Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Nanocrystals: A Deep Insight into Formulation Aspects, Stabilization Strategies, and Biomedical Applications

Author(s): Deepika Purohit, Shivkant Sharma, Avneet Kaur Lamba, Sapna Saini, Neha Minocha, Neelam Vashist, Dhirender Kaushik and Parijat Pandey*

Volume 17, Issue 4, 2023

Published on: 18 August, 2022

Page: [307 - 326] Pages: 20

DOI: 10.2174/1872210516666220523120313

Price: $65

Abstract

Background: Drugs with poor solubility exhibit hurdles in their formulation due to poor dissolution and low bioavailability. Nanocrystallization is a great technique for incorporating poorly soluble drugs and is associated with many benefits.

Objective: The objective of the present review is to discuss formulation techniques for the generation of Nanocrystals (NCs) and illustrate the various advantages of NCs. It also explains commonly used stabilizers and guidelines for their safe use for enhancing NCs and provides a deep insight into various biomedical applications of NCs.

Methods: The review was extracted from the study carried out in the general literature to emphasize the importance of NCs in various formulations.

Results: NCs are a widely accepted approach to enhancing drug solubility. There are so many marketed products of nanocrystal drug formulations that are being used to treat life-threatening disorders. Two techniques can be used to formulate NCs, i.e., the bottom-up method and the top-down method. Their main biomedical applications are found in oral, parenteral, pulmonary, ocular, dermal, and mucosal formulations.

Conclusion: In the present review, different formulation methods of NCs have been discussed in detail, followed by explaining the advantages and various targeted drug delivery systems covered by NCs formulations. The development of NCs-based formulation avoids the limitations of other systems used for targeted drug delivery.

Keywords: Nanocrystals, bottom-up technique, crystal growth, homogenization, nanoparticles, patents.

Graphical Abstract

[1]
Lipinski CA. Poor aqueous solubility - An industry wide problem in ADME screening. Am Pharm Rev 2002; 5(3): 82-5.
[2]
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front Pharmacol 2021; 12: 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[3]
Boyd BJ, Bergström CAS, Vinarov Z, et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137: 104967.
[http://dx.doi.org/10.1016/j.ejps.2019.104967] [PMID: 31252052]
[4]
Xiaohui P, Jin S, Mo L, Zhonggui H. Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs. Curr Nanosci 2009; 5(4): 417-27.
[http://dx.doi.org/10.2174/157341309789378177]
[5]
Ravichandran R. Nanotechnology-based drug delivery systems. Nanobiotechnol 2009; 5(1-4): 17-33.
[http://dx.doi.org/10.1007/s12030-009-9028-2]
[6]
Sri KV, Kondaiah A, Ratna JV, Annapurna A. Preparation and characterization of quercetin and rutin cyclodextrin inclusion complexes. Drug Dev Ind Pharm 2007; 33(3): 245-53.
[http://dx.doi.org/10.1080/03639040601150195] [PMID: 17454057]
[7]
Calabrò ML, Tommasini S, Donato P, et al. The rutin/beta-cyclodextrin interactions in fully aqueous solution: Spectroscopic studies and biological assays. J Pharm Biomed Anal 2005; 36(5): 1019-27.
[http://dx.doi.org/10.1016/j.jpba.2004.09.018] [PMID: 15620528]
[8]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[9]
Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 1996; 85(10): 1017-25.
[http://dx.doi.org/10.1021/js950534b] [PMID: 8897265]
[10]
Dannenfelser RM, He H, Joshi Y, Bateman S, Serajuddin AT. Development of clinical dosage forms for a poorly water soluble drug I: Application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J Pharm Sci 2004; 93(5): 1165-75.
[http://dx.doi.org/10.1002/jps.20044] [PMID: 15067693]
[11]
Joshi HN, Tejwani RW, Davidovich M, et al. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int J Pharm 2004; 269(1): 251-8.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.002] [PMID: 14698596]
[12]
Karavas E, Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Eur J Pharm Biopharm 2007; 66(3): 334-47.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.020] [PMID: 17267194]
[13]
Serajuddin AT. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 1999; 88(10): 1058-66.
[http://dx.doi.org/10.1021/js980403l] [PMID: 10514356]
[14]
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2(1): 16-22.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[15]
Pehlivan SB. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm Res 2013; 30(10): 2499-511.
[http://dx.doi.org/10.1007/s11095-013-1156-7] [PMID: 23959851]
[16]
Jain KK. Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 2005; 4(4): 407-16.
[http://dx.doi.org/10.1177/153303460500400408] [PMID: 16029059]
[17]
Purohit D, Manchanda D, Makhija M, et al. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat Nanotechnol 2021; 15(1): 15-34.
[http://dx.doi.org/10.2174/1872210514666200909154409] [PMID: 32912128]
[18]
Gao L, Zhang DR, Chen MH. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008; 10(5): 845-62.
[http://dx.doi.org/10.1007/s11051-008-9357-4]
[19]
Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Pat Nanotechnol 2018; 12(2): 155-69.
[http://dx.doi.org/10.2174/1872210512666180327120648] [PMID: 29589551]
[20]
Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007; 96(10): 2547-65.
[http://dx.doi.org/10.1002/jps.20875] [PMID: 17688284]
[21]
Barenholz Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[22]
Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 2001; 10(2): 1-7.
[http://dx.doi.org/10.1016/S0960-9776(01)80001-1]
[23]
Walsh TJ, Goodman JL, Pappas P, et al. Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: Maximum tolerated dose study. Antimicrob Agents Chemother 2001; 45(12): 3487-96.
[http://dx.doi.org/10.1128/AAC.45.12.3487-3496.2001] [PMID: 11709329]
[24]
Clemons KV, Stevens DA. Comparative efficacies of four amphotericin B formulations--Fungizone, amphotec (Amphocil), AmBisome, and Abelcet--against systemic murine aspergillosis. Antimicrob Agents Chemother 2004; 48(3): 1047-50.
[http://dx.doi.org/10.1128/AAC.48.3.1047-1050.2004] [PMID: 14982807]
[25]
Montoto SS, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7: 587997.
[26]
Sparreboom A, Scripture CD, Trieu V, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 2005; 11(11): 4136-43.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2291] [PMID: 15930349]
[27]
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 2009; 4: 99-105.
[PMID: 19516888]
[28]
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[29]
Malamatari M, Charisi A, Malamataris S, Kachrimanis K, Nikolakakis I. Spray Drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation. Processes (Basel) 2020; 8(7): 788-814.
[http://dx.doi.org/10.3390/pr8070788]
[30]
Martin B, Seguin J, Annereau M, et al. Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Sci Rep 2020; 10(1): 18059.
[http://dx.doi.org/10.1038/s41598-020-74809-z] [PMID: 33093456]
[31]
Sun B, Yeo Y. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Curr Opin Solid State Mater Sci 2012; 16(6): 295-301.
[http://dx.doi.org/10.1016/j.cossms.2012.10.004] [PMID: 23645994]
[32]
Zhu Y, Fu Y, Zhang A, et al. Rod-shaped nintedanib nanocrystals improved oral bioavailability through multiple intestinal absorption pathways. Eur J Pharm Sci 2022; 168(1): 106047.
[http://dx.doi.org/10.1016/j.ejps.2021.106047] [PMID: 34687899]
[33]
Sun J, Wang F, Sui Y, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomedicine 2012; 7: 5733-44.
[PMID: 23166438]
[34]
de Waard H, Frijlink HW, Hinrichs WL. Bottom-up preparation techniques for nanocrystals of lipophilic drugs. Pharm Res 2011; 28(5): 1220-3.
[http://dx.doi.org/10.1007/s11095-010-0323-3] [PMID: 21086152]
[35]
Junghanns JU, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 2008; 3(3): 295-309.
[PMID: 18990939]
[36]
Elliott JAW. Surface thermodynamics at the nanoscale. J Chem Phys 2021; 154(19): 190901.
[http://dx.doi.org/10.1063/5.0049031] [PMID: 34240888]
[37]
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res 2020; 24(1): 3-19.
[http://dx.doi.org/10.1186/s40824-020-0184-8] [PMID: 31969986]
[38]
Müller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: Preparation, optimisation and long-term stability. Int J Pharm 2002; 237(1-2): 151-61.
[http://dx.doi.org/10.1016/S0378-5173(02)00040-6] [PMID: 11955813]
[39]
Pires PC, Rodrigues M, Alves G, Santos AO. Strategies to improve drug strength in nasal preparations for brain delivery of low aqueous solubility drugs. Pharmaceutics 2022; 14(3): 588-606.
[http://dx.doi.org/10.3390/pharmaceutics14030588] [PMID: 35335964]
[40]
Sporanox-Injection. Available from: http://www.rxlist.com/sporanox-injection-drug.htm (Accessed on 17th October 2021).
[41]
Zielińska A, Soles BB, Lopes AR, et al. Nanopharmaceuticals for eye administration: Sterilization, depyrogenation and clinical applications. Biology (Basel) 2020; 9(10): 336-53.
[http://dx.doi.org/10.3390/biology9100336] [PMID: 33066555]
[42]
Chan HK, Kwok PC. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 2011; 63(6): 406-16.
[http://dx.doi.org/10.1016/j.addr.2011.03.011] [PMID: 21457742]
[43]
Gassmann P, List M, Schweitzer A, Sucker H. Hydrosols-alternatives for the parenteral application of poorly watersoluble drugs. Eur J Pharm Biopharm 1994; 40: 64-72.
[44]
Ainurofiq A, Putro DS, Ramadhani DA, Putra GM, Da Costa Do Espirito Santo L. A review on solubility enhancement methods for poorly water-soluble drugs. J Reports Pharm Sci 2021; 10(1): 137-47.
[http://dx.doi.org/10.4103/jrptps.JRPTPS_134_19]
[45]
Shegokar R, Müller RH. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010; 399(1-2): 129-39.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[46]
Milanowski B. Wosicka-Frąckowiak H, Główka E, et al Optimization and evaluation of the in vitro permeation parameters of topical products with non-steroidal anti-inflammatory drugs through strat-M® membrane. Pharmaceutics 2021; 13(8): 1305-23.
[http://dx.doi.org/10.3390/pharmaceutics13081305] [PMID: 34452264]
[47]
Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci 2015; 10(1): 13-23.
[http://dx.doi.org/10.1016/j.ajps.2014.08.005]
[48]
Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications. Adv Drug Deliv Rev 2008; 60(3): 299-327.
[http://dx.doi.org/10.1016/j.addr.2007.09.001] [PMID: 18192071]
[49]
de Waard H, De Beer T, Hinrichs WL, Vervaet C, Remon JP, Frijlink HW. Controlled crystallization of the lipophilic drug fenofibrate during freeze-drying: Elucidation of the mechanism by inline Raman spectroscopy. AAPS J 2010; 12(4): 569-75.
[http://dx.doi.org/10.1208/s12248-010-9215-z] [PMID: 20625865]
[50]
Khadkaa P, Roa J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 2014; 9(6): 304-16.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[51]
Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol 2010; 62(11): 1569-79.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01022.x] [PMID: 21039542]
[52]
Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006; 62(1): 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[53]
Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2013; 453(1): 142-56.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034] [PMID: 23000841]
[54]
Sharma VK. Preparation of micron-size pharmaceutical particles by microfluidization. US6555139B2 1999.
[55]
Becker R, Kruss B, Muller RH, Peters K. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. US5858410A, 1999.
[56]
Müller RH, Keck CM. Second generation of drug nanocrystals for delivery of poorly soluble drugs: Smart crystal technology. Eur J Pharm Sci 2008; 34(1): S20-34.
[http://dx.doi.org/10.1016/j.ejps.2008.02.049]
[57]
Salazar J, Müller RH, Möschwitzer JP. Performance comparison of two novel combinative particle-size-reduction technologies. J Pharm Sci 2013; 102(5): 1636-49.
[http://dx.doi.org/10.1002/jps.23475] [PMID: 23436640]
[58]
Lovell PA, Schork FJ. Fundamentals of emulsion polymerization. Biomacromolecules 2020; 21(11): 4396-441.
[http://dx.doi.org/10.1021/acs.biomac.0c00769] [PMID: 32543173]
[59]
Nutan MT, Reddy IK, Kulshreshtha AK, Singh ON, Wall GM. Pharmaceutical suspensions: From formulation development to manufacturing. New York: Springer 2010; pp. 39-65.
[http://dx.doi.org/10.1007/978-1-4419-1087-5_2]
[60]
Agarwal V, Bajpai M. Stability issues related to nanosuspensions: A review. Pharm Nanotechnol 2013; 1(2): 85-92.
[http://dx.doi.org/10.2174/2211738511301020004]
[61]
Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: Investigation of the role of stabilizers on Ostwald ripening. Int J Pharm 2011; 406(1-2): 145-52.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.027] [PMID: 21185926]
[62]
Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm 2011; 409: 260-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.051]
[63]
Rodríguez I, Gautam R, Tinoco AD. Using X-ray diffraction techniques for biomimetic drug development, formulation, and polymorphic characterization. Biomimetics (Basel) 2020; 6(1): 1-23.
[http://dx.doi.org/10.3390/biomimetics6010001] [PMID: 33396786]
[64]
Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release 2013; 172(3): 1126-41.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.006] [PMID: 23954372]
[65]
Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: In vivo performances. J Control Release 2012; 160(3): 418-30.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.013] [PMID: 22465393]
[66]
Ambrus R, Alshweiat A, Szabó-Révész P, Bartos C, Csóka I. Smartcrystals for efficient dissolution of poorly water-soluble meloxicam. Pharmaceutics 2022; 14(2): 245-57.
[http://dx.doi.org/10.3390/pharmaceutics14020245] [PMID: 35213978]
[67]
Rivas BL, Urbano BF, Sánchez J. Water-soluble and insoluble polymers, nanoparticles, nanocomposites and hybrids with ability to remove hazardous inorganic pollutants in water. Front Chem 2018; 6: 320.
[http://dx.doi.org/10.3389/fchem.2018.00320] [PMID: 30109224]
[68]
Van Eerdenbrugh B, Vermant J, Martens JA, et al. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci 2009; 98(6): 2091-103.
[http://dx.doi.org/10.1002/jps.21563] [PMID: 18803265]
[69]
Lee J, Choi J-Y, Park CH. Characteristics of polymers enabling nano-comminution of water-insoluble drugs. Int J Pharm 2008; 355(1-2): 328-36.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.032] [PMID: 18261866]
[70]
Teeranachaideekul V, Junyaprasert VB, Souto EB, Müller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm 2008; 354(1-2): 227-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.062] [PMID: 18242898]
[71]
Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 2011; 63(6): 456-69.
[http://dx.doi.org/10.1016/j.addr.2011.02.001] [PMID: 21315781]
[72]
Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 1995; 125(1): 91-7.
[http://dx.doi.org/10.1016/0378-5173(95)00122-Y]
[73]
Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm 2009; 370(1-2): 202-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.11.029] [PMID: 19114097]
[74]
Sun W, Mao S, Shi Y, Li LC, Fang L. Nanonization of itraconazole by high pressure homogenization: Stabilizer optimization and effect of particle size on oral absorption. J Pharm Sci 2011; 100(8): 3365-73.
[http://dx.doi.org/10.1002/jps.22587] [PMID: 21520089]
[75]
Thakkar HP, Patel BV, Thakkar SP. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J Pharm Bioallied Sci 2011; 3(3): 426-34.
[http://dx.doi.org/10.4103/0975-7406.84459] [PMID: 21966165]
[76]
Kakran M, Shegokar R, Sahoo NG, Shaal LA, Li L, Müller RH. Fabrication of quercetin nanocrystals: Comparison of different methods. Eur J Pharm Biopharm 2012; 80(1): 113-21.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.006] [PMID: 21896330]
[77]
Salazar J, Müller RH, Möschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 2013; 49(4): 565-77.
[http://dx.doi.org/10.1016/j.ejps.2013.04.003] [PMID: 23587645]
[78]
Quan P, Xia D, Piao H, et al. Nitrendipine nanocrystals: Its preparation, characterization, and in vitro-in vivo evaluation. AAPS PharmSciTech 2011; 12(4): 1136-43.
[http://dx.doi.org/10.1208/s12249-011-9682-2] [PMID: 21892695]
[79]
Shegokar R, Singh KK. Nevirapine nanosuspensions: Stability, plasma compatibility and sterilization. J Pharm Investig 2012; 42(5): 257-69.
[http://dx.doi.org/10.1007/s40005-012-0039-y]
[80]
Lee J, Lee S-J, Choi J-Y, Yoo JY, Ahn C-H. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci 2005; 24(5): 441-9.
[http://dx.doi.org/10.1016/j.ejps.2004.12.010] [PMID: 15784334]
[81]
Gao L, Zhang D, Chen M, Zheng T, Wang S. Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement. Drug Dev Ind Pharm 2007; 33(12): 1332-9.
[http://dx.doi.org/10.1080/03639040701741810] [PMID: 18097807]
[82]
Mishra PR, Al Shaal L, Müller RH, Keck CM. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 2009; 371(1-2): 182-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.030] [PMID: 19162147]
[83]
Zuo B, Sun Y, Li H, et al. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int J Pharm 2013; 455(1-2): 267-75.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.021] [PMID: 23876497]
[84]
Hu J, Ng WK, Dong Y, Shen S, Tan RB. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int J Pharm 2011; 404(1-2): 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.055] [PMID: 21056643]
[85]
Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm 2006; 62(3): 282-7.
[http://dx.doi.org/10.1016/j.ejpb.2005.09.005] [PMID: 16377161]
[86]
Wang Y, Liu Z, Zhang D, et al. Development and in vitro evaluation of deacety mycoepoxydiene nanosuspension. Colloids Surf B Biointerfaces 2011; 83(2): 189-97.
[http://dx.doi.org/10.1016/j.colsurfb.2010.10.029] [PMID: 21176876]
[87]
Xiong R, Lu W, Li J, Wang P, Xu R, Chen T. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int J Pharm 2008; 350(1-2): 338-43.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.036] [PMID: 17920794]
[88]
Keck CM. Particle size analysis of nanocrystals: Improved analysis method. Int J Pharm 2010; 390(1): 3-12.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.042] [PMID: 19733647]
[89]
Liu P, Rong X, Laru J, et al. Nanosuspensions of poorly soluble drugs: Preparation and development by wet milling. Int J Pharm 2011; 411(1-2): 215-22.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.050] [PMID: 21458552]
[90]
Rachmawati H, Al Shaal L, Müller RH, Keck CM. Development of curcumin nanocrystal: Physical aspects. J Pharm Sci 2013; 102(1): 204-14.
[http://dx.doi.org/10.1002/jps.23335] [PMID: 23047816]
[91]
Verma S, Huey BD, Burgess DJ. Scanning probe microscopy method for nanosuspension stabilizer selection. Langmuir 2009; 25(21): 12481-7.
[http://dx.doi.org/10.1021/la9016432] [PMID: 19791747]
[92]
Choi JY, Yoo JY, Kwak HS, Uk NB, Lee J. Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys 2005; 5(5): 472-4.
[http://dx.doi.org/10.1016/j.cap.2005.01.012]
[93]
Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007; 59(7): 631-44.
[http://dx.doi.org/10.1016/j.addr.2007.05.003] [PMID: 17601629]
[94]
Gustow E, Ryde T, Ruddy S, et al. Fenofibrate dosage forms. WO2009120919A2, 2009.
[95]
Li T. Hybrid nanocrystals for treatment and bioimaging of disease. US9089619B2, 2006.
[96]
Minko T, Dharap SS, Pakunlu RI, Wang Y. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 2004; 5(4): 389-406.
[http://dx.doi.org/10.2174/1389450043345443] [PMID: 15134222]
[97]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41(1): 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[98]
Jain RK. Delivery of molecular medicine to solid tumors: Lessons from in vivo imaging of gene expression and function. J Control Release 2001; 74(1-3): 7-25.
[http://dx.doi.org/10.1016/S0168-3659(01)00306-6] [PMID: 11489479]
[99]
Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010; 7(11): 653-64.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[100]
Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release 2011; 153(3): 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[101]
Potmesil M. Camptothecins: From bench research to hospital wards. Cancer Res 1994; 54(6): 1431-9.
[PMID: 8137244]
[102]
Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol Pharm 2010; 7(2): 307-49.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[103]
Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm 2011; 415(1-2): 293-300.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.075] [PMID: 21679755]
[104]
Zhao R, Hollis CP, Zhang H, Sun L, Gemeinhart RA, Li T. Hybrid nanocrystals: Achieving concurrent therapeutic and bioimaging functionalities toward solid tumors. Mol Pharm 2011; 8(5): 1985-91.
[http://dx.doi.org/10.1021/mp200154k] [PMID: 21812439]
[105]
Ali HS, York P, Ali AM, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011; 149(2): 175-81.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.007] [PMID: 20946923]
[106]
Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008; 13(3-4): 144-51.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[107]
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010; 6(1): 12-21.
[http://dx.doi.org/10.1002/smll.200901158] [PMID: 19844908]
[108]
Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004; 113(1-3): 151-70.
[http://dx.doi.org/10.1016/j.jbiotec.2004.06.007] [PMID: 15380654]
[109]
Mangal S, Gao W, Li T, Zhou QT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacol Sin 2017; 38(6): 782-97.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[110]
Yang JZ, Young AL, Chiang PC, Thurston A, Pretzer DK. Fluticasone and budesonide nanosuspensions for pulmonary delivery: Preparation, characterization, and pharmacokinetic studies. J Pharm Sci 2008; 97(11): 4869-78.
[http://dx.doi.org/10.1002/jps.21380] [PMID: 18351635]
[111]
Zhang J, Lv H, Jiang K, Gao Y. Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. Int J Pharm 2011; 420(1): 180-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.023] [PMID: 21878378]
[112]
Guo Y, Bera H, Shi C, Zhang L, Cun D, Yang M. Pharmaceutical strategies to extend pulmonary exposure of inhaled medicines. Acta Pharm Sin B 2021; 11(8): 2565-84.
[http://dx.doi.org/10.1016/j.apsb.2021.05.015] [PMID: 34522598]
[113]
Hickey AJ. Pharmaceutical inhalation aerosol technology. (2nd ed.). New York: Marcel Dekker 1992; pp. 219-53.
[114]
Swarbrick J. Encyclopedia of pharmaceutical technology. (3rd ed.). New York: Informa Healthcare 2006; pp. 1279-86.
[115]
Khater D, Nsairat H, Odeh F, et al. Design, preparation, and characterization of effective dermal and transdermal lipid nanoparticles: A review. Cosmetics 2021; 8(2): 39-81.
[http://dx.doi.org/10.3390/cosmetics8020039]
[116]
Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm 2011; 420(1): 141-6.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.026] [PMID: 21884768]
[117]
Al Shaal L, Shegokar R, Müller RH. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm 2011; 420(1): 133-40.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.018] [PMID: 21871547]
[118]
Kobierski S, Ofori-Kwakye K, Müller RH, Keck CM. Resveratrol nanosuspensions for dermal application--production, characterization, and physical stability. Pharmazie 2009; 64(11): 741-7.
[PMID: 20099519]
[119]
Smolyarova TE, Tarasov IA, Yakovlev IA, Nemtsev IV, Varnakov SN, Ovchinnikov SG. Method of obtaining hybrid nanocrystals AU3FE1-X/FE and intermetallic nanocrystals AU3FE1-X with controlled lateral size. RU0002747433, 2021.
[120]
Luther Matthew J, Hazarika A. Perovskite nanocrystals and methods of making the same. US 20200055882 A1, 2021.
[121]
Min Z, Xuefeng Z, Peizhi L, Hailiang C, Junjie G. Method for preparing CsPbBr3 perovskite nanocrystals at low temperature. CN110127751, 2021.
[122]
Jang EJ, Jun SA, Lee SH, Park JJ, Choi SJ, Ahn TK. Method for preparing multilayer of nanocrystals, and organic-inorganic hybrid electroluminescence device comprising multilayer of nanocrystals prepared by the method. US20170190966, 2021.
[123]
Weizmann Y, Gibson K, Lee J, Cheglakov Z. Bipyramid-templated synthesis of monodisperse noble metal nanocrystals. CN107849726, 2021.
[124]
Mimura K, Kato K. Method of arranging nanocrystals, method of producing nanocrystal structure, nanocrystal structure formation substrate, and method of manufacturing nanocrystal structure formation substrate. US20170225964, 2020.
[125]
Huang J, Mao B, Exstrom CL. Iron pyrite nanocrystals. US1068015 B2, 2020.
[126]
Bansal AK, Kumar P, Parmar K. Nanocrystals based formulations for improved topical delivery of apremilast. 201911003539, 2019.
[127]
Yuliang S, Qingxia K, Yuefeng C, Hanni Y, Yunjun W. Preparation method of indium phosphide nanocrystals and indium phosphide nanocrystals prepared thereby. CN110511737, 2019.
[128]
Yuliang S, Qingxia K, Yuefeng C, Hanni Y, Yunjun W. Preparation method of indium phosphide nanocrystals and indium phosphide nanocrystals prepared thereby. CN112279229, 2019.
[129]
Yongzhao P, Yue L, Daqin C, Jiasong Z, Xinyue L. Upconverting glass-ceramic composite material of selective rare earth doped scandium-based fluorinated nanocrystals. CN110201209, 2019.
[130]
Sargent EH, Koleilat G, Levina L. Photodetectors and photovoltaics based on semiconductor nanocrystals. US20190173031, 2019.
[131]
Mintova S, Awala H, Gilson JP, Valtchev V. Method for the preparation of a synthetic Faujasite material comprising monodisperse nanoparticles composed of single nanocrystals. 20160325271, 2016.
[132]
Xiaogang P, Jianqing L, David B, Wang YA, Wang Y. Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same. 20150108405, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy