Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Lactic Acid Bacteria Metabolism: Mini-Review

Author(s): Souhila Mazguene*

Volume 19, Issue 2, 2023

Published on: 10 August, 2022

Page: [94 - 104] Pages: 11

DOI: 10.2174/1573401318666220527124256

Price: $65

Abstract

Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria found in various ecological niches: fermented and non-fermented foods, the intestinal tract and vagina of humans and animals, and the environment. They are microorganisms used as probiotics, food supplements, and fermentates due to their characteristics of fermentation and safety status. LAB are responsible for the sensory and shelf life of fermented foods, gut microbiota equilibrium, and health modulation through different metabolic activities by the action of various enzymes. These enzymes degrade the major compounds: carbohydrates, proteins, and lipids, leading to the production of new metabolites that are important to study with the aim of understanding all metabolic pathways and diverse possible applications. The present work summarizes the metabolism of LAB, including different pathways, key enzymes, and specific aspects of certain species.

Keywords: Lactic acid bacteria, metabolism, enzymes, metabolic pathways, carbohydrates, proteins, lipids.

Graphical Abstract

[1]
Buron-Moles G, Chailyan A, Dolejs I, Forster J, Mikš MH. Uncovering carbohydrate metabolism through a genotype-phenotype association study of 56 lactic acid bacteria genomes. Appl Microbiol Biotechnol 2019; 103(7): 3135-52.
[http://dx.doi.org/10.1007/s00253-019-09701-6] [PMID: 30830251]
[2]
Riaz Rajoka MS, Mehwish HM, Siddiq M, et al. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. Lebensm Wiss Technol 2017; 84: 271-80.
[http://dx.doi.org/10.1016/j.lwt.2017.05.055]
[3]
Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 2020; 19(1): 20-1464.
[http://dx.doi.org/10.1186/s12934-020-01464-4]
[4]
Papagianni M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J 2012; 3(4): e201210003.
[http://dx.doi.org/10.5936/csbj.201210003] [PMID: 24688663]
[5]
Schleifer KH. Lactobacillaceae. Bergey’s manual of systematics of archaea and bacteria 2012.
[6]
Gänzle MG. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2015; 2: 106-17.
[http://dx.doi.org/10.1016/j.cofs.2015.03.001]
[7]
Bron PA, Kleerebezem M. Lactic acid bacteria for delivery of endogenous or engineered therapeutic molecules. Front Microbiol 2018; 9: 1821.
[http://dx.doi.org/10.3389/fmicb.2018.01821] [PMID: 30123213]
[8]
García-Cano I, Rocha-Mendoza D, Ortega-Anaya J, Wang K, Kosmerl E, Jiménez-Flores R. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol 2019; 103(13): 5243-57.
[http://dx.doi.org/10.1007/s00253-019-09844-6] [PMID: 31030287]
[9]
Mora-Villalobos JA, Montero-Zamora J, Barboza N, et al. Multi-product lactic acid bacteria fermentations: A review. Fermentation 2020; 6(1): 23.
[http://dx.doi.org/10.3390/fermentation6010023]
[10]
Peyer LC, Zannini E, Arendt EK. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci Technol 2016; 54: 17-25.
[http://dx.doi.org/10.1016/j.tifs.2016.05.009]
[11]
Picon A, López-Pérez O, Torres E, Garde S, Nuñez M. Contribution of autochthonous lactic acid bacteria to the typical flavour of raw goat milk cheeses. Int J Food Microbiol 2019; 299: 8-22.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2019.03.011] [PMID: 30933686]
[12]
Assohoun-Djeni NMC, Djeni NT, Messaoudi S, et al. Biodiversity, dynamics and antimicrobial activity of lactic acid bacteria involved in the fermentation of maize flour for doklu production in Côte d’Ivoire. Food Control 2016; 62: 397-404.
[http://dx.doi.org/10.1016/j.foodcont.2015.09.037]
[13]
Ruggirello M, Nucera D, Cannoni M, et al. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Res Int 2019; 115: 519-25.
[http://dx.doi.org/10.1016/j.foodres.2018.10.002] [PMID: 30599973]
[14]
Georgalaki M, Zoumpopoulou G, Mavrogonatou E, et al. Evaluation of the antihypertensive Angiotensin-Converting Enzyme inhibitory (ACE-I) activity and other probiotic properties of lactic acid bacteria isolated from traditional Greek dairy products. Int Dairy J 2017; 75: 10-21.
[http://dx.doi.org/10.1016/j.idairyj.2017.07.003]
[15]
Daliri EBM, Lee BH, Park BJ, Kim SH, Oh DH. Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Sci Biotechnol 2018; 27(6): 1781-9.
[http://dx.doi.org/10.1007/s10068-018-0423-0] [PMID: 30483443]
[16]
Cai T, Wu H, Qin J, et al. In vitro evaluation by PCA and AHP of potential antidiabetic properties of lactic acid bacteria isolated from traditional fermented food. Lebensm Wiss Technol 2019; 115: 108455.
[http://dx.doi.org/10.1016/j.lwt.2019.108455]
[17]
Fernandez MA, Marette A. Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr Rev 2018; 76 (Suppl. 1): 16-28.
[http://dx.doi.org/10.1093/nutrit/nuy060] [PMID: 30452697]
[18]
Danesi F, Gómez-Caravaca AM, de Biase D, Verardo V, Bordoni A. New insight into the cholesterol-lowering effect of phytosterols in rat cardiomyocytes. Food Res Int 2016; 89: 1056-63.
[http://dx.doi.org/10.1016/j.foodres.2016.06.028]
[19]
Ding W, Shi C, Chen M, Zhou J, Long R, Guo X. Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet. J Funct Foods 2017; 32: 324-32.
[http://dx.doi.org/10.1016/j.jff.2017.03.021]
[20]
Wang LC, Pan TM, Tsai TY. Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects. J Food Drug Anal 2018; 26(3): 973-84.
[http://dx.doi.org/10.1016/j.jfda.2017.11.009] [PMID: 29976415]
[21]
Won SM, Chen S, Park KW, Yoon JH. Isolation of lactic acid bacteria from kimchi and screening of Lactobacillus sakei ADM14 with anti-adipogenic effect and potential probiotic properties. Lebensm Wiss Technol 2020; 126: 109296.
[http://dx.doi.org/10.1016/j.lwt.2020.109296]
[22]
Masuda Y, Takahashi T, Yoshida K, Nishitani Y, Mizuno M, Mizoguchi H. Anti-allergic effect of lactic acid bacteria isolated from seed mash used for brewing sake is not dependent on the total IgE levels. J Biosci Bioeng 2012; 114(3): 292-6.
[http://dx.doi.org/10.1016/j.jbiosc.2012.04.017] [PMID: 22652086]
[23]
Fujii K, Fujiki T, Koiso A, et al. Identification of anti-allergic lactic acid bacteria that suppress Ca2+ influx and histamine release in human basophilic cells. J Funct Foods 2014; 10: 370-6.
[http://dx.doi.org/10.1016/j.jff.2014.07.006]
[24]
Paiva IHR, Duarte-Silva E, Peixoto CA. The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol 2020; 34: 1-18.
[http://dx.doi.org/10.1016/j.euroneuro.2020.03.006] [PMID: 32241688]
[25]
Rizzello CG, Lorusso A, Russo V, Pinto D, Marzani B, Gobbetti M. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. Int J Food Microbiol 2017; 241: 252-61.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.10.035] [PMID: 27810447]
[26]
Kaga Y, Kuda T, Taniguchi M, et al. The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. Lebensm Wiss Technol 2021; 135: 110029.
[http://dx.doi.org/10.1016/j.lwt.2020.110029]
[27]
Kim BS, Kim H, Kang SS. In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed mulberry (Morus alba Linnaeus) fruit extract against Salmonella typhimurium. Food Control 2019; 106: 106758.
[http://dx.doi.org/10.1016/j.foodcont.2019.106758]
[28]
Bengoa AA, Errea AJ, Rumbo M, Abraham AG, Garrote GL. Modulatory properties of Lactobacillus paracasei fermented milks on gastric inflammatory conditions. Int Dairy J 2020; 111: 104839.
[http://dx.doi.org/10.1016/j.idairyj.2020.104839]
[29]
Fabersani E, Russo M, Márquez A, Abeijón-Mukdsi C, Medina R, Gauffin-Cano P. Modulation of intestinal microbiota and immunometabolic parameters by caloric restriction and lactic acid bacteria. Food Res Int 2019; 124: 188-99.
[http://dx.doi.org/10.1016/j.foodres.2018.06.014] [PMID: 31466639]
[30]
İspirli H, Şimşek Ö, Skory C, Sağdıç O, Dertli E. Characterization of a 4,6 α glucanotransferase from Lactobacillus reuteri E81 and production of malto-oligosaccharides with immune-modulatory roles. Int J Biol Macromol 2019; 124: 1213-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.050] [PMID: 30529203]
[31]
Del Carmen S, de Moreno de LeBlanc A, Levit R, et al. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol 2017; 42: 122-9.
[http://dx.doi.org/10.1016/j.intimp.2016.11.017] [PMID: 27912148]
[32]
Shoukat S. Potential anti-carcinogenic effect of probiotic and lactic acid bacteria in detoxification of benzo [a] pyrene: A review. Trends Food Sci Technol 2020; 99: 450-9.
[http://dx.doi.org/10.1016/j.tifs.2020.02.029]
[33]
Wu W, Zhang B. Lactic acid bacteria and b vitamins Lactic Acid Bacteria. Springer 2019; pp. 43-60.
[http://dx.doi.org/10.1007/978-981-13-7283-4_3]
[34]
Bøe CA, Holo H. Engineering Lactococcus lactis for increased vitamin K2 production. Front Bioeng Biotechnol 2020; 8: 191.
[http://dx.doi.org/10.3389/fbioe.2020.00191] [PMID: 32258010]
[35]
Zhang K, Chen X, Zhang L, Deng Z. Fermented dairy foods intake and risk of cardiovascular diseases: A meta-analysis of cohort studies. Crit Rev Food Sci Nutr 2020; 60(7): 1189-94.
[http://dx.doi.org/10.1080/10408398.2018.1564019] [PMID: 30652490]
[36]
Kouvari M, Panagiotakos DB, Chrysohoou C, et al. Dairy products, surrogate markers, and cardiovascular disease; a sex-specific analysis from the ATTICA prospective study. Nutr Metab Cardiovasc Dis 2020; 30(12): 2194-206.
[http://dx.doi.org/10.1016/j.numecd.2020.07.037] [PMID: 32988722]
[37]
König H, Fröhlich J. Lactic acid bacteria Biology of microorganisms on grapes, in must and in wine. Cham: Springer International Publishing 2017; pp. 3-41.
[http://dx.doi.org/10.1007/978-3-319-60021-5_1]
[38]
Filannino P, Di Cagno R, Gobbetti M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr Opin Biotechnol 2018; 49: 64-72.
[http://dx.doi.org/10.1016/j.copbio.2017.07.016] [PMID: 28830019]
[39]
Endo A, Maeno S, Tanizawa Y, et al. Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl Environ Microbiol 2018; 84(19): e01290-18.
[http://dx.doi.org/10.1128/AEM.01290-18] [PMID: 30054367]
[40]
Filannino P, Di Cagno R, Addante R, Pontonio E, Gobbetti M. Metabolism of fructophilic lactic acid bacteria isolated from the Apis mellifera L. Bee gut: Phenolic acids as external electron acceptors. Appl Environ Microbiol 2016; 82(23): 6899-911.
[http://dx.doi.org/10.1128/AEM.02194-16] [PMID: 27637884]
[41]
Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70(4): 2782-858.
[http://dx.doi.org/10.1099/ijsem.0.004107] [PMID: 32293557]
[42]
Gustaw K, Michalak M, Polak-Berecka M, Waśko A. Isolation and characterization of a new fructophilic Lactobacillus plantarum FPL strain from honeydew. Ann Microbiol 2018; 68(7): 459-70.
[http://dx.doi.org/10.1007/s13213-018-1350-2] [PMID: 29983672]
[43]
Viesser JA, de Melo Pereira GV, de Carvalho Neto DP, et al. Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: Isolation, selection and evaluation. Food Res Int 2020; 136: 109478.
[http://dx.doi.org/10.1016/j.foodres.2020.109478] [PMID: 32846561]
[44]
Kang TS, Korber DR, Tanaka T. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1. Appl Environ Microbiol 2013; 79(24): 7818-26.
[http://dx.doi.org/10.1128/AEM.02377-13] [PMID: 24096428]
[45]
Kawai M, Tsuchiya A, Ishida J, Yoda N, Yashiki-Yamasaki S, Katakura Y. Suppression of lactate production by using sucrose as a carbon source in lactic acid bacteria. J Biosci Bioeng 2019; 129(5): 535-40.
[http://dx.doi.org/10.1016/j.jbiosc.2019.11.009] [PMID: 31836379]
[46]
Filannino P, Di Cagno R, Tlais AZA, Cantatore V, Gobbetti M. Fructose-rich niches traced the evolution of lactic acid bacteria toward fructophilic species. Crit Rev Microbiol 2019; 45(1): 65-81.
[http://dx.doi.org/10.1080/1040841X.2018.1543649] [PMID: 30663917]
[47]
Endo A, Tanaka N, Oikawa Y, Okada S, Dicks L. Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr Microbiol 2014; 68(4): 531-5.
[http://dx.doi.org/10.1007/s00284-013-0506-3] [PMID: 24352296]
[48]
Maeno S, Kajikawa A, Dicks L, Endo A. Introduction of bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Fructobacillus fructosus settled its fructophilic characteristics. Res Microbiol 2019; 170(1): 35-42.
[http://dx.doi.org/10.1016/j.resmic.2018.09.004] [PMID: 30291951]
[49]
Maeno S, Nishimura H, Tanizawa Y, Dicks L, Arita M, Endo A. Unique niche-specific adaptation of fructophilic lactic acid bacteria and proposal of three Apilactobacillus species as novel members of the group. BMC Microbiol 2021; 21(1): 41.
[http://dx.doi.org/10.1186/s12866-021-02101-9] [PMID: 33563209]
[50]
de Vos WM, Vaughan EE. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol Rev 1994; 15(2-3): 217-37.
[http://dx.doi.org/10.1111/j.1574-6976.1994.tb00136.x] [PMID: 7946468]
[51]
Neves AR, Pool WA, Solopova A, Kok J, Santos H, Kuipers OP. Towards enhanced galactose utilization by Lactococcus lactis. Appl Environ Microbiol 2010; 76(21): 7048-60.
[http://dx.doi.org/10.1128/AEM.01195-10] [PMID: 20817811]
[52]
Grossiord B, Vaughan EE, Luesink E, de Vos WM. Genetics of galactose utilisation via the Leloir pathway in lactic acid bacteria. Lait 1998; 78(1): 77-84.
[http://dx.doi.org/10.1051/lait:1998110]
[53]
Wu Q, Cheung CKW, Shah NP. Towards galactose accumulation in dairy foods fermented by conventional starter cultures: Challenges and strategies. Trends Food Sci Technol 2015; 41(1): 24-36.
[http://dx.doi.org/10.1016/j.tifs.2014.08.010]
[54]
Iskandar CF, Cailliez-Grimal C, Borges F, Revol-Junelles AM. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends Food Sci Technol 2019; 88: 121-32.
[http://dx.doi.org/10.1016/j.tifs.2019.03.020]
[55]
Arai A, Igoshi A, Inoue A, Noda K, Tsutsuura S, Murata M. Relationship between lactose utilization of lactic acid bacteria and browning of cheese during storage. Biosci Biotechnol Biochem 2020; 84(9): 1886-93.
[http://dx.doi.org/10.1080/09168451.2020.1768508] [PMID: 32441210]
[56]
Beganović J, Kos B, Leboš Pavunc A, Uroić K, Džidara P, Šušković J. Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Anaerobe 2013; 20: 58-64.
[57]
Sadat-Mekmene L, Genay M, Atlan D, Lortal S, Gagnaire V. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int J Food Microbiol 2011; 146(1): 1-13.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.039] [PMID: 21354644]
[58]
Aguirre L, Hebert EM, Garro MS, Savoy de Giori G. Proteolytic activity of Lactobacillus strains on soybean proteins. Lebensm Wiss Technol 2014; 59(2, Part 1): 780-5.
[http://dx.doi.org/10.1016/j.lwt.2014.06.061]
[59]
Hebert EM, Raya RR, De Giori GS. Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. Appl Environ Microbiol 2000; 66(12): 5316-21.
[http://dx.doi.org/10.1128/AEM.66.12.5316-5321.2000] [PMID: 11097908]
[60]
Genay M, Sadat L, Gagnaire V, Lortal S. prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl Environ Microbiol 2009; 75(10): 3238-49.
[http://dx.doi.org/10.1128/AEM.02395-08] [PMID: 19286786]
[61]
Broadbent JR, Cai H, Larsen RL, et al. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J Dairy Sci 2011; 94(9): 4313-28.
[http://dx.doi.org/10.3168/jds.2010-4068] [PMID: 21854904]
[62]
Ahmadova A, El-Ghaish S, Choiset Y, et al. Modification of IgE binding to β- and αS1-caseins by proteolytic activity of Lactobacillus helveticus A75. J Food Biochem 2013; 37(4): 491-500.
[http://dx.doi.org/10.1111/j.1745-4514.2012.00664.x]
[63]
Griffiths MW, Tellez AM. Lactobacillus helveticus: The proteolytic system. Front Microbiol 2013; 4(30): 30.
[PMID: 23467265]
[64]
Zhang WY, Chen YF, Zhao WJ, Kwok LY, Zhang HP. Gene expression of proteolytic system of Lactobacillus helveticus H9 during milk fermentation. Ann Microbiol 2015; 65(2): 1171-5.
[http://dx.doi.org/10.1007/s13213-014-0902-3]
[65]
Tynkkynen S, Buist G, Kunji E, et al. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J Bacteriol 1993; 175(23): 7523-32.
[http://dx.doi.org/10.1128/jb.175.23.7523-7532.1993] [PMID: 8244921]
[66]
Meijer W, Marugg JD, Hugenholtz J. Regulation of Proteolytic Enzyme Activity in Lactococcus lactis. Appl Environ Microbiol 1996; 62(1): 156-61.
[http://dx.doi.org/10.1128/aem.62.1.156-161.1996] [PMID: 16535207]
[67]
Guédon E, Renault P, Ehrlich SD, Delorme C. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 2001; 183(12): 3614-22.
[http://dx.doi.org/10.1128/JB.183.12.3614-3622.2001] [PMID: 11371525]
[68]
Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P. Proteome analyses of heme-dependent respiration in Lactococcus lactis: Involvement of the proteolytic system. J Bacteriol 2004; 186(6): 1648-57.
[http://dx.doi.org/10.1128/JB.186.6.1648-1657.2004] [PMID: 14996795]
[69]
Doeven MK, Kok J, Poolman B. Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol Microbiol 2005; 57(3): 640-9.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04698.x] [PMID: 16045610]
[70]
Yvon M, Gitton C, Chambellon E, Bergot G, Monnet V. The initial efficiency of the proteolytic system of Lactococcus lactis strains determines their responses to a cheese environment. Int Dairy J 2011; 21(5): 335-45.
[http://dx.doi.org/10.1016/j.idairyj.2010.11.010]
[71]
Huang C, Kok J. Editing of the proteolytic system of Lactococcus lactis increases its bioactive potential. Appl Environ Microbiol 2020; 86(18): e01319-20.
[http://dx.doi.org/10.1128/AEM.01319-20] [PMID: 32680863]
[72]
Savijoki K, Ingmer H, Varmanen P. Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 2006; 71(4): 394-406.
[http://dx.doi.org/10.1007/s00253-006-0427-1] [PMID: 16628446]
[73]
Rodríguez-Serrano GM, García-Garibay M, Cruz-Guerrero AE, et al. Proteolytic system of Streptococcus thermophilus. J Microbiol Biotechnol 2018; 28(10): 1581-8.
[http://dx.doi.org/10.4014/jmb.1807.07017] [PMID: 30196594]
[74]
Pastar I, Tonic I, Golic N, et al. Identification and genetic characterization of a novel proteinase, PrtR, from the human isolate Lactobacillus rhamnosus BGT10. Appl Environ Microbiol 2003; 69(10): 5802-11.
[http://dx.doi.org/10.1128/AEM.69.10.5802-5811.2003] [PMID: 14532028]
[75]
Germond JE, Delley M, Gilbert C, Atlan D. Determination of the domain of the Lactobacillus delbrueckii subsp. bulgaricus cell surface proteinase PrtB involved in attachment to the cell wall after heterologous expression of the prtB gene in Lactococcus lactis. Appl Environ Microbiol 2003; 69(6): 3377-84.
[http://dx.doi.org/10.1128/AEM.69.6.3377-3384.2003] [PMID: 12788739]
[76]
Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC Genomics 2010; 11(1): 36.
[http://dx.doi.org/10.1186/1471-2164-11-36] [PMID: 20078865]
[77]
Christensen JE, Dudley EG, Pederson JA, Steele JL. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 1999; 76(1-4): 217-46.
[http://dx.doi.org/10.1023/A:1002001919720] [PMID: 10532381]
[78]
Collins YF, McSweeney PLH, Wilkinson MG. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int Dairy J 2003; 13(11): 841-66.
[http://dx.doi.org/10.1016/S0958-6946(03)00109-2]
[79]
Holland R, Liu SQ, Crow VL, et al. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. Int Dairy J 2005; 15(6): 711-8.
[http://dx.doi.org/10.1016/j.idairyj.2004.09.012]
[80]
Chen C, Zhao S, Hao G, Yu H, Tian H, Zhao G. Role of lactic acid bacteria on the yogurt flavour: A review Int J Food Prop 2017; 20(sup1): S316-30.
[http://dx.doi.org/10.1080/10942912.2017.1295988]
[81]
Cheng H. Volatile flavor compounds in yogurt: A review. Crit Rev Food Sci Nutr 2010; 50(10): 938-50.
[http://dx.doi.org/10.1080/10408390903044081] [PMID: 21108074]
[82]
Doi Y. Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol 2019; 103(13): 5079-93.
[http://dx.doi.org/10.1007/s00253-019-09830-y] [PMID: 31069487]
[83]
D’Angelo M, Martino GP, Blancato VS, et al. Diversity of volatile organic compound production from leucine and citrate in Enterococcus faecium. Appl Microbiol Biotechnol 2020; 104(3): 1175-86.
[http://dx.doi.org/10.1007/s00253-019-10277-4] [PMID: 31828406]
[84]
Pretorius N, Engelbrecht L, Du Toit M. Influence of sugars and pH on the citrate metabolism of different lactic acid bacteria strains in a synthetic wine matrix. J Appl Microbiol 2019; 127(5): 1490-500.
[http://dx.doi.org/10.1111/jam.14401] [PMID: 31355966]
[85]
Prete R, Long SL, Gallardo AL, Gahan CG, Corsetti A, Joyce SA. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci Rep 2020; 10(1): 1165.
[http://dx.doi.org/10.1038/s41598-020-58069-5] [PMID: 31980710]
[86]
Nuhwa R, Tanasupawat S, Taweechotipatr M, Sitdhipol J, Savarajara A. Bile salt hydrolase activity and cholesterol assimilation of lactic acid bacteria isolated from flowers. J Appl Pharm Sci 2019; 9(6): 106-10.
[http://dx.doi.org/10.7324/JAPS.2019.90615]
[87]
Wu C, Li T, Qi J, Jiang T, Xu H, Lei H. Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. Lebensm Wiss Technol 2020; 122: 109064.
[http://dx.doi.org/10.1016/j.lwt.2020.109064]
[88]
Li T, Jiang T, Liu N, Wu C, Xu H, Lei H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem 2021; 339: 127859.
[http://dx.doi.org/10.1016/j.foodchem.2020.127859] [PMID: 32829244]
[89]
Gómez de Cadiñanos LP, García-Cayuela T, Martínez-Cuesta MC, Peláez C, Requena T. Expression of amino acid converting enzymes and production of volatile compounds by Lactococcus lactis IFPL953. Int Dairy J 2019; 96: 29-35.
[http://dx.doi.org/10.1016/j.idairyj.2019.04.004]
[90]
Battelli G, Scano P, Albano C, Cagliani LR, Brasca M, Consonni R. Modifications of the volatile and nonvolatile metabolome of goat cheese due to adjunct of non-starter lactic acid bacteria. Lebensm Wiss Technol 2019; 116: 108576.
[http://dx.doi.org/10.1016/j.lwt.2019.108576]
[91]
Wei C, Yu L, Qiao N, et al. The characteristics of patulin detoxification by Lactobacillus plantarum 13M5. Food Chem Toxicol 2020; 146: 111787.
[http://dx.doi.org/10.1016/j.fct.2020.111787] [PMID: 33031840]
[92]
Luz C, Ferrer J, Mañes J, Meca G. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food Chem Toxicol 2018; 112: 60-6.
[http://dx.doi.org/10.1016/j.fct.2017.12.030] [PMID: 29274433]
[93]
Pakdel M, Soleimanian-Zad S, Akbari-Alavijeh S. Screening of lactic acid bacteria to detect potent biosorbents of lead and cadmium. Food Control 2019; 100: 144-50.
[http://dx.doi.org/10.1016/j.foodcont.2018.12.044]
[94]
Afraz V, Younesi H, Bolandi M, Hadiani MR. Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology. Biocatal Agric Biotechnol 2020; 29: 101828.
[http://dx.doi.org/10.1016/j.bcab.2020.101828]
[95]
Jadán-Piedra C, Crespo Á, Monedero V, Vélez D, Devesa V, Zúñiga M. Effect of lactic acid bacteria on mercury toxicokinetics. Food Chem Toxicol 2019; 128: 147-53.
[http://dx.doi.org/10.1016/j.fct.2019.04.001] [PMID: 30965103]
[96]
Kinoshita H, Jumonji M, Yasuda S, Igoshi K. Protection of human intestinal epithelial cells from oxidative stress caused by mercury using lactic acid bacteria. Biosci Microbiota Food Health 2020; 39(3): 183-7.
[http://dx.doi.org/10.12938/bmfh.2019-049] [PMID: 32775138]
[97]
Tian F. Introduction Lactic Acid Bacteria: Omics and Functional Evaluation. Singapore: Springer Singapore 2019; pp. 1-33.
[http://dx.doi.org/10.1007/978-981-13-7832-4_1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy