Sunitha, C.; Banji, D.; Shwetha, S.; Krishna, D.M. Diuretic activity of different extracts and formulation on aerial parts of Rumex vesicarius Linn. J. Chem. Pharm. Res., 2011, 3, 400-408.
[12]
Khan, I.A.; Aziz, A.; Saqib, F.; Munawar, S.H.; Manzoor, Z.; Raza, M.A. Pharmacological evaluation of Rumex vesicarius Linn leaf extract and fractions in rabbit gastrointestinal ailment. Afr. J. Pharm. Pharmacol., 2014, 8(12), 333-341.
[http://dx.doi.org/10.5897/AJPP2014.4045]
[13]
Amssayef, A.; Eddouks, M. Antihyperglycemic, antihyperlipide-mic, and antioxidant effects of cotula cinerea (Del) in normal and streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1504-1513.
[http://dx.doi.org/10.2174/1871530320666200513081312] [PMID: 32400337]
[14]
Amssayef, A.; Azzaoui, B.; Ajebli, M.; Eddouks, M. Antidyslipidemic and antioxidant activities of matricaria pubescens (Desf.) Shultz. In streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2021, 19(1), 62-71.
[http://dx.doi.org/10.2174/1871525718666200506100139] [PMID: 32370726]
[15]
Amssayef, A.; Ajebli, M.; Eddouks, M. Aqueous extract of oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin. Exp. Hypertens., 2021, 43(1), 49-55.
[http://dx.doi.org/10.1080/10641963.2020.1797087] [PMID: 32706597]
[16]
Amssayef, A.; Eddouks, M. Aqueous extract of matricaria pubescens exhibits antihypertensive activity in L-NAME-induced hypertensiverats through its vasorelaxant effect. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(2), 135-143.
[http://dx.doi.org/10.2174/1871525717666191007151413] [PMID: 31589128]
[17]
Akdad, M.; Eddouks, M. Cardiovascular effects of micromeria graeca (L.) Benth. ex Rchb in normotensive and hypertensive rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1253-1261.
[http://dx.doi.org/10.2174/1871530319666191206163136] [PMID: 31822260]
[18]
El-Ouady, F.; Eddouks, M. Warionia saharae induces antihypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. J. Complement. Integr. Med., 2019, 17(1)
[http://dx.doi.org/10.1515/jcim-2019-0024] [PMID: 31348761]
[19]
Ajebli, M.; Eddouks, M. Eucalyptus globulus possesses antihypertensive activity in L-NAME-induced hypertensive rats and relaxes isolated rat thoracic aorta through the nitric oxide pathway. Nat. Prod. Res., 2019, 10, 1-3.
[http://dx.doi.org/10.1080/14786419.2019.1598992] [PMID: 30966776]
[20]
Kim, B.; Kwon, Y.; Lee, S.; Lee, K.; Ham, I.; Choi, H.Y. Vasorelaxant effects of Angelica decursiva root on isolated rat aortic rings. BMC Complement. Altern. Med., 2017, 17(1), 474.
[http://dx.doi.org/10.1186/s12906-017-1965-z] [PMID: 28969672]
[21]
McFadzean, I.; Gibson, A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br. J. Pharmacol., 2002, 135(1), 1-13.
[http://dx.doi.org/10.1038/sj.bjp.0704468] [PMID: 11786473]
[22]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[23]
Lee, K.; Park, G.; Ham, I.; Yang, G.; Lee, M.; Bu, Y.; Kim, H.; Choi, H.Y. Vasorelaxant effect of Osterici radix ethanol extract on rat aortic rings. Evid. Based Complement. Alternat. Med., 2013, 2013, 350964.
[http://dx.doi.org/10.1155/2013/350964] [PMID: 24204390]
[24]
Scicchitano, P.; Cameli, M.; Maiello, M.; Amedeo Modesti, P.; Lorenza Muiesan, M.; Novo, S.; Palmiero, P.; Sergio Saba, P.; Pedrinelli, R.; Matteo Ciccone, M. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Funct. Foods, 2014, 6, 11-32.
[http://dx.doi.org/10.1016/j.jff.2013.12.006]
[25]
Jia, H.P.; Look, D.C.; Tan, P.; Shi, L.; Hickey, M.; Gakhar, L.; Chappell, M.C.; Wohlford-Lenane, C.; McCray, P.B. Jr Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 297(1), L84-L96.
[http://dx.doi.org/10.1152/ajplung.00071.2009] [PMID: 19411314]
[26]
Banu, N.; Panikar, S.S.; Leal, L.R.; Leal, A.R. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci., 2020, 256, 117905.
[http://dx.doi.org/10.1016/j.lfs.2020.117905] [PMID: 32504757]
[27]
Dabaghian, F.; Khanavi, M.; Zarshenas, M.M. Bioactive compounds with possible inhibitory activity of Angiotensin-Converting Enzyme-II; a gate to manage and prevent COVID-19. Med. Hypotheses, 2020, 143, 109841.
[http://dx.doi.org/10.1016/j.mehy.2020.109841] [PMID: 32425303]
[28]
Zheng, Y-Y.; Ma, Y-T.; Zhang, J-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[29]
De Maria, M.L.; Araújo, L.D.; Fraga-Silva, R.A.; Pereira, L.A.; Ribeiro, H.J.; Menezes, G.B.; Shenoy, V.; Raizada, M.K.; Ferreira, A.J. Anti-hypertensive effects of diminazene aceturate: An angiotensin- converting enzyme 2 activator in rats. Protein Pept. Lett., 2016, 23(1), 9-16.
[http://dx.doi.org/10.2174/0929866522666151013130550] [PMID: 26458404]
[30]
Sartório, C.L.; Pimentel, E.B.; Dos Santos, R.L.; Rouver, W.N.; Mill, J.G. Acute hypotensive effect of diminazene aceturate in spontaneously hypertensive rats: Role of NO and Mas receptor. Clin. Exp. Pharmacol. Physiol., 2020, 47(10), 1723-1730.
[http://dx.doi.org/10.1111/1440-1681.13368] [PMID: 32603499]
[31]
Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun., 2020, 525(1), 135-140.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy