Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

General Review Article

Emerging Nanovaccine Technology: Defense Against Infection by Oral Administration

Author(s): Hitesh Kumar Dewangan*, Akash Raghuvanshi and Kamal Shah

Volume 15, Issue 1, 2023

Published on: 20 October, 2022

Page: [46 - 54] Pages: 9

DOI: 10.2174/1876402914666220523105129

Price: $65

Abstract

Oral vaccines have been proposed as a potential vaccine against a variety of infections, particularly invading pathogens throughout the GIT. Oral vaccinations targeting the large intestine could be a viable alternative to intracorneal immunizations, which have been shown to be effective against rectogenital infections but are impractical during mass vaccination. Furthermore, the oral route allows the development of humoral and cellular immune responses in both systemic and mucosal locations, resulting in a larger and longer-lasting protective effect. Oral administration, on the other hand, is difficult, needing formulations to overcome the harsh GI efficiency and reduce tolerance induction to obtain adequate protection. This review article highlights the mode of action of oral vaccines, the list of licensed oral vaccine, type of vaccines, and the physiological and immunological barriers to the oral transport of peptides and proteins.

Keywords: Oral vaccine, immunity, mucosal immunity, GI tract, gastrointestinal, administration

Graphical Abstract

[1]
Buda, A.; Sands, C.; Jepson, M.A. Use of fluorescence imaging to investigate the structure and function of intestinal M cells. Adv. Drug Deliv. Rev., 2005, 57(1), 123-134.
[http://dx.doi.org/10.1016/j.addr.2004.07.014] [PMID: 15518925]
[2]
Burton, P.S.; Goodwin, J.T.; Vidmar, T.J.; Amore, B.M. Predicting drug absorption: how nature made it a difficult problem. J. Pharmacol. Exp. Ther., 2002, 303(3), 889-895.
[http://dx.doi.org/10.1124/jpet.102.035006] [PMID: 12438506]
[3]
DeVane, L.C. Principles of pharmacokinetics and pharmacodynamics. In: The American Psychiatric Publishing Textbook of Psychopharmacology; Schatzberg, A.F.; Nemeroff, C.B., Eds.; American Psychiatric Publishing, 2004; pp. 181-200.
[4]
Dewangan, H.K. Rational application of nanoadjuvant for mucosal vaccine delivery system. J. Immunol. Methods, 2020, 481-482, 112791.
[http://dx.doi.org/10.1016/j.jim.2020.112791] [PMID: 32387695]
[5]
Dewangan, H.K. Different approaches for nanovaccine formulation and characterization. IOP Conf. Series Mater. Sci. Eng., 2021, 4891(1), 1-11.
[http://dx.doi.org/10.1088/1757-899X/1116/1/012042]
[6]
Dewangan, H. K.; Pandey, T.; Singh, S. Nanovaccine for immunotherapy and reduced hepatitis B virus in humanized mice. Artif. Cells Nanomed. and Biotechnol., 2017, 46(8), 2033-2042.
[7]
Dewangan, H.K.; Singh, S.; Mishra, R.; Dubey, R.K. A review on application of nanoadjuvant as delivery system. Int. J. Appl. Pharm., 2020, 12(4), 24-33.
[http://dx.doi.org/10.22159/ijap.2020v12i4.36856]
[8]
Dewangan, H.K.; Singh, S.; Maurya, L.; Srivastava, A. Hepatitis B antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in vivo immunization in BALB/c mice. Curr. Drug Deliv., 2018, 15(8), 1204-1215.
[http://dx.doi.org/10.2174/1567201815666180604110457] [PMID: 29866006]
[9]
Dewangan, H.K.; Pandey, T.; Maurya, L.; Singh, S. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int. J. Biol. Macromol., 2018, 111, 804-812.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.073] [PMID: 29343454]
[10]
Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev., 2012, 64(6), 557-570.
[http://dx.doi.org/10.1016/j.addr.2011.12.009] [PMID: 22212900]
[11]
Fricker, G.; Drewe, J. Current concepts in intestinal peptide absorption. J. Pept. Sci., 1996, 2(4), 195-211.
[http://dx.doi.org/10.1002/psc.66] [PMID: 9231327]
[12]
Garg, A.; Dewangan, H. K. Nanoparticles as adjuvants in vaccine delivery. Crit. Rev. in Ther. Drug Carrier Syst., 2020, 37(2), 183-204.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2020033273]
[13]
Nazmul, H. M.; Shatil Shahriar, S. M. Oral vaccines-types, delivery strategies, current and future perspectives. Biomed. J. Sci. Journal of Tech. Res., 2018, 11(2), 8398-8404.
[http://dx.doi.org/10.26717/BJSTR.2018.11.002075]
[14]
Dewangan, H.K.; Tomar, S. Nanovaccine for transdermal delivery system. J. Drug Deliv. Sci. Technol., 2022, 67(January 1), 102988.
[http://dx.doi.org/10.1016/j.jddst.2021.102988]
[15]
Suzanne, H.; Bornstein Joel, C.; Franks Ashley, E.; Hill-Yardin, E.L. ‘The role of the gastrointestinal mucus system in intestinal homeostasis: Implications for neurological disorders by’ Madushani Herath1. Front. Cell. Infect. Microbiol., 2020, 10, 248.
[http://dx.doi.org/10.3389/fcimb.2020.00248]
[16]
Germanier, R.; Fiirer, E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: A candidate strain for a live, oral typhoid vaccineR,. Germanier, & E. Fiirer. J. Infect. Dis., 1975, 131(5), 553-558.
[17]
Hun, K. S.; Jin, H. S.; Yong-Kyu, L.; Sungpil, C. Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting. Polymers, 2018, 10(9), 948.
[http://dx.doi.org/10.3390/polym10090948]
[18]
Bandyopadhyay Ananda, S.; Julie, G.; Katherine, S.; Orenstein Walter, A. Future Microbiology 10Polio vaccination: Past, present and future. 2015, 10(5), 1-4.
[http://dx.doi.org/10.2217/fmb.15.19] [PMID: 25824845]
[19]
Kennedy, R.B.; Ovsyannikova, I.G.; Jacobson, R.M.; Poland, G.A. The immunology of smallpox vaccines. Curr. Opin. Immunol., 2009, 21(3), 314-320.
[http://dx.doi.org/10.1016/j.coi.2009.04.004] [PMID: 19524427]
[20]
Kiptoo, P.; Calcagno, A.M.; Siahaan, T.J. Physiological, biochemical, and chemical barriers to oral drug delivery. In: Drug Delivery; Wang, B.; Hu, L.; Siahaan, T.J., Eds.; , 2016.
[http://dx.doi.org/10.1002/9781118833322.ch2]
[21]
Hiroshi, K.; Satoshi, F. Kiyono, H.; Fukuyama, S. NALT- versus PEYER’s-PATCHMEDIATED MUCOSAL Immunity Division ofMucosal Immunology,Department ofMicrobiology and Immunology,The Institute ofMedical Science,The University ofTokyo,4-6-Shirokanedai,Minato-ku, Tokyo 108–8639, Japan. Correspondence to H.K. E-mail: kiyono@ims.u-tokyo. NALT-versus Peyer's-patch-mediated mucosal immunity. Nat. Rev. Immunol., 2004, 4(9), 699-710.
[http://dx.doi.org/10.1038/nri1439] [PMID: 15343369]
[22]
Kunisawa, J.; Kurashima, Y.; Kiyono, H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug Deliv. Rev., 2012, 64(6), 523-530.
[http://dx.doi.org/10.1016/j.addr.2011.07.003] [PMID: 21827802]
[23]
Langman, J.M.; Rowland, R. The number and distribution of lymphoid follicles in the human large intestine. J. Anat., 1986, 149, 189-194.
[PMID: 3693106]
[24]
Liu, L.; Tian, C.; Dong, B.; Xia, M.; Cai, Y.; Hu, R.; Chu, X. Models to evaluate the barrier properties of mucus during drug diffusion. Int. J. Pharm., 2021, 599, 120415.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120415] [PMID: 33647411]
[25]
Lakshmi; Singh, S.; Vijayakumar, M.R.; Dewangan, H.K. Lipid based Aqueous Core Nanocapsules (ACNs) for encapsulating hydrophillic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr. Drug Deliv., 2018, 15(9), 1284-1293.
[http://dx.doi.org/10.2174/1567201815666180716112457] [PMID: 30009708]
[26]
Marasini, N.; Skwarczynski, M.; Toth, I. Oral delivery of nanoparticle-based vaccines. Expert Rev. Vaccines, 2014, 13(11), 1361-1376.
[http://dx.doi.org/10.1586/14760584.2014.936852] [PMID: 25155636]
[27]
Mowat, A.M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol., 2003, 3(4), 331-341.
[http://dx.doi.org/10.1038/nri1057] [PMID: 12669023]
[28]
Mudie, D.M.; Amidon, G.L.; Amidon, G.E. Physiological parameters for oral delivery and in vitro testing. Mol. Pharm., 2010, 7(5), 1388-1405.
[http://dx.doi.org/10.1021/mp100149j] [PMID: 20822152]
[29]
Singh, V.; Garg, A.; Dewangan, H.K. Recent Advances in Drug Design and Delivery Across Biological Barriers Using Computational Models. Lett. Drug Des. Discov., 2022, 19.
[http://dx.doi.org/10.2174/1570180819999220204110306]
[30]
Neutra, M.R.; Phillips, T.L.; Mayer, E.L.; Fishkind, D.J. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res., 1987, 247(3), 537-546.
[http://dx.doi.org/10.1007/BF00215747] [PMID: 3568100]
[31]
Niess, J.H.; Brand, S.; Gu, X.; Landsman, L.; Jung, S.; McCormick, B.A.; Vyas, J.M.; Boes, M.; Ploegh, H.L.; Fox, J.G.; Littman, D.R.; Reinecker, H.C. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 2005, 307(5707), 254-258.
[http://dx.doi.org/10.1126/science.1102901] [PMID: 15653504]
[32]
O’Hagan, D.T. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat., 1996, 189(Pt 3), 477-482.
[PMID: 8982819]
[33]
Ogra, P.L.; Mark, F.; Gallagher, M.R. Viral vaccination via the mucosal routes. Rev. of Infect. Dis., Mayby The University of Chicago, 1980, 2(3), 352-369.
[http://dx.doi.org/10.162-0886/80/0203-0004$01.51]
[34]
Owen, R.L.; Cray, W.C., Jr; Ermak, T.H.; Pierce, N.F. Bacterial characteristics and follicle surface structure: their roles in Peyer’s patch uptake and transport of Vibrio cholerae. Adv. Exp. Med. Biol., 1988, 237, 705-715.
[http://dx.doi.org/10.1007/978-1-4684-5535-9_106] [PMID: 3254071]
[35]
Pabst, O.; Slack, E. IgA and the intestinal microbiota: The importance of being specific. Mucosal Immunol., 2020, 13(1), 12-21.
[http://dx.doi.org/10.1038/s41385-019-0227-4] [PMID: 31740744]
[36]
Pavot, V.; Rochereau, N.; Genin, C.; Verrier, B.; Paul, S. New insights in mucosal vaccine development. Vaccine, 2012, 30(2), 142-154.
[http://dx.doi.org/10.1016/j.vaccine.2011.11.003] [PMID: 22085556]
[37]
Pawar, V.K.; Meher, J.G.; Singh, Y.; Chaurasia, M.; Surendar Reddy, B.; Chourasia, M.K. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives. J. Control. Release, 2014, 196, 168-183.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.031] [PMID: 25305562]
[38]
Dewangan, H.K.; Sharma, A.; Mishra, A.; Singour, P. Mucoadhesive microspheres of atorvastatin calcium: Rational design, evaluation and enhancement of bioavailability. Indian J. of Pharm. Educ. and Res., 2021, 55(3), 1-9.
[http://dx.doi.org/10.5530/ijper.55.3s.180]
[39]
Singh, B.; Maharjan, S.; Jiang, T.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Combinatorial approach of antigen delivery using M cell-homing peptide and mucoadhesive vehicle to enhance the efficacy of oral vaccine. Mol. Pharm., 2015, 12(11), 3816-3828.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00265] [PMID: 26394158]
[40]
Suzuki, K.; Kawamoto, S.; Maruya, M.; Fagarasan, S. GALT: organization and dynamics leading to IgA synthesis. Adv. Immunol., 2010, 107, 153-185.
[http://dx.doi.org/10.1016/B978-0-12-381300-8.00006-X] [PMID: 21034974]
[41]
Parkville, Melbourne, & Victoria. (July 2 1998). Sjölander, A.; Cox, J.C. Uptake and adjuvant activity of orally delivered saponin and TM ISCOMTM vaccines. *¨ Anders Sjolander, John C. Cox Immunology Department, CSL limited, 4 poplar road, 3052. Received 20 October 1997; received in revised form. 1998. Adv. Drug Deliv. Rev., 1998, 34(2-3), 321-339.
[42]
Vela Ramirez, J.E.; Sharpe, L.A.; Peppas, N.A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev., 2017, 114, 116-131.
[http://dx.doi.org/10.1016/j.addr.2017.04.008] [PMID: 28438674]
[43]
Whitacre, C.C.; Gienapp, I.E.; Orosz, C.G.; Bitar, D.M. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J. Immunol., 1991, 147(7), 2155-2163.
[PMID: 1717550]
[44]
Yamamoto, M.; Rennert, P.; McGhee, J.R.; Kweon, M.N.; Yamamoto, S.; Dohi, T.; Otake, S.; Bluethmann, H.; Fujihashi, K.; Kiyono, H. Alternate mucosal immune system: Organized Peyer’s patches are not required for IgA responses in the gastrointestinal tract. J. Immunol., 2000, 164(10), 5184-5191.
[http://dx.doi.org/10.4049/jimmunol.164.10.5184] [PMID: 10799877]
[45]
Deepika, D.; Dewangan, H.K.; Maurya, L.; Singh, S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci., 2019, 108(2), 851-859.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013] [PMID: 30053555]
[46]
Zhaori, G.; Sun, M.; Ogra, P.L. Characteristics of the immune response to poliovirus virion polypeptides after immunization with live or inactivated polio vaccines. J. Infect. Dis., 1988, 158(1), 160-165.
[http://dx.doi.org/10.1093/infdis/158.1.160] [PMID: 2839578]
[47]
Gov.Com. Available from: https://www.cdc.gov.com Retrieved April 20, 2022,
[48]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm., 2013, 447(1-2), 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[49]
Dewangan, H.K. The emerging role of nanosuspensions for drug delivery and stability. Curr. Nanomed., 2021, 11(4), 213-223.
[http://dx.doi.org/10.2174/2468187312666211222123307]
[50]
Yun, Y.; Cho, Y.W.; Park, K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev., 2013, 65(6), 822-832.
[http://dx.doi.org/10.1016/j.addr.2012.10.007] [PMID: 23123292]
[51]
Majhen, D.; Calderon, H.; Chandra, N.; Fajardo, C. A.; Anandi, R.; Alemany, R.; Custers, J. Adenovirus-based vaccine for fighting infectious disease and cancer: Progress in the field. Researchgate, Hum. Gene Ther., 2014, 1-11. 25(4), 301-317.
[52]
Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med., 2005, 11(4), S45-S53.
[http://dx.doi.org/10.1038/nm1213]
[53]
Neutra, M.R.; Mantis, N.J.; Kraehenbuhl, J.P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol., 2001, 2(11), 1004-1009.
[http://dx.doi.org/10.1038/ni1101-1004] [PMID: 11685223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy