Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Synthesis, Anticancer Activity, Docking Calculations and Hydrolytic Stability Studies of Bioconjugates of Monofluorenated Analogue of BIM- 23052

Author(s): Dancho Danalev*, Ivan Iliev, Dessislava Borisova, Tatyana Dzimbova, Tamara Pajpanova, Zdravka Zaharieva, Veronika Karadjova, Tsvetelina Foteva and Emilia Naydenova*

Volume 29, Issue 8, 2022

Published on: 05 August, 2022

Page: [721 - 731] Pages: 11

DOI: 10.2174/0929866529666220530085836

Price: $65

Abstract

Background: The fight against cancer has started since its discovery and has not subsided to nowadays. Currently, the hybrid molecules have become a promising alternative to the standard chemotherapeutics for the treatment of multi-causal diseases, including cancers.

Objective: Herein, we report the synthesis, biological evaluation, mathematical docking calculations and hydrolytic stability of the new bioconjugates of monofluorinated analogues of BIM-23052, containing second pharmacophore naphthalimide, caffeic acid or the tripeptide Arg-Gly-Asp.

Methods: All new molecules are obtained using standard peptide synthesis on solid support. Anticancer potential is studied against a panel of tumor cell lines included human mammary carcinoma cell lines MCF-7 (ER+, PR+ and Her-2-); MDA-MB-231 (ER-, PR- and Her-2-), as well as cell lines BALB 3T3 (mouse embryonic fibroblasts) and MCF-10A (human breast epithelial cell line).

Results: The IC50 values found in the MCF-10A cell line assay were used to calculate the selective index (SI). The highest SI relative to MCF-7, with a value of 2.62 is shown by the compound Npht- Gly-D-Phe-Phe(4-F)-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2. In MCF-10 cells, the weakest antiproliferative effect was caused by the same compound (IC50 = 622.9 ± 23.91 μM), which makes this analogue a good candidate for the new anticancer medical drug. Unfortunately, the hydrolytic stability studies reveal that this bioconjugate is the most unstable of hydrolysis under physiological conditions in the body.

Conclusion: Even with lower anticancer activity and selectivity in comparison with Npht-Gly-DPhe- Phe(4-F)-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2, the compound Arg-Gly-Asp-D-Phe-Phe(4-F)-Phe- D-Trp-Lys-Thr-Phe-Thr-NH2 is the best candidate between three investigated bioconjugates for practical application due to combination of activity and stability profiles. Mathematical docking calculation also reveals that synthesized bioconjugates show selectivity according to different somatostatin receptors on the surface of different cell lines.

Keywords: Somatostatin analogues, BIM-23052, anticancer activity, docking simulation, hydrolytic stability, caffeic acid, 1, 8- naphtalimide, RGD.

« Previous
[1]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[2]
Aslan, B.; Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanotechnology in cancer therapy. J. Drug Target., 2013, 21(10), 904-913.
[http://dx.doi.org/10.3109/1061186X.2013.837469] [PMID: 24079419]
[3]
Telrandhe, P. Nanotechnology for cancer therapy: Recent developments. Eur. J. Pharm. Sci., 2016, 3(11), 284-294.
[4]
Gavas, S.; Quazi, S. Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[5]
Eftekhari, A.; Hasanzadeh, M.; Sharifi, S.; Dizaj, S.M.; Khalilov, R.; Ahmadian, E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int. J. Biol. Macromol., 2019, 124, 1246-1255.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.277] [PMID: 30513307]
[6]
Aderemi, A.V.; Ayeleso, A.O.; Oyedapo, O.O.; Mukwevho, E. Metabolomics: A scoping review of its role as a tool for disease biomarker discovery in selected non-communicable diseases. Metabolites, 2021, 11(7), 418.
[http://dx.doi.org/10.3390/metabo11070418] [PMID: 34201929]
[7]
Khar, A.; Ali, A.M.; Pardhasaradhi, B.V.; Begum, Z.; Anjum, R. Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells. FEBS Lett., 1999, 445(1), 165-168.
[http://dx.doi.org/10.1016/S0014-5793(99)00114-3] [PMID: 10069393]
[8]
Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev., 2000, 9(11), 1163-1170.
[PMID: 11097223]
[9]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[10]
Mader, J.S.; Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs, 2006, 15(8), 933-946.
[http://dx.doi.org/10.1517/13543784.15.8.933] [PMID: 16859395]
[11]
Oelkrug, C.; Hartke, M.; Schubert, A. Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res., 2015, 35(2), 635-643.
[PMID: 25667440]
[12]
Ma, X.; Xi, L.; Luo, D.; Liu, R.; Li, S.; Liu, Y.; Fan, L.; Ye, S.; Yang, W.; Yang, S.; Meng, L.; Zhou, J.; Wang, S.; Ma, D. Anti-tumor effects of the peptide TMTP1-GG-D(KLAKLAK)(2) on highly metastatic cancers. PLoS One, 2012, 7(9), e42685.
[http://dx.doi.org/10.1371/journal.pone.0042685] [PMID: 22984407]
[13]
Chuchkov, K.; Nakova, C.; Mukova, L.; Galabov, A.; Stankova, I. New derivatives of oseltamivir with bile acids. Chemistry, 2015, 24, 355-362.
[14]
Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.; Silvestre, A.J.; Pascoal Neto, C.; Pascoal, N.C. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. J. Agric. Food Chem., 2011, 59(17), 9386-9393.
[http://dx.doi.org/10.1021/jf201801q] [PMID: 21761864]
[15]
Khoo, C.S.; Sullivan, S.; Kazzem, M.; Lamin, F.; Singh, S.; Nang, M.; Low, M.; Suresh, H.; Lee, S. The liquid chromatographic determination of chlorogenic and caffeic acids in xu duan (dipsacus asperoides) raw herb. Int. Sch. Res. Notices, 2014, 2014, 968314.
[16]
Choudhary, M.I.; Naheed, N.; Abbaskhan, A.; Musharraf, S.G.; Siddiqui, H. Atta-Ur-Rahman, Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry, 2008, 69(4), 1018-1023.
[http://dx.doi.org/10.1016/j.phytochem.2007.10.028] [PMID: 18177906]
[17]
Lee, Y-S.; Kang, Y-H.; Jung, J-Y.; Lee, S.; Ohuchi, K.; Shin, K.H.; Kang, I-J.; Park, J.H.Y.; Shin, H-K.; Lim, S.S. Protein glycation inhibitors from the fruiting body of Phellinus linteus. Biol. Pharm. Bull., 2008, 31(10), 1968-1972.
[http://dx.doi.org/10.1248/bpb.31.1968] [PMID: 18827365]
[18]
Olthof, M.R.; Hollman, P.C.; Katan, M.B. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr., 2001, 131(1), 66-71.
[http://dx.doi.org/10.1093/jn/131.1.66] [PMID: 11208940]
[19]
Ignatova, M.; Manolova, N.; Rashkov, I.; Markova, N. Quaternized chitosan/κ-carrageenan/caffeic acid-coated poly(3-hydroxybuty-] rate) fibrous materials: Preparation, antibacterial and antioxi-] dant activity. Int. J. Pharm., 2016, 513(1-2), 528-537.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.062] [PMID: 27671019]
[20]
Chao, P-C.; Hsu, C-C.; Yin, M-C. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr. Metab. (Lond.), 2009, 6(1), 33.
[http://dx.doi.org/10.1186/1743-7075-6-33] [PMID: 19678956]
[21]
Rajendra Prasad, N.; Karthikeyan, A.; Karthikeyan, S.; Reddy, B.V. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell. Biochem., 2011, 349(1-2), 11-19.
[http://dx.doi.org/10.1007/s11010-010-0655-7] [PMID: 21116690]
[22]
Kamal, A.; Bolla, N.R.; Srikanth, P.S.; Srivastava, A.K. Naphthalimide derivatives with therapeutic characteristics: A patent review. Expert Opin. Ther. Pat., 2013, 23(3), 299-317.
[http://dx.doi.org/10.1517/13543776.2013.746313] [PMID: 23369185]
[23]
Braña, M.F.; Berlanga, J.M.C.; Roldan, C.M. 4-acylamino-nphenylbutyramides - useful as pharmaceuticals. DE Patent 2,318,136 1973.
[24]
Braña, M.F.; Sanz, A.M.; Castellano, J.M.; Roldán, C.M.; Roldán, C. Synthesis and cytostatic activity of benz(d.e)isoquinolin-1.3-diones. Structure-activity relationships. Eur. J. Med. Chem., 1981, 16, 207-212.
[25]
Braña, M.F.; Ramos, A. Naphthalimides as anti-cancer agents: Synthesis and biological activity. Curr. Med. Chem. Anticancer Agents, 2001, 1(3), 237-255.
[http://dx.doi.org/10.2174/1568011013354624] [PMID: 12678756]
[26]
Tomczyk, M.D.; Walczak, K.Z. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem., 2018, 159(5), 393-422.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.055] [PMID: 30312931]
[27]
Marinov, M.N.; Naydenova, E.D.; Momekov, G.T.; Prodanova, R.Y.; Markova, N.V.; Voynikov, Y.T.; Stoyanov, N.M. Synthesis, characterization, quantum-chemical calculations and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids. Anticancer. Agents Med. Chem., 2019, 19(10), 1276-1284.
[http://dx.doi.org/10.2174/1871520619666190307115231] [PMID: 30848212]
[28]
Tandon, R.; Luxami, V.; Kaur, H.; Tandon, N.; Paul, K. 1,8-Naphthalimide: A potent DNA intercalator and target for cancer therapy. Chem. Rec., 2017, 17(10), 956-993.
[http://dx.doi.org/10.1002/tcr.201600134] [PMID: 28375569]
[29]
Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev., 2013, 42(4), 1601-1618.
[http://dx.doi.org/10.1039/c2cs35467e] [PMID: 23325367]
[30]
Wang, K-R.; Qian, F.; Wang, X-M.; Tan, G-H.; Rong, R-X.; Cao, Z-R.; Chen, H.; Zhang, P-Z.; Li, X-L. Cytotoxic activity and DNA binding of naphthalimide derivatives with amino acid and dichloroacetamide functionalizations. Chin. Chem. Lett., 2014, 25(7), 1087-1093.
[http://dx.doi.org/10.1016/j.cclet.2014.04.020]
[31]
Bernard, B.; Capello, A.; van Hagen, M.; Breeman, W.; Srinivasan, A.; Schmidt, M.; Erion, J.; van Gameren, A.; Krenning, E.; de Jong, M. Radiolabeled RGD-DTPA-Tyr3-octreotate for receptor-targeted radionuclide therapy. Cancer Biother. Radiopharm., 2004, 19(2), 173-180.
[http://dx.doi.org/10.1089/108497804323071940] [PMID: 15186597]
[32]
Chabner, B.A.; Amrein, P.C.; Druker, B.J.; Michaelson, D.; Mitsiades, C.S.; Goss, P.E.; Ryan, D.P.; Ramachandra, S.; Richardson, P.G.; Supko, J.G.; Wilson, W.H. Chemotherapy of neoplastic disease. In: Goodman & Gilman’s The pharmacological basis of therapeutics; Brunton, L.L.; Lazo, J.S.; Parker, K.L., Eds.; McGraw-Hill: New York, 2006; pp. 1315-1403.
[33]
Coy, D.H.; Murphy, W.A. Linear somatostatin analogs. US Patent 5633263 1997.
[34]
Shimon, I. Somatostatin receptors in pituitary and development of somatostatin receptor subtype-selective analogs. Endocrine, 2003, 20(3), 265-269.
[http://dx.doi.org/10.1385/ENDO:20:3:265] [PMID: 12721506]
[35]
Staykova, S.; Naydenova, E.; Wesselinova, D.; Vezenkov, L. Synthesis and in vitro antitumor activity of new linear somatostatin analogs. JUCTM, 2012, 47, 297-302.
[36]
Danalev, D.; Borisova, D.; Yaneva, S.; Georgieva, M.; Balacheva, A.; Dzimbova, T.; Iliev, I.; Pajpanova, T.; Zaharieva, Z.; Givechev, I.; Naydenova, E. Synthesis, in vitro biological activity, hydrolytic stability and docking of new analogs of BIM-23052 containing halogenated amino acids. Amino Acids, 2020, 52(11-12), 1581-1592.
[http://dx.doi.org/10.1007/s00726-020-02915-3] [PMID: 33215308]
[37]
Jaber, S.; Iliev, I.; Angelova, T.; Nemska, V.; Sulikovska, I.; Naydenova, E.; Georgieva, N.; Givechev, I.; Grabchev, I.; Danalev, D. Synthesis, antitumor and antibacterial studies of new shortened analogues of (KLAKLAK)2-NH2 and their conjugates containing unnatural amino acids. Molecules, 2021, 26(4), 898.
[http://dx.doi.org/10.3390/molecules26040898] [PMID: 33567789]
[38]
Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett., 1985, 24(2-3), 119-124.
[http://dx.doi.org/10.1016/0378-4274(85)90046-3] [PMID: 3983963]
[39]
Spielmann, H.; Balls, M.; Dupuis, J.; Pape, W.J.W.; Pechovitch, G.; de Silva, O.; Holzhütter, H.G.; Clothier, R.; Desolle, P.; Gerberick, F.; Liebsch, M.; Lovell, W.W.; Maurer, T.; Pfannenbecker, U.; Potthast, J.M.; Csato, M.; Sladowski, D.; Steiling, W.; Brantom, P. The international EU/COLIPA in vitro phototoxicity validation study: Results of Phase II (blind trial). Part I: The 3T3 NRU phototoxicity test. Toxicol. In Vitro, 1998, 12(3), 305-327.
[http://dx.doi.org/10.1016/S0887-2333(98)00006-X] [PMID: 20654413]
[40]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[41]
Naydenova, E.; Wesselinova, D.; Staykova, S.; Danalev, D.; Dzimbova, T. Synthesis, in vitro biological activity and docking of new analogs of BIM-23052 containing unnatural amino acids. Amino Acids, 2019, 51(9), 1247-1257.
[http://dx.doi.org/10.1007/s00726-019-02758-7] [PMID: 31350614]
[42]
Møller, L.N.; Stidsen, C.E.; Hartmann, B.; Holst, J.J. Somatostatin receptors. Biochim. Biophys. Acta, 2003, 1616(1), 1-84.
[http://dx.doi.org/10.1016/S0005-2736(03)00235-9] [PMID: 14507421]
[43]
Jaber, S.; Nemska, V.; Iliev, I.; Ivanova, E.; Foteva, T.; Georgieva, N.; Givechev, I.; Naydenova, E.; Karadjova, V.; Danalev, D. Synthesis and biological studies on (KLAKLAK)2-NH2 analog containing unnatural Amino Acid β-Ala and conjugates with second pharmacophore. Molecules, 2021, 26(23), 7321.
[http://dx.doi.org/10.3390/molecules26237321] [PMID: 34885902]
[44]
Pagliacci, M.C.; Tognellini, R.; Grignani, F.; Nicoletti, I. Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201-995: Effects on cell cycle parameters and apoptotic cell death. Endocrinology, 1991, 129(5), 2555-2562.
[http://dx.doi.org/10.1210/endo-129-5-2555] [PMID: 1935786]
[45]
Kahán, Z.; Nagy, A.; Schally, A.V.; Hebert, F.; Sun, B.; Groot, K.; Halmos, G. Inhibition of growth of MX-1, MCF-7-MIII and MDA-MB-231 human breast cancer xenografts after administration of a targeted cytotoxic analog of somatostatin, AN-238. Int. J. Cancer, 1999, 82(4), 592-598.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990812)82:4<592:AID-IJC20>3.0.CO;2-0] [PMID: 10404076]
[46]
He, Y.; Yuan, X.M.; Lei, P.; Wu, S.; Xing, W.; Lan, X.L.; Zhu, H.F.; Huang, T.; Wang, G.B.; An, R.; Zhang, Y.X.; Shen, G.X. The antiproliferative effects of somatostatin receptor subtype 2 in breast cancer cells. Acta Pharmacol. Sin., 2009, 30(7), 1053-1059.
[http://dx.doi.org/10.1038/aps.2009.59] [PMID: 19575008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy