Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

A Solvent-free/Effective Base Unsaturated Esters Synthesis using Novel Amine Functionalized Ionic Liquid

Author(s): Bharathi Priya Velumani, Selvarasu Uthayanila, Gopalsamy Selvaraj Ganesh and Parasuraman Karthikeyan*

Volume 11, Issue 1, 2022

Published on: 07 July, 2022

Page: [82 - 86] Pages: 5

DOI: 10.2174/2211544711666220524125344

Price: $65

Abstract

1-(2-aminoethyl)-3-methylimidazolium bromide [Aemim]Br ionic liquid acted as a catalyst as well as a solvent in the Knoevenagel condensation reaction. The extent of products formed with high yield and more flattering for the synthesis of aliphatic and aromatic esters. The [Aemim] Br can be recycled for 6 runs without great loss of activity.

Background: The Knoevenagel condensation was one of the fundamental reactions in organic chemistry both at the laboratory and industrial levels.

Objective: An effective method for the condensation of a variety of aliphatic and aromatic carbonyl compounds with ethyl acetoacetate and subsequent hydrolysis to corresponding α, β - unsaturated esters in [Aemim]Br was achieved.

Methods: The weighed quantity of [Aemim]Br, an aldehyde and ethyl acetoacetate were carried out at 25°C. The reaction commenced instantaneously making the reaction mixture highly viscous. The product was extracted with ether. The combined organic extracts were dried using anhydrous sodium sulphate, evaporated under reduced pressure and assayed on GC.

Results: We could achieve to get Knoevenagel condensation with good yield.

Conclusion: An effectual procedure for Knoevenagel condensation of a variety of aliphatic and aromatic aldehydes with active ethyl acetoacetate arises smoothly in the presence of [Aemim]Br without any additional solvents. This is the best method that proved an effective green industrial process.

Keywords: Green chemistry, ionic liquid, condensation, ester, knoevenagel condensation, synthetic chemistry.

« Previous
Graphical Abstract

[1]
Ramesh, S.; Devred, F.; Debecker, D.P. NaAlO2‐Promoted Mesoporous Catalysts for Room temperature Knoevenagel Condensation Reaction. ChemistrySelect, 2020, 1(1), 300-305.
[http://dx.doi.org/10.1002/slct.201904099]
[2]
Gawande, B.M.; Jayaram, R.V. A novel catalyst for the Knoevenagel condensation of aldehydes with malononitrile and ethyl cyanoacetate under solvent free conditions. Catal. Commun., 2006, 7(12), 931-935.
[http://dx.doi.org/10.1016/j.catcom.2006.03.008]
[3]
Lee, A.; Michrowska, A.; Sulzer-Mosse, S.; List, B. The catalytic asymmetric Knoevenagel condensation. Angew. Chem. Int. Ed. Engl., 2011, 50(7), 1707-1710.
[http://dx.doi.org/10.1002/anie.201006319] [PMID: 21308938]
[4]
Lai, G.; Peng, J.; Li, J.; Qiu, H.; Jiang, J.; Jiang, K.; Shen, Y. Ionic liquid functionalized silica gel: novel catalyst and fixed solvent. Tetrahedron Lett., 2006, 47(39), 6951-6953.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.122]
[5]
Forbes, D.C.; Law, A.M.; Morrison, D.W. The Knoevenagel reaction: Analysis and recycling of the ionic liquid medium. Tetrahedron Lett., 2006, 47(11), 1699-1703.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.059]
[6]
Chen, P.; Zhang, L.; Sun, J.S.; Xiao, E.K.; Wu, X.T.; Zhu, G. An Ionic Liquid on a Porous Organic Framework Support: A Recyclable Catalyst for the Knoevenagel Condensation in an Aqueous System. ChemPlusChem, 2020, 85(5), 943-947.
[http://dx.doi.org/10.1002/cplu.202000093] [PMID: 32401419]
[7]
Ranu, B.C.; Jana, R. Ionic Liquid as Catalyst and Reaction Medium – A Simple, Efficient and Green Procedure for Knoevenagel Condensation of Aliphatic and Aromatic Carbonyl Compounds Using a Task‐Specific Basic Ionic Liquid. Eur. J. Org. Chem., 2006, 2006(16), 3767-3770.
[http://dx.doi.org/10.1002/ejoc.200600335]
[8]
Rong, M.; Liu, C.; Han, J.; Wang, H. Catalytic oxidation of alcohols by a double functional ionic liquid [bmim]BF4. Catal. Commun., 2009, 10(4), 362-364.
[http://dx.doi.org/10.1016/j.catcom.2008.09.009]
[9]
Giernoth, R. Task-specific ionic liquids. Angew. Chem. Int. Ed. Engl., 2010, 49(16), 2834-2839.
[http://dx.doi.org/10.1002/anie.200905981] [PMID: 20229544]
[10]
Patel, D.D.; Lee, J.M. Applications of ionic liquids. Chem. Rec., 2012, 12(3), 329-355.
[http://dx.doi.org/10.1002/tcr.201100036] [PMID: 22711528]
[11]
Joglekar, H.G.; Rahman, I.; Kulkarni, B.D. The path ahead for ionic liquids. Chem. Eng. Technol., 2007, 30(7), 819-828.
[http://dx.doi.org/10.1002/ceat.200600287]
[12]
Araque, J.C.; Hettige, J.J.; Margulis, C.J. Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics. J. Phys. Chem. B, 2015, 119(40), 12727-12740.
[http://dx.doi.org/10.1021/acs.jpcb.5b05506] [PMID: 26244375]
[13]
Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev., 2017, 117(10), 6881-6928.
[http://dx.doi.org/10.1021/acs.chemrev.6b00652] [PMID: 28358505]
[14]
Revanna, C.N.; Swaroop, T.R.; Raghavendra, G.M.; Bhadregowda, D.G.; Mantelingu, K.; Rangappa, K.S. Practical and green protocol for the synthesis of substituted 4H‐chromenes using room temperature ionic liquid choline chloride-urea. J. Heterocycl. Chem., 2012, 49(4), 851-855.
[http://dx.doi.org/10.1002/jhet.880]
[15]
Karthikeyan, P.; Bhagat, P.R.; Senthil Kumar, S.; Muskawar, P.N.; Aswar, S.A. Novel and efficient method for esterification catalyzed by 1-glycyl-3-methyl imidazolium chloride-iron (III) complex. J. Iran. Chem. Soc., 2012, 9(6), 983-990.
[http://dx.doi.org/10.1007/s13738-012-0116-1]
[16]
Zhang, Z.; Francio, G.; Leitner, W. Continuous‐flow asymmetric hydrogenation of an enol ester by using supercritical carbon dioxide: Ionic liquids versus supported ionic liquids as the catalyst matrix. ChemCatChem, 2015, 7(13), 1961-1965.
[http://dx.doi.org/10.1002/cctc.201500295]
[17]
Kołodziejska, R.; Studzińska, R.; Pawluk, H. Lipase-catalyzed enantioselective transesterification of prochiral 1-((1,3-dihydroxypropan-2-yloxy)methyl)-5,6,7,8-tetrahydroquinazoline-2,4(1H,3H)-dione in ionic liquids. Chirality, 2018, 30(2), 206-214.
[http://dx.doi.org/10.1002/chir.22787] [PMID: 29139569]
[18]
Kadotani, S.; Inagaki, R.; Nishihara, T.; Nokami, T.; Itoh, T. Enhanced activity of a lipase by the coating with a quaternary ammonium Alkyl-PEG sulfate ionic liquid and cooperative activation with an amino acid. ACS Sustain. Chem.& Eng., 2017, 5(10), 8541-8545.
[http://dx.doi.org/10.1021/acssuschemeng.7b02607]
[19]
Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Paoletti, M. The CeCl3•7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Lett., 2006, 47(37), 6501-6504.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.031]
[20]
Chaudhary, B.; Kulkarni, N.; Saiyed, N.; Chaurasia, M.; Desai, S.; Potkule, S.; Sharma, S. β‐trifluoromethyl α,β‐unsaturated ketones: Efficient building blocks for diverse trifluoromethylated molecules. Adv. Synth. Catal., 2020, 362(22), 4794-4819.
[http://dx.doi.org/10.1002/adsc.202001018]
[21]
Zhou, P.; Lin, L.; Chen, L.; Zhong, X.; Liu, X.; Feng, X. Iron-catalyzed asymmetric haloazidation of α,β-unsaturated ketones: Construction of organic azides with two vicinal stereocenters. J. Am. Chem. Soc., 2017, 139(38), 13414-13419.
[http://dx.doi.org/10.1021/jacs.7b06029] [PMID: 28862434]
[22]
He, T.; Shi, R.; Gong, Y.; Jiang, G.; Liu, M.; Qian, S.; Wang, Z. Base-promoted cascade approach for the preparation of reduced Knoevenagel adducts using hantzsch esters as reducing agent in water. Synlett, 2016, 27(12), 1864-1869.
[http://dx.doi.org/10.1055/s-0035-1562099]
[23]
Fioravanti, S.; Pellacani, L.; Tardella, P.A.; Vergari, M.C. Facile and highly stereoselective one-pot synthesis of either (E)- or (Z)-nitro alkenes. Org. Lett., 2008, 10(7), 1449-1451.
[http://dx.doi.org/10.1021/ol800224k] [PMID: 18302403]
[24]
Ebitani, K.; Motokura, K.; Mori, K.; Mizugaki, T.; Kaneda, K. Reconstructed hydrotalcite as a highly active heterogeneous base catalyst for carbon-carbon bond formations in the presence of water. J. Org. Chem., 2006, 71(15), 5440-5447.
[http://dx.doi.org/10.1021/jo060345l] [PMID: 16839121]
[25]
Ogiwara, Y.; Takahashi, K.; Kitazawa, T.; Sakai, N. Indium(III)-catalyzed knoevenagel condensation of aldehydes and activated methylenes using acetic anhydride as a promoter. J. Org. Chem., 2015, 80(6), 3101-3110.
[http://dx.doi.org/10.1021/acs.joc.5b00011] [PMID: 25689032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy