Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Novel Nontoxic Mutants of Diphtheria Toxin Unable to ADP-ribosylate EF2 Using Molecular Dynamics Simulations and Free Energy Calculations

Author(s): Soheila Ghaderi, Shirin Tarahomjoo*, Majid Esmaelizad, Mojtaba Noofeli and Mohammad Reza Bozorgmehr

Volume 20, Issue 1, 2023

Published on: 10 August, 2022

Page: [48 - 55] Pages: 8

DOI: 10.2174/1570180819666220530152026

Price: $65

Abstract

Introduction: The Diphtheria vaccine is currently manufactured by chemical inactivation of Diphtheria toxin (DT) following large-scale cultivation of the pathogenic Corynebacterium diphtheriae. The development of non-toxic variants of DT in non-pathogenic recombinant hosts improves the process safety aspects considerably and is therefore desirable. The cytotoxicity of DT was exerted through ADPribosylation of elongation factor 2 (EF2) by the catalytic (C) domain of DT using NAD as the ADP donor.

Aim: We, therefore, aim to design DT variants unable to perform ADP-ribosylation of EF2.

Methods: We used molecular dynamics simulations (MDS) for docking of the C-domain of DT onto EF2 to identify interacting amino acid fluctuations using the root mean square fluctuation (RMSF). Amino acids of the C domain possessing low fluctuations and hence low flexibility were then specified and used for the mutant design. The C domain and the mutants were docked with NAD and ADENYLYL-3'-5'- PHOSPHO-URIDINE3'-MONOPHOSPHATE (APU) as a C domain inhibitor. G52E showing negligible NAD binding was also included in our study. Free binding energies of the complexes were calculated and used to select the desired mutants. Moreover, contact maps of the C domain and the selected mutants were compared to elucidate their structural differences. The SCRATCH tool was used to estimate their solubility upon recombinant expression in E. coli. ElliPro was further used to determine their B-cell epitopes.

Results: Our results indicated that amino acids Y20, V80, V81, V83, and Y149 within the C domain showed low flexibility. The constructed mutants, including Y20E and Y80E were able to bind APU, whereas Y149E was not able to bind it. Both Y20E and Y149E were unable to bind NAD. Thus, these mutants did not have ADP-ribosylation activity and were nontoxic. These were structurally different from the C domain. However, their solubility in E. coli and their conformational B-cell epitopes were similar to those of the C domain.

Conclusion: Therefore, Y20E and Y149E are applicable for the vaccine design with DT using a much safer process compared to the commercial process.

Keywords: Catalytic domain, diphtheria toxin, free energy, nontoxic, molecular dynamics simulations, vaccine.

Graphical Abstract

[1]
Madshus, I.H. The N-terminal alpha-helix of fragment B of diphtheria toxin promotes translocation of fragment A into the cytoplasm of eukaryotic cells. J. Biol. Chem., 1994, 269(26), 17723-17729.
[http://dx.doi.org/10.1016/S0021-9258(17)32500-0] [PMID: 8021285]
[2]
Chenal, A.; Nizard, P.; Gillet, D. Structure and function of diphtheria toxin: From pathology to engineering. J. Toxicol. Toxin Rev., 2002, 21(4), 321-359.
[http://dx.doi.org/10.1081/TXR-120014408]
[3]
Van Ness, B.G.; Howard, J.B.; Bodley, J.W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J. Biol. Chem., 1980, 255(22), 10717-10720.
[http://dx.doi.org/10.1016/S0021-9258(19)70366-4] [PMID: 7000782]
[4]
Van Ness, B.G.; Howard, J.B.; Bodley, J.W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J. Biol. Chem., 1980, 255(22), 10710-10716.
[http://dx.doi.org/10.1016/S0021-9258(19)70365-2] [PMID: 7430147]
[5]
Choe, S; Bennett, MJ; Fujii, G; Curmi, PM; Kantardjieff, KA; Collier, RJ The crystal structure of diphtheria toxin. Nature, 1992, 357, 216-222.
[http://dx.doi.org/10.1038/357216a0]
[6]
Bell, C.E.; Eisenberg, D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry, 1996, 35(4), 1137-1149.
[http://dx.doi.org/10.1021/bi9520848] [PMID: 8573568]
[7]
Fitzgerald, J.G. Diphtheria toxoid as an immunizing agent. Can. Med. Assoc. J., 1927, 17(5), 524-529.
[PMID: 20316312]
[8]
Organization, W.H. WHO position paper on Haemophilus influenzae type b conjugate vaccines. (Replaces WHO position paper on Hib vaccines previously published in the Weekly Epidemiological Record. Wkly. Epidemiol. Rec., 2006, 81(47), 445-452.
[PMID: 17124755]
[9]
O’Keefe, D.O.; Cabiaux, V.; Choe, S.; Eisenberg, D.; Collier, R.J. pH-dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349-Lys. Proc. Natl. Acad. Sci. USA, 1992, 89(13), 6202-6206.
[http://dx.doi.org/10.1073/pnas.89.13.6202] [PMID: 1631109]
[10]
Malito, E.; Bursulaya, B.; Chen, C.; Lo Surdo, P.; Picchianti, M.; Balducci, E.; Biancucci, M.; Brock, A.; Berti, F.; Bottomley, M.J.; Nissum, M.; Costantino, P.; Rappuoli, R.; Spraggon, G. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5229-5234.
[http://dx.doi.org/10.1073/pnas.1201964109] [PMID: 22431623]
[11]
Giannini, G.; Rappuoli, R.; Ratti, G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res., 1984, 12(10), 4063-4069.
[http://dx.doi.org/10.1093/nar/12.10.4063] [PMID: 6427753]
[12]
Mitamura, T.; Higashiyama, S.; Taniguchi, N.; Klagsbrun, M.; Mekada, E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem., 1995, 270(3), 1015-1019.
[http://dx.doi.org/10.1074/jbc.270.3.1015] [PMID: 7836353]
[13]
Qiao, J.; Ghani, K.; Caruso, M. Diphtheria toxin mutant CRM197 is an inhibitor of protein synthesis that induces cellular toxicity. Toxicon, 2008, 51(3), 473-477.
[http://dx.doi.org/10.1016/j.toxicon.2007.09.010] [PMID: 17988701]
[14]
Kimura, Y.; Saito, M.; Kimata, Y.; Kohno, K. Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin. J. Biochem., 2007, 142(1), 105-112.
[http://dx.doi.org/10.1093/jb/mvm115] [PMID: 17522091]
[15]
Kageyama, T.; Ohishi, M.; Miyamoto, S.; Mizushima, H.; Iwamoto, R.; Mekada, E. Diphtheria toxin mutant CRM197 possesses weak EF2-ADP-ribosyl activity that potentiates its anti-tumorigenic activity. J. Biochem., 2007, 142(1), 95-104.
[http://dx.doi.org/10.1093/jb/mvm116] [PMID: 17525101]
[16]
Weiss, M.S.; Blanke, S.R.; Collier, R.J.; Eisenberg, D. Structure of the isolated catalytic domain of diphtheria toxin. Biochemistry, 1995, 34(3), 773-781.
[http://dx.doi.org/10.1021/bi00003a010] [PMID: 7827036]
[17]
Kaczorek, M.; Delpeyroux, F.; Chenciner, N.; Streeck, R.E.; Murphy, J.R.; Boquet, P.; Tiollais, P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science, 1983, 221(4613), 855-858.
[http://dx.doi.org/10.1126/science.6348945] [PMID: 6348945]
[18]
Johnson, V.G.; Nicholls, P.J. Identification of a single amino acid substitution in the diphtheria toxin A chain of CRM 228 responsible for the loss of enzymatic activity. J. Bacteriol., 1994, 176(15), 4766-4769.
[http://dx.doi.org/10.1128/jb.176.15.4766-4769.1994] [PMID: 8045910]
[19]
Tweten, R.K.; Barbieri, J.T.; Collier, R.J. Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J. Biol. Chem., 1985, 260(19), 10392-10394.
[http://dx.doi.org/10.1016/S0021-9258(19)85093-7] [PMID: 2863266]
[20]
Wilson, B.A.; Reich, K.A.; Weinstein, B.R.; Collier, R.J. Active-site mutations of diphtheria toxin: Effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine. Biochemistry, 1990, 29(37), 8643-8651.
[http://dx.doi.org/10.1021/bi00489a021] [PMID: 1980208]
[21]
Yang, L-Q.; Sang, P.; Tao, Y.; Fu, Y-X.; Zhang, K-Q.; Xie, Y-H.; Liu, S.Q. Protein dynamics and motions in relation to their functions: Several case studies and the underlying mechanisms. J. Biomol. Struct. Dyn., 2014, 32(3), 372-393.
[http://dx.doi.org/10.1080/07391102.2013.770372] [PMID: 23527883]
[22]
Falconi, M.; Biocca, S.; Novelli, G.; Desideri, A. Molecular dynamics simulation of human LOX-1 provides an explanation for the lack of OxLDL binding to the Trp150Ala mutant. BMC Struct. Biol., 2007, 7(1), 73.
[http://dx.doi.org/10.1186/1472-6807-7-73] [PMID: 17988382]
[23]
Cheng, J.; Randall, A.Z.; Sweredoski, M.J.; Baldi, P. SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Res., 2005, 33(Suppl. 2), W72-6.
[http://dx.doi.org/10.1093/nar/gki396] [PMID: 15980571]
[24]
Ponomarenko, J.; Bui, H-H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, 9(1), 514.
[http://dx.doi.org/10.1186/1471-2105-9-514] [PMID: 19055730]
[25]
Jørgensen, R.; Ortiz, P.A.; Carr-Schmid, A.; Nissen, P.; Kinzy, T.G.; Andersen, G.R. Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase. Nat. Struct. Biol., 2003, 10(5), 379-385.
[http://dx.doi.org/10.1038/nsb923] [PMID: 12692531]
[26]
Abraham, M.; van der Spoel, D.; Lindahl, E.; Hess, B. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Original Software Pub., 2016, 1, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[27]
Parrinello, M.; Rahman, A.; Vashishta, P. Structural transitions in superionic conductors. Phys. Rev. Lett., 1983, 50(14), 1073.
[http://dx.doi.org/10.1103/PhysRevLett.50.1073]
[28]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1), 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[29]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[30]
Hess, B; Bekker, H; Berendsen, HJ; Fraaije, JG LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem., 1997, 18(12), 1463-72.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H]
[31]
Miyamoto, S.; Kollman, P. SETTLE: An analytical version of the shake an RATTLE algorithms for molecular simulation. J. Comput. Chem., 1992, 13, 952-962.
[http://dx.doi.org/10.1002/jcc.540130805]
[32]
Kornbrot, D. Statistical software for microcomputers: SigmaPlot 2000 and SigmaStat2. Br. J. Math. Stat. Psychol., 2000, 53(Pt 2), 335-337.
[http://dx.doi.org/10.1348/000711000159268] [PMID: 11109711]
[33]
Porollo, A.A.; Adamczak, R.; Meller, J. POLYVIEW: A flexible visualization tool for structural and functional annotations of proteins. Bioinformatics, 2004, 20(15), 2460-2462.
[http://dx.doi.org/10.1093/bioinformatics/bth248] [PMID: 15073023]
[34]
Forli, W.; Halliday, S.; Belew, R.; Olson, A.J. AutoDock Version 4.2. J. Med. Chem., 2012, 55(2), 623-638.
[http://dx.doi.org/10.1021/jm2005145] [PMID: 22148468]
[35]
Pearlman, D.A. Evaluating the molecular mechanics poisson-boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J. Med. Chem., 2005, 48(24), 7796-7807.
[http://dx.doi.org/10.1021/jm050306m] [PMID: 16302819]
[36]
Vehlow, C.; Stehr, H.; Winkelmann, M.; Duarte, J.M.; Petzold, L.; Dinse, J.; Lappe, M. CMView: Interactive contact map visualization and analysis. Bioinformatics, 2011, 27(11), 1573-1574.
[http://dx.doi.org/10.1093/bioinformatics/btr163] [PMID: 21471016]
[37]
Hsieh, D; Davis, A; Nanda, VJPS A knowledge‐based potential highlights unique features of membrane α‐helical and β‐barrel protein insertion and folding. Protein, 2012, 21(1), 50-62.
[http://dx.doi.org/10.1002/pro.758]
[38]
Ladenstein, R. Ion pairs and the thermotolerance of proteins from hyperthermophiles: a'traffic rule' for hot roads. European J. Biochem., 2001, 268(S1), 42-1.
[39]
Hendsch, Z.S.; Tidor, B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci., 1994, 3(2), 211-226.
[http://dx.doi.org/10.1002/pro.5560030206] [PMID: 8003958]
[40]
Chan, C-H.; Yu, T-H.; Wong, K-B. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One, 2011, 6(6), e21624.
[http://dx.doi.org/10.1371/journal.pone.0021624] [PMID: 21720566]
[41]
Karan, R.; Capes, M.D.; Dassarma, S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst., 2012, 8(1), 4.
[http://dx.doi.org/10.1186/2046-9063-8-4] [PMID: 22480329]
[42]
Britton, K.L.; Baker, P.J.; Fisher, M.; Ruzheinikov, S.; Gilmour, D.J.; Bonete, M-J.; Ferrer, J.; Pire, C.; Esclapez, J.; Rice, D.W. Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc. Natl. Acad. Sci. USA, 2006, 103(13), 4846-4851.
[http://dx.doi.org/10.1073/pnas.0508854103] [PMID: 16551747]
[43]
Dym, O.; Mevarech, M.; Sussman, J.L. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science, 1995, 267(5202), 1344-1346.
[http://dx.doi.org/10.1126/science.267.5202.1344] [PMID: 17812611]
[44]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[45]
Kuhn, B.; Kollman, P.A. Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem., 2000, 43(20), 3786-3791.
[http://dx.doi.org/10.1021/jm000241h] [PMID: 11020294]
[46]
Baker, NA; Sept, D; Joseph, S; Holst, MJ Electrostatics of nanosystems: Application to microtubules and the ribosome. McCammon JAJPotNAoS., 2001, 98(18), 10037-41.
[http://dx.doi.org/10.1073/pnas.181342398]
[47]
Kumari, R; Kumar, R; Consortium, OSDD g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-62.
[http://dx.doi.org/10.1021/ci500020m]
[48]
Karami, M; Jalali, C. Combined virtual screening, MMPBSA, molecular docking and dynamics studies against deadly anthrax: An in silico effort to inhibit Bacillus anthracis nucleoside hydrolase. J. Theoretical Biol., 2017, 420, 180-9.
[http://dx.doi.org/10.1016/j.jtbi.2017.03.010]
[49]
Li, C-D; Xu, Q; Gu, R-X; Qu, J; Wei, D. The dynamic binding of cholesterol to the multiple sites of C99: As revealed by coarse-grained and all-atom simulations. Phy. Chem. Chem. Phys., 2017, 19(5), 3845-56.
[http://dx.doi.org/10.1039/C6CP07873G]
[50]
Liu, C; Zhu, Y Theoretical studies on binding modes of copper-based nucleases with DNA. J. Mol. Graphics Modelling, 2016, 64, 11-29.
[http://dx.doi.org/10.1016/j.jmgm.2015.12.003]
[51]
Emerson, I.A.; Amala, A. Protein contact maps: A binary depiction of protein 3D structures. Physica A, 2017, 465, 782-791.
[http://dx.doi.org/10.1016/j.physa.2016.08.033]
[52]
Mahamad, P.; Boonchird, C.; Panbangred, W. High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli. Appl. Microbiol. Biotechnol., 2016, 100(14), 6319-6330.
[http://dx.doi.org/10.1007/s00253-016-7453-4] [PMID: 27020286]
[53]
Romaniuk, S.; Kolybo, D.; Komisarenko, S. Recombinant diphtheria toxin derivatives: Perspectives of application. Russ. J. Bioorganic Chem., 2012, 38(6), 565-577.
[http://dx.doi.org/10.1134/S106816201206012X] [PMID: 23547467]

© 2025 Bentham Science Publishers | Privacy Policy