Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring the Latent Mechanism of Huanglian Jiedu Decoction Formula for Anti-atopic Dermatitis by Systems Pharmacology

Author(s): Chang Liu, Sheng Shu, Zhelin Xia*, Guirong Chen* and Yubin Xu*

Volume 26, Issue 3, 2023

Published on: 22 July, 2022

Page: [610 - 629] Pages: 20

DOI: 10.2174/1386207325666220531091324

Price: $65

Abstract

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease, which does not have a specific drug presently. Huanglian jiedu decoction (HJD) is one of the effective traditional Chinese medicine prescriptions. The real material and mechanisms of HJD for AD are not clear.

Objective: Network pharmacology and in vivo experiments were used to explore the real material and mechanisms of HJD for AD.

Methods: A systems’ pharmacology approach that provides a comprehensive analysis of bioactive compounds, targets, and pathway interactions was employed to elucidate the molecular pathogenesis of HJD for AD. First, the compound databases were constructed for HJD, and compound targets were predicted. Then, the hub targets of HJD were selected by degree centrality analysis and validated using the molecular docking method. Finally, Compound-Target and Target-Pathway networks were constructed to explore the latent mechanism of HJD for AD. Then, animal models of AD were established, the pathology of the skin lesions was observed, and RT-PCR and ELISA methods were used to verify the key targets in the serum of AD mice.

Results: The results showed that 60 bioactive compounds (palmatine, wogonin, cavidine, etc.) of HJD interacting with 169 related hub targets (PTGS2, HSP90AA1, etc.) were authenticated. HJD potentially participates in response to stimuli, biological regulation, and reproduction through the PI3K-Akt signaling pathway, MAPK signaling pathway, Ras signaling pathway, and Fc epsilon RI signaling pathway, which are interrelated to the pathogenesis of AD. Compared with the control group, the thickening of the epidermis in the model group was obvious with inflammatory cells infiltrating, the levels of PI3K, AKT, JNK, ERK, IL-4 and TNF-α were up-regulated; and 6.4g/kg and 12.8g/kg HJD could significantly reduce the thickening of the epidermis and infiltration of inflammatory cells, down-regulate the levels of PI3K, AKT, JNK, ERK, IL-4 and TNF-α in the AD mice. HJD might exert its anti-AD effects by downregulating key indicators (PI3K, AKT, JNK, ERK, IL-4, and TNF-α) in the PI3K/AKT and MAPK pathways.

Conclusions: Our study could help us understand the compound and mechanism of HJD for AD. Moreover, it had a guidance function to change the traditional arrangement of formula for HJD.

Keywords: Atopic dermatitis, huanglian jiedu decoction, systems pharmacology, network, traditional chinese medicine, material basis.

Graphical Abstract

[1]
Serrano, L.; Patel, K.R.; Silverberg, J.I. Association between atopic dermatitis and extracutaneous bacterial and mycobacterial infections: A systematic review and meta-analysis. J. Am. Acad. Dermatol., 2019, 80(4), 904-912.
[http://dx.doi.org/10.1016/j.jaad.2018.11.028] [PMID: 30471316]
[2]
Edwards, T.; Patel, N.U.; Blake, A.; Prabakaran, S.; Reimer, D.; Feldman, S.R.; Strowd, L.C. Insights into future therapeutics for atopic dermatitis. Expert Opin. Pharmacother., 2018, 19(3), 265-278.
[http://dx.doi.org/10.1080/14656566.2018.1430140] [PMID: 29376435]
[3]
Eichenfield, L.F.; Ellis, C.N.; Mancini, A.J.; Paller, A.S.; Simpson, E.L. Atopic dermatitis: Epidemiology and pathogenesis update. Semin. Cutan. Med. Surg., 2012, 31(3)(Suppl.), S3-S5.
[http://dx.doi.org/10.1016/j.sder.2012.07.002] [PMID: 23021783]
[4]
Davidson, W.F.; Leung, D.Y.M.; Beck, L.A.; Berin, C.M.; Boguniewicz, M.; Busse, W.W.; Chatila, T.A.; Geha, R.S.; Gern, J.E.; Guttman-Yassky, E.; Irvine, A.D.; Kim, B.S.; Kong, H.H.; Lack, G.; Nadeau, K.C.; Schwaninger, J.; Simpson, A.; Simpson, E.L.; Spergel, J.M.; To-gias, A.; Wahn, U.; Wood, R.A.; Woodfolk, J.A.; Ziegler, S.F.; Plaut, M. Report from the national institute of allergy and infectious diseas-es workshop on “atopic dermatitis and the atopic march: Mechanisms and interventions”. J. Allergy Clin. Immunol., 2019, 143(3), 894-913.
[http://dx.doi.org/10.1016/j.jaci.2019.01.003] [PMID: 30639346]
[5]
Blume-Peytavi, U.; Bagot, M.; Tennstedt, D.; Saint Aroman, M.; Stockfleth, E.; Zlotogorski, A.; Mengeaud, V.; Schmitt, A.M.; Paul, C.; Lim, H.W.; Georgescu, V.; Dréno, B.; Nocera, T. Dermatology today and tomorrow: From symptom control to targeted therapy. J. Eur. Acad. Dermatol. Venereol., 2019, 33(Suppl. 1), 3-36.
[http://dx.doi.org/10.1111/jdv.15335] [PMID: 30561009]
[6]
Chen, Y.; Xian, Y.; Lai, Z.; Loo, S.; Chan, W.Y.; Lin, Z.X. Anti-inflammatory and anti-allergic effects and underlying mechanisms of Huang-Lian-Jie-Du extract: Implication for atopic dermatitis treatment. J. Ethnopharmacol., 2016, 185, 41-52.
[http://dx.doi.org/10.1016/j.jep.2016.03.028] [PMID: 26976763]
[7]
Chen, G.; Xu, Y.; Jing, J.; Mackie, B.; Zheng, X.; Zhang, X.; Wang, J.; Li, X. The anti-sepsis activity of the components of Huanglian Jiedu Decoction with high lipid A-binding affinity. Int. Immunopharmacol., 2017, 46, 87-96.
[http://dx.doi.org/10.1016/j.intimp.2017.02.025] [PMID: 28278436]
[8]
Sun, J.; Wen, Q.H.; Song, Y.; Li, X.; Jin, J.; Ma, J.S.; Zhou, Q.L. Study on antitumor activities of huanglian jiedu decoction Zhongguo Zhongyao Zazhi, 2006, 31(17), 1461-1463 Study on antitumor activities of huanglian jiedu decoction]..
[PMID: 17087092]
[9]
Fang, X.Q. The research progress of the pharmacological action of Huanglian Jiedu Decoction. Chin Tradit Patent Med, 2015, 37, 2254-2259.
[10]
Zhang, P.H.; Zhang, J.T. Research progress on pharmacological action of huanglian jiedu decoction. Zhejiang. J. Tradit. Chin. Med., 2012, 47, 458-460.
[11]
Zhang, X.J.; Deng, Y.X.; Shi, Q.Z.; He, M.Y.; Chen, B.; Qiu, X.M. Hypolipidemic effect of the Chinese polyherbal Huanglian Jiedu decoc-tion in type 2 diabetic rats and its possible mechanism. Phytomedicine, 2014, 21(5), 615-623.
[http://dx.doi.org/10.1016/j.phymed.2013.11.004] [PMID: 24368167]
[12]
Yang, S. Q.; Shi, X. W.; An, Y. P. Application of huanglian jiedu decoction in dermatology department. China Medical Abstract of Dermatology, 2017, 34, 256-61+10.
[13]
Kobayashi, H.; Takahashi, K.; Mizuno, N.; Kutsuna, H.; Ishii, M. An alternative approach to atopic dermatitis: Part I-Case-Series presenta-tion. Evid. Based Complement. Alternat. Med., 2004, 1(1), 49-62.
[http://dx.doi.org/10.1093/ecam/neh015] [PMID: 15257326]
[14]
Liu, J.; Mu, J.; Zheng, C.; Chen, X.; Guo, Z.; Huang, C.; Fu, Y.; Tian, G.; Shang, H.; Wang, Y. Systems-Pharmacology dissection of tradi-tional chinese medicine compound saffron formula reveals multi-scale treatment strategy for cardiovascular diseases. Sci. Rep., 2016, 6(1), 19809.
[http://dx.doi.org/10.1038/srep19809] [PMID: 26813334]
[15]
Pei, T.; Zheng, C.; Huang, C.; Chen, X.; Guo, Z.; Fu, Y.; Liu, J.; Wang, Y. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J. Ethnopharmacol., 2016, 190, 272-287.
[http://dx.doi.org/10.1016/j.jep.2016.06.001] [PMID: 27265513]
[16]
Li, J.; Zhao, P.; Li, Y.; Tian, Y.; Wang, Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci. Rep., 2015, 5(1), 15290.
[http://dx.doi.org/10.1038/srep15290] [PMID: 26469778]
[17]
Feng, W.; Ao, H.; Yue, S.; Peng, C. Systems pharmacology reveals the unique mechanism features of Shenzhu Capsule for treatment of ulcerative colitis in comparison with synthetic drugs. Sci. Rep., 2018, 8(1), 16160.
[http://dx.doi.org/10.1038/s41598-018-34509-1] [PMID: 30385774]
[18]
Shu, Z.; He, W.; Shahen, M.; Guo, Z.; Shu, J.; Wu, T.; Bian, X.; Shar, A.H.; Farag, M.R.; Alagawany, M.; Liu, C. Clarifying of the potential mechanism of Sinisan formula for treatment of chronic hepatitis by systems pharmacology method. Biomed. Pharmacother., 2018, 100, 532-550.
[http://dx.doi.org/10.1016/j.biopha.2018.02.047] [PMID: 29482047]
[19]
Liu, J.; Pei, T.; Mu, J.; Zheng, C.; Chen, X.; Huang, C.; Fu, Y.; Liang, Z.; Wang, Y. Systems pharmacology uncovers the multiple mecha-nisms of xijiao dihuang decoction for the treatment of viral hemorrhagic fever. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/9025036] [PMID: 27239215]
[20]
Zhang, W.; Tao, Q.; Guo, Z.; Fu, Y.; Chen, X.; Shar, P.A.; Shahen, M.; Zhu, J.; Xue, J.; Bai, Y.; Wu, Z.; Wang, Z.; Xiao, W.; Wang, Y. Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional chinese medi-cine. Sci. Rep., 2016, 6(1), 32400.
[http://dx.doi.org/10.1038/srep32400] [PMID: 27597117]
[21]
Li, Y.; Wang, J.; Xiao, Y.; Wang, Y.; Chen, S.; Yang, Y.; Lu, A.; Zhang, S. A systems pharmacology approach to investigate the mecha-nisms of action of Semen Strychni and Tripterygium wilfordii Hook F for treatment of rheumatoid arthritis. J. Ethnopharmacol., 2015, 175, 301-314.
[http://dx.doi.org/10.1016/j.jep.2015.09.016] [PMID: 26386382]
[22]
Yan, M.; Jing, X.; Liu, Y.; Cui, X. Screening and identification of key biomarkers in bladder carcinoma: Evidence from bioinformatics analysis. Oncol. Lett., 2018, 16(3), 3092-3100.
[http://dx.doi.org/10.3892/ol.2018.9002] [PMID: 30127900]
[23]
Bikadi, Z.; Hazai, E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform., 2009, 1(1), 15.
[http://dx.doi.org/10.1186/1758-2946-1-15] [PMID: 20150996]
[24]
Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res., 2019, 47(W1), W199-W205.
[http://dx.doi.org/10.1093/nar/gkz401] [PMID: 31114916]
[25]
Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J.; Clue, G.O. A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8), 1091-1093.
[http://dx.doi.org/10.1093/bioinformatics/btp101] [PMID: 19237447]
[26]
Chen, G.R.; Zhang, G.; Li, M.Y.; Jing, J.; Wang, J.; Zhang, X.; Mackie, B.; Dou, D.Q. The effective components of Huanglian Jiedu Decoc-tion against sepsis evaluated by a lipid A-based affinity biosensor. J. Ethnopharmacol., 2016, 186, 369-376.
[http://dx.doi.org/10.1016/j.jep.2016.03.064] [PMID: 27045865]
[27]
Chen, Y.; Xian, Y.F.; Loo, S.; Lai, Z.; Chan, W.Y.; Liu, L.; Lin, Z.X. Huang-Lian-Jie-Du extract ameliorates atopic dermatitislike skin lesions induced by 2,4-dinitrobenzene in mice via suppression of MAPKs and NF-κB pathways. J. Ethnopharmacol., 2020, 249112367
[http://dx.doi.org/10.1016/j.jep.2019.112367] [PMID: 31678637]
[28]
Choi, H.; Kim, D.; Nam, S.; Lim, S.; Hwang, J.S.; Park, K.S.; Hong, H.S.; Shin, M.K.; Chung, E.; Son, Y. Manifestation of atopic dermati-tis-like skin in TNCB-induced NC/Nga mice is ameliorated by topical treatment of substance P, possibly through blockade of allergic in-flammation. Exp. Dermatol., 2018, 27(4), 396-402.
[http://dx.doi.org/10.1111/exd.13421] [PMID: 28833499]
[29]
Chen, H.; Liu, Q.; Liu, X.; Jin, J. Berberine attenuates septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats. Pharm. Biol., 2021, 59(1), 119-126.
[http://dx.doi.org/10.1080/13880209.2021.1877736] [PMID: 33539718]
[30]
Diniz, P.H.C.; Silva, S.D.C.; Vidigal, P.V.T.; Xavier, M.A.P.; Lima, C.X.; Faria, L.C.; Ferrari, T.C.A. Expression of MAPK and PI3K/AKT/mTOR Proteins according to the chronic liver disease etiology in hepatocellular carcinoma. J. Oncol., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/4609360] [PMID: 33178273]
[31]
Chai, F.N.; Zhang, J.; Xiang, H.M.; Xu, H.S.; Li, Y.F.; Ma, W.Y.; Li, X.G.; Ye, X.L. Protective effect of Coptisine from Rhizoma Coptidis on LPS/D-GalN-induced acute liver failure in mice through up-regulating expression of miR-122. Biomed. Pharmacother., 2018, 98, 180-190.
[http://dx.doi.org/10.1016/j.biopha.2017.11.133] [PMID: 29253766]
[32]
Hu, Y.; Wang, L.; Xiang, L.; Wu, J.; Huang, W.; Xu, C.; Meng, X.; Wang, P. Pharmacokinetic-Pharmacodynamic modeling for coptisine challenge of inflammation in lps-stimulated rats. Sci. Rep., 2019, 9(1), 1450.
[http://dx.doi.org/10.1038/s41598-018-38164-4] [PMID: 30723253]
[33]
Niu, X.; Zhang, H.; Li, W.; Mu, Q.; Yao, H.; Wang, Y. Anti-inflammatory effects of cavidine in vitro and in vivo, a selective COX-2 in-hibitor in LPS-induced peritoneal macrophages of mouse. Inflammation, 2015, 38(2), 923-933.
[http://dx.doi.org/10.1007/s10753-014-0054-4] [PMID: 25373916]
[34]
Kwon, S.G.; Roh, D.H.; Yoon, S.Y.; Moon, J.Y.; Choi, S.R.; Choi, H.S.; Kang, S.Y.; Han, H.J.; Beitz, A.J.; Oh, S.B.; Lee, J.H. Acid evoked thermal hyperalgesia involves peripheral P2Y1 receptor mediated TRPV1 phosphorylation in a rodent model of thrombus induced is-chemic pain. Mol. Pain, 2014, 10, 1744-8069-10-2.
[http://dx.doi.org/10.1186/1744-8069-10-2] [PMID: 24401144]
[35]
Pinto, N.C.C.; Machado, D.C.; da Silva, J.M.; Conegundes, J.L.M.; Gualberto, A.C.M.; Gameiro, J.; Moreira Chedier, L.; Castañon, M.C.M.N.; Scio, E. Pereskia aculeata Miller leaves present in vivo topical anti-inflammatory activity in models of acute and chronic der-matitis. J. Ethnopharmacol., 2015, 173, 330-337.
[http://dx.doi.org/10.1016/j.jep.2015.07.032] [PMID: 26226436]
[36]
Lang, S.; Popp, T.; Kriegs, C.S.; Schmidt, A.; Balszuweit, F.; Menacher, G.; Kehe, K.; Thiermann, H.; Gudermann, T.; Steinritz, D. Anti-apoptotic and moderate anti-inflammatory effects of berberine in sulfur mustard exposed keratinocytes. Toxicol. Lett., 2018, 293, 2-8.
[http://dx.doi.org/10.1016/j.toxlet.2017.09.004] [PMID: 28916288]
[37]
Chang, J.B.; Lane, M.E.; Yang, M.; Heinrich, M. Disentangling the complexity of a hexa-herbal chinese medicine used for inflammatory skin conditions-predicting the active components by combining LC-MS-Based metabolite profiles and in vitro pharmacology. Front. Pharmacol., 2018, 9, 1091.
[http://dx.doi.org/10.3389/fphar.2018.01091] [PMID: 30344490]
[38]
Jung, S.K.; Kim, J.E.; Lee, S.Y.; Lee, M.H.; Byun, S.; Kim, Y.A.; Lim, T.G.; Reddy, K.; Huang, Z.; Bode, A.M.; Lee, H.J.; Lee, K.W.; Dong, Z. The P110 subunit of PI3-K is a therapeutic target of acacetin in skin cancer. Carcinogenesis, 2014, 35(1), 123-130.
[http://dx.doi.org/10.1093/carcin/bgt266] [PMID: 23913940]
[39]
Couperus, M. Ammoidin (xanthotoxin) in the treatment of vitiligo. Calif. Med., 1954, 81(6), 402-406.
[PMID: 13209374]
[40]
Yun, M.Y.; Yang, J.H.; Kim, D.K.; Cheong, K.J.; Song, H.H.; Kim, D.H.; Cheong, K.J.; Kim, Y.I.; Shin, S.C. Therapeutic effects of Bai-calein on atopic dermatitislike skin lesions of NC/Nga mice induced by dermatophagoides pteronyssinus. Int. Immunopharmacol., 2010, 10(9), 1142-1148.
[http://dx.doi.org/10.1016/j.intimp.2010.06.020] [PMID: 20621172]
[41]
Diao, S.; Jin, M.; Jin, C.S.; Wei, C.X.; Sun, J.; Zhou, W.; Li, G. A new flavanone glycoside isolated from Tournefortia sibirica. Nat. Prod. Res., 2019, 33(20), 3021-3024.
[http://dx.doi.org/10.1080/14786419.2018.1512995] [PMID: 30580580]
[42]
Li, J.; Ding, Y.; Li, X.C.; Ferreira, D.; Khan, S.; Smillie, T.; Khan, I.A. Scuteflorins A and B, Dihydropyranocoumarins from Scutellaria lateriflora. J. Nat. Prod., 2009, 72(6), 983-987.
[http://dx.doi.org/10.1021/np900068t] [PMID: 19555121]
[43]
Dil, A.H. Anti-histaminic activity of fumarine. Therapie, 1973, 28(4), 767-774.
[PMID: 4152449]
[44]
Li, Y.; Zhang, G.; Chen, M.; Tong, M.; Zhao, M.; Tang, F.; Xiao, R.; Wen, H. Rutaecarpine inhibited imiquimod-induced psoriasis-like dermatitis via inhibiting the NF-κB and TLR7 pathways in mice. Biomed. Pharmacother., 2019, 109, 1876-1883.
[http://dx.doi.org/10.1016/j.biopha.2018.10.062] [PMID: 30551443]
[45]
Tsai, P.J.; Huang, W.C.; Hsieh, M.C.; Sung, P.J.; Kuo, Y.H.; Wu, W.H. Flavones isolated from scutellariae radix suppress propionibacte-rium acnes-induced cytokine production in vitro and in vivo. Molecules, 2015, 21(1), 15.
[http://dx.doi.org/10.3390/molecules21010015] [PMID: 26712724]
[46]
Kimura, Y.; Sumiyoshi, M. Effects of various flavonoids isolated from Scutellaria baicalensis roots on skin damage in acute UVB-irradiated hairless mice. J. Pharm. Pharmacol., 2011, 63(12), 1613-1623.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01365.x] [PMID: 22060293]
[47]
Luo, H.; Zhang, P.; Huang, H.; Huang, J.; Kao, E.; Shi, L.; He, L.; Yang, L. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome. Nucleic Acids Res, 2014, 42(Web Server issue), W46-52.
[http://dx.doi.org/10.1093/nar/gku433]
[48]
Xu, Y.; Guo, S.; Chen, G.; Zhang, M.; Zhang, X.; Dou, D. Evaluation of anti-sepsis activity by compounds with high affinity to lipid a from HuanglianJiedu decoction. Immunopharmacol. Immunotoxicol., 2017, 39(6), 364-370.
[http://dx.doi.org/10.1080/08923973.2017.1380661] [PMID: 28975862]
[49]
Yeh, C.H.; Shih, H.C.; Hong, H.M.; Lee, S.S.; Yang, M.L.; Chen, C.J.; Kuan, Y.H. Protective effect of wogonin on proinflammatory cyto-kine generation via Jak1/3-STAT1/3 pathway in lipopolysaccharide stimulated BV2 microglial cells. Toxicol. Ind. Health, 2015, 31(10), 960-966.
[http://dx.doi.org/10.1177/0748233713485886] [PMID: 23592745]
[50]
Niu, X.; Liu, F.; Li, W.; Zhi, W.; Zhang, H.; Wang, X.; He, Z. Cavidine ameliorates lipopolysaccharide-induced acute lung injury via NF-κB Signaling Pathway in vivo and in vitro. Inflammation, 2017, 40(4), 1111-1122.
[http://dx.doi.org/10.1007/s10753-017-0553-1] [PMID: 28365871]
[51]
Triantafilou, K.; Triantafilou, M.; Dedrick, R.L.A. CD14-independent LPS receptor cluster. Nat. Immunol., 2001, 2(4), 338-345.
[http://dx.doi.org/10.1038/86342] [PMID: 11276205]
[52]
Khurana, N.; Bhattacharyya, S. Hsp90, the concertmaster: Tuning transcription. Front. Oncol., 2015, 5, 100.
[http://dx.doi.org/10.3389/fonc.2015.00100] [PMID: 25973397]
[53]
Du, J.; Li, M.; Yuan, Z.; Guo, M.; Song, J.; Xie, X.; Chen, Y. A decision analysis model for KEGG pathway analysis. BMC Bioinformatics, 2016, 17(1), 407.
[http://dx.doi.org/10.1186/s12859-016-1285-1] [PMID: 27716040]
[54]
Lin, W.; Su, F.; Gautam, R.; Wang, N.; Zhang, Y.; Wang, X. Raf kinase inhibitor protein negatively regulates FcεRI-mediated mast cell activation and allergic response. Proc. Natl. Acad. Sci. USA, 2018, 115(42), E9859-E9868.
[http://dx.doi.org/10.1073/pnas.1805474115] [PMID: 30282734]
[55]
Pinto, S.M.; Subbannayya, Y.; Rex, D.A.B.; Raju, R.; Chatterjee, O.; Advani, J.; Radhakrishnan, A.; Keshava Prasad, T.S.; Wani, M.R.; Pandey, A. A network map of IL-33 signaling pathway. J. Cell Commun. Signal., 2018, 12(3), 615-624.
[http://dx.doi.org/10.1007/s12079-018-0464-4] [PMID: 29705949]
[56]
Ferretti, E.; Corcione, A.; Pistoia, V. The IL‐31/IL‐31 receptor axis: General features and role in tumor microenvironment. J. Leukoc. Biol., 2017, 102(3), 711-717.
[http://dx.doi.org/10.1189/jlb.3MR0117-033R] [PMID: 28408397]
[57]
Sur, B.; Kang, S.; Kim, M.; Oh, S. Alleviation of atopic dermatitis lesions by a benzylideneacetophenone derivative via the mapk signaling pathway. Inflammation, 2019, 42(3), 1093-1102.
[http://dx.doi.org/10.1007/s10753-019-00971-w] [PMID: 30729380]
[58]
Raguz, J.; Jeric, I.; Niault, T.; Nowacka, J.D.; Kuzet, S.E.; Rupp, C.; Fischer, I.; Biggi, S.; Borsello, T.; Baccarini, M. Epidermal RAF pre-vents allergic skin disease. eLife, 2016, 5e14012
[http://dx.doi.org/10.7554/eLife.14012] [PMID: 27431613]
[59]
Song, Z.; Deng, X.; Chen, W.; Xu, J.; Chen, S.; Zhong, H.; Hao, F. Toll-like receptor 2 agonist Pam3CSK4 up-regulates FcεRI receptor expression on monocytes from patients with severe extrinsic atopic dermatitis. J. Eur. Acad. Dermatol. Venereol., 2015, 29(11), 2169-2176.
[http://dx.doi.org/10.1111/jdv.13172] [PMID: 25912722]
[60]
Benaim, D.; Tétart, F.; Bauvin, O.; Delcampe, A.; Joly, P.; Muraine, M.; Gueudry, J. Tacrolimus ointment in the management of atopic keratoconjunctivitis. J. Fr. Ophtalmol., 2019, 42(4), e147-e151.
[http://dx.doi.org/10.1016/j.jfo.2019.02.003] [PMID: 30851973]
[61]
Arcas, J.M.; González, A.; Gers-Barlag, K.; González-González, O.; Bech, F.; Demirkhanyan, L.; Zakharian, E.; Belmonte, C.; Gomis, A.; Viana, F. The immunosuppressant macrolide tacrolimus activates cold-sensing TRPM8 channels. J. Neurosci., 2019, 39(6), 949-969.
[http://dx.doi.org/10.1523/JNEUROSCI.1726-18.2018] [PMID: 30545944]
[62]
Wang, X.; Meng, L.H. Progress and prospect of chinese medicine for atopic dermatitis. Clin J Tradit Chi Med, 2005, 17(3), 309-310.
[63]
Sun, Y.; Lenon, G.B.; Yang, A.W.H. Phellodendri cortex: A phytochemical, pharmacological, and pharmacokinetic review. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-45.
[http://dx.doi.org/10.1155/2019/7621929] [PMID: 31057654]
[64]
Tse, W.P.; Che, C.T.; Liu, K.; Lin, Z.X. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol., 2006, 108(1), 133-141.
[http://dx.doi.org/10.1016/j.jep.2006.04.023] [PMID: 16730935]
[65]
Ye, J.; Piao, H.; Jiang, J.; Jin, G.; Zheng, M.; Yang, J.; Jin, X.; Sun, T.; Choi, Y.H.; Li, L.; Yan, G. Polydatin inhibits mast cellmediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-κB and Nrf2/HO-1 pathways. Sci. Rep., 2017, 7(1), 11895.
[http://dx.doi.org/10.1038/s41598-017-12252-3] [PMID: 28928455]
[66]
Harikrishnan, H.; Jantan, I.; Haque, M.A.; Kumolosasi, E. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complement. Altern. Med., 2018, 18(1), 224.
[http://dx.doi.org/10.1186/s12906-018-2289-3] [PMID: 30045725]
[67]
Kim, M.S.; Rådinger, M.; Gilfillan, A.M. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol., 2008, 29(10), 493-501.
[http://dx.doi.org/10.1016/j.it.2008.07.004] [PMID: 18775670]
[68]
Han, H.M.; Kim, S.J.; Kim, J.S.; Kim, B.H.; Lee, H.W.; Lee, Y.T.; Kang, K.H. Ameliorative effects of Artemisia argyi Folium extract on 2,4-dinitrochlorobenzene-induced atopic dermatitislike lesions in BALB/c mice. Mol. Med. Rep., 2016, 14(4), 3206-3214.
[http://dx.doi.org/10.3892/mmr.2016.5657] [PMID: 27571702]
[69]
Hong, S.H.; Ku, J.M.; Kim, H.I.; Kim, T.Y.; Seo, H.S.; Shin, Y.C.; Ko, S.G. Topical application of KAJD attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis symptoms through regulation of IgE and MAPK pathways in BALB/C mice and several immune cell types. Front. Pharmacol., 2019, 10, 1097.
[http://dx.doi.org/10.3389/fphar.2019.01097] [PMID: 31607928]
[70]
Yang, J.H.; Lee, E.; Lee, B.; Cho, W.K.; Ma, J.; Park, K.I. Ethanolic extracts of artemisia apiacea hance improved atopic dermatitislike skin lesions in vivo and suppressed TNF-Alpha/IFN-Gamma–Induced proinflammatory chemokine production in vitro. Nutrients, 2018, 10(7), 806.
[http://dx.doi.org/10.3390/nu10070806]
[71]
Martins, I.J. Anti-Aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Adv. Aging Res., 2016, 5(1), 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy