Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Electrochemical Aptasensors for Parkinson’s Disease Biomarkers Detection

Author(s): Edyta Mikuła*, Jaroslav Katrlík and Ligia R. Rodrigues

Volume 29, Issue 37, 2022

Published on: 03 August, 2022

Page: [5795 - 5814] Pages: 20

DOI: 10.2174/0929867329666220520123337

Price: $65

Abstract

Background: Biomarkers are characteristic molecules that can serve as indicators of biological process status or condition; here, they are being studied with special relevance to Parkinson’s Disease (PD). This disease is a chronic neurodegenerative disorder very difficult to study given the site of pathology and due to a clinical phenotype that fluctuates over time. Currently, there is no definitive diagnostic test for Parkinson’s Disease; thus, clinicians hope that the detection of crucial biomarkers will help in the symptomatic and presymptomatic diagnostics and provide surrogate endpoints to demonstrate the clinical efficacy of new treatments.

Methods: Electrochemical aptasensors are excellent analytical tools that are used in the detection of PD biomarkers, as they are portable, easy to use, and perform real-time analysis.

Results: In this review, we discuss the most important clinical biomarkers for PD, highlighting their physiological role and function in the disease. Herein, we review, for the first time, innovative aptasensors for the detection of current potential PD biomarkers based on electrochemical techniques and discuss future alternatives, including ideal analytical platforms for point-of-care diagnostics.

Conclusion: These new tools will be critical not only in the discovery of sensitive, specific, and reliable biomarkers of preclinical PD, but also in the development of tests that can assist in the early detection and differential diagnosis of parkinsonian disorders and in monitoring disease progression. Various methods for fixing aptamers onto the sensor surfaces, enabling quantitative and specific PD biomarker detection present in synthetic and clinical samples, will also be discussed.

Keywords: Parkinson’s disease, biomarkers detection, early diagnosis, electrochemical aptasensors, surface modification, aptamers.

[1]
Cookson, M.R. The biochemistry of Parkinson’s disease. Annu. Rev. Biochem., 2005, 74(1), 29-52.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133400] [PMID: 15952880]
[2]
Martin, F.; Williamson, S.; Paleologou, K.; Allsop, D.; El-Agnaf, O. Alpha-synuclein and the pathogenesis of Parkinson’s disease. Protein Pept. Lett., 2004, 11(3), 229-237.
[http://dx.doi.org/10.2174/0929866043407138] [PMID: 15182224]
[3]
Atik, A.; Stewart, T.; Zhang, J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol., 2016, 26(3), 410-418.
[http://dx.doi.org/10.1111/bpa.12370] [PMID: 26940058]
[4]
Lang, A.E.; Lozano, A.M. Parkinson’s disease. N. Engl. J. Med., 1998, 339(15), 1044-1053.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[5]
Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R.; Huang, J.; Zhu, R.; Feng, S.; Duan, Z.; Zhang, Y.; Wang, L. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: A systematic review and meta-analysis. Int. J. Neurosci., 2015, 125(9), 645-654.
[http://dx.doi.org/10.3109/00207454.2014.961454] [PMID: 25202803]
[6]
Wang, J.; Hoekstra, J.G.; Zuo, C.; Cook, T.J.; Zhang, J. Biomarkers of Parkinson’s disease: Current status and future perspectives. Drug Discov. Today, 2013, 18(3-4), 155-162.
[http://dx.doi.org/10.1016/j.drudis.2012.09.001] [PMID: 22982303]
[7]
Mollenhauer, B.; Locascio, J.J.; Schulz-Schaeffer, W.; Sixel-Döring, F.; Trenkwalder, C.; Schlossmacher, M.G. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: A cohort study. Lancet Neurol., 2011, 10(3), 230-240.
[http://dx.doi.org/10.1016/S1474-4422(11)70014-X] [PMID: 21317042]
[8]
Ellis, J.M.; Fell, M.J. Current approaches to the treatment of Parkinson’s disease. Bioorg. Med. Chem. Lett., 2017, 27(18), 4247-4255.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.075] [PMID: 28869077]
[9]
Ceravolo, R.; Rossi, C.; Del Prete, E.; Bonuccelli, U. A review of adverse events linked to dopamine agonists in the treatment of Parkinson’s disease. Expert Opin. Drug Saf., 2016, 15(2), 181-198.
[http://dx.doi.org/10.1517/14740338.2016.1130128] [PMID: 26646536]
[10]
Emamzadeh, F.N.; Surguchov, A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci., 2018, 12, 612.
[http://dx.doi.org/10.3389/fnins.2018.00612] [PMID: 30214392]
[11]
Berendse, H.W.; Booij, J.; Francot, C.M.J.E.; Bergmans, P.L.M.; Hijman, R.; Stoof, J.C.; Wolters, E.C. Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann. Neurol., 2001, 50(1), 34-41.
[http://dx.doi.org/10.1002/ana.1049] [PMID: 11456307]
[12]
Roberts, R.F.; Wade-Martins, R.; Alegre-Abarrategui, J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain, 2015, 138(6), 1642-1657.
[http://dx.doi.org/10.1093/brain/awv040] [PMID: 25732184]
[13]
Mukaetova-Ladinska, E.B. Parkinson’s disease: Diagnostic relevance of elevated levels of soluble α-synuclein oligomers in cerebrospinal fluid. Future Neurol., 2011, 6(2), 159-163.
[http://dx.doi.org/10.2217/fnl.11.7]
[14]
Hansson, O.; Hall, S.; Öhrfelt, A.; Zetterberg, H.; Blennow, K.; Minthon, L.; Nägga, K.; Londos, E.; Varghese, S.; Majbour, N.K.; Al-Hayani, A.; El-Agnaf, O.M. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(3), 25.
[http://dx.doi.org/10.1186/alzrt255] [PMID: 24987465]
[15]
Park, M.J.; Cheon, S.M.; Bae, H.R.; Kim, S.H.; Kim, J.W. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J. Clin. Neurol., 2011, 7(4), 215-222.
[http://dx.doi.org/10.3988/jcn.2011.7.4.215] [PMID: 22259618]
[16]
Wang, X.; Yu, S.; Li, F.; Feng, T. Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson’s disease. Neurosci. Lett., 2015, 599, 115-119.
[http://dx.doi.org/10.1016/j.neulet.2015.05.030] [PMID: 25998655]
[17]
El-Agnaf, O.M.A.; Salem, S.A.; Paleologou, K.E.; Curran, M.D.; Gibson, M.J.; Court, J.A.; Schlossmacher, M.G.; Allsop, D. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J., 2006, 20(3), 419-425.
[http://dx.doi.org/10.1096/fj.03-1449com] [PMID: 16507759]
[18]
Paleologou, K.E.; Kragh, C.L.; Mann, D.M.; Salem, S.A.; Al-Shami, R.; Allsop, D.; Hassan, A.H.; Jensen, P.H.; El-Agnaf, O.M. Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain, 2009, 132(Pt 4), 1093-1101.
[PMID: 19155272]
[19]
Vivacqua, G.; Latorre, A.; Suppa, A.; Nardi, M.; Pietracupa, S.; Mancinelli, R.; Fabbrini, G.; Colosimo, C.; Gaudio, E.; Berardelli, A. Abnormal salivary total and oligomeric alpha-synuclein in Parkinson’s disease. PLoS One, 2016, 11(3), e0151156.
[http://dx.doi.org/10.1371/journal.pone.0151156] [PMID: 27011009]
[20]
Sierks, M.R.; Chatterjee, G.; McGraw, C.; Kasturirangan, S.; Schulz, P.; Prasad, S. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr. Biol., 2011, 3(12), 1188-1196.
[http://dx.doi.org/10.1039/c1ib00018g] [PMID: 22076255]
[21]
Tsukakoshi, K.; Abe, K.; Sode, K.; Ikebukuro, K. Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal. Chem., 2012, 84(13), 5542-5547.
[http://dx.doi.org/10.1021/ac300330g] [PMID: 22697251]
[22]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Biosensors for cardiac biomarkers detection: A review. Sens. Actuators B Chem., 2012, 171-172, 62-76.
[http://dx.doi.org/10.1016/j.snb.2012.05.077]
[23]
Mobed, A.; Razavi, S.; Ahmadalipour, A.; Shakouri, S.K.; Koohkan, G. Biosensors in Parkinson’s disease. Clin. Chim. Acta, 2021, 518, 51-58.
[http://dx.doi.org/10.1016/j.cca.2021.03.009] [PMID: 33753044]
[24]
Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[25]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[PMID: 11261847]
[26]
Cheng, A.K.H.; Sen, D.; Yu, H.Z. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry, 2009, 77(1), 1-12.
[http://dx.doi.org/10.1016/j.bioelechem.2009.04.007] [PMID: 19473883]
[27]
Scheller, F.; Schubert, F. Biosensors, 1st ed; Elsevier Science Publishers: New York, 1992.
[28]
Rodriguez-Mozaz, S.; Marco, M.P.; de Alda, M.J.L.; Barceló, D. Biosensors for environmental applications: Future development trends. Pure Appl. Chem., 2004, 76(4), 723-752.
[http://dx.doi.org/10.1351/pac200476040723]
[29]
Hianik, T.; Wang, J. Electrochemical aptasensors-recent achievements and perspectives. Electroanalysis, 2009, 21(11), 1223-1235.
[http://dx.doi.org/10.1002/elan.200904566]
[30]
Radi, A.E. Electrochemical aptamer-based biosensors: Recent advances and perspectives. Int. J. Electrochem., 2011, 2011, 1-17.
[http://dx.doi.org/10.4061/2011/863196]
[31]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[32]
Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Voltammetric aptasensors for protein disease biomarkers detection: A review. Biotechnol. Adv., 2016, 34(5), 941-953.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.006] [PMID: 27235188]
[33]
Stefani, M.; Rigacci, S. Protein folding and aggregation into amyloid: The interference by natural phenolic compounds. Int. J. Mol. Sci., 2013, 14(6), 12411-12457.
[http://dx.doi.org/10.3390/ijms140612411] [PMID: 23765219]
[34]
Robati, R.Y.; Arab, A.; Ramezani, M.; Langroodi, F.A.; Abnous, K.; Taghdisi, S.M. Aptasensors for quantitative detection of kanamycin. Biosens. Bioelectron., 2016, 82(82), 162-172.
[http://dx.doi.org/10.1016/j.bios.2016.04.011] [PMID: 27085947]
[35]
van den Kieboom, C.H.; van der Beek, S.L.; Mészáros, T.; Gyurcsányi, R.E.; Ferwerda, G.; de Jonge, M.I. Aptasensors for viral diagnostics. Trends Analyt. Chem., 2015, 74, 58-67.
[http://dx.doi.org/10.1016/j.trac.2015.05.012] [PMID: 32287539]
[36]
Hassan, Q.; Li, S.; Ferrag, C.; Kerman, K. Electrochemical biosensors for the detection and study of α-synuclein related to Parkinson’s disease: A review. Anal. Chim. Acta, 2019, 1089, 32-39.
[http://dx.doi.org/10.1016/j.aca.2019.09.013] [PMID: 31627816]
[37]
Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS, 2010, 5(6), 463-466.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[38]
Hess, S.; Ozoux, M.L.; Gerl, M. Biomarker definition and validation during drug development. Drug Discovery and Evaluation: Methods in Clinical Pharmacology; Vogel, H.G.; Maas, J.; Gebauer, A., Eds.; Springer: Berlin, Heidelberg, 2011.
[http://dx.doi.org/10.1007/978-3-540-89891-7_20]
[39]
Environmental Health Criteria 155 Biomarkers and risk assessment: Concepts and principles; United Nations Environment Programme, the International Labour Organisation: Geneva, 1993.
[40]
Michell, A.W.; Lewis, S.J.G.; Foltynie, T.; Barker, R.A. Biomarkers and Parkinson’s disease. Brain, 2004, 127(8), 1693-1705.
[http://dx.doi.org/10.1093/brain/awh198] [PMID: 15215212]
[41]
Kansara, S.; Trivedi, A.; Chen, S.; Jankovic, J.; Le, W. Early diagnosis and therapy of Parkinson’s disease: Can disease progression be curbed? J. Neural Transm. (Vienna), 2013, 120(1), 197-210.
[http://dx.doi.org/10.1007/s00702-012-0840-9] [PMID: 22733089]
[42]
Goedert, M.; Jakes, R.; Spillantini, M.G. The synucleinopathies: Twenty years on. J. Parkinsons Dis., 2017, 7(s1), S51-S69.
[http://dx.doi.org/10.3233/JPD-179005] [PMID: 28282814]
[43]
Ahn, B.H.; Rhim, H.; Kim, S.Y.; Sung, Y.M.; Lee, M.Y.; Choi, J.Y.; Wolozin, B.; Chang, J.S.; Lee, Y.H.; Kwon, T.K.; Chung, K.C.; Yoon, S.H.; Hahn, S.J.; Kim, M.S.; Jo, Y.H.; Min, D.S. alpha-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J. Biol. Chem., 2002, 277(14), 12334-12342.
[http://dx.doi.org/10.1074/jbc.M110414200] [PMID: 11821392]
[44]
Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; Stenroos, E.S.; Chandrasekharappa, S.; Athanassiadou, A.; Papapetropoulos, T.; Johnson, W.G.; Lazzarini, A.M.; Duvoisin, R.C.; Di Iorio, G.; Golbe, L.I.; Nussbaum, R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 1997, 276(5321), 2045-2047.
[http://dx.doi.org/10.1126/science.276.5321.2045] [PMID: 9197268]
[45]
Golbe, L.I.; Di Iorio, G.; Bonavita, V.; Miller, D.C.; Duvoisin, R.C. A large kindred with autosomal dominant Parkinson’s disease. Ann. Neurol., 1990, 27(3), 276-282.
[http://dx.doi.org/10.1002/ana.410270309] [PMID: 2158268]
[46]
Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; Lazzarini, A.M.; Nussbaum, R.L.; Duvoisin, R.C. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science, 1996, 274(5290), 1197-1199.
[http://dx.doi.org/10.1126/science.274.5290.1197] [PMID: 8895469]
[47]
Meade, R.M.; Fairlie, D.P.; Mason, J.M. Alpha-synuclein structure and Parkinson’s disease-lessons and emerging principles. Mol. Neurodegener., 2019, 14(1), 29.
[http://dx.doi.org/10.1186/s13024-019-0329-1] [PMID: 31331359]
[48]
Mehra, S.; Sahay, S.; Maji, S.K. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim. Biophys. Acta. Proteins Proteomics, 2019, 1867(10), 890-908.
[http://dx.doi.org/10.1016/j.bbapap.2019.03.001] [PMID: 30853581]
[49]
Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci., 2013, 14(1), 38-48.
[http://dx.doi.org/10.1038/nrn3406] [PMID: 23254192]
[50]
Ingelsson, M. Alpha-synuclein oligomers- neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Front. Neurosci., 2016, 10, 408.
[http://dx.doi.org/10.3389/fnins.2016.00408] [PMID: 27656123]
[51]
Zhang, Q.S.; Heng, Y.; Yuan, Y.H.; Chen, N.H. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol. Lett., 2017, 265, 30-37.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.002] [PMID: 27865851]
[52]
Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie, 2018, 147, 13-24.
[http://dx.doi.org/10.1016/j.biochi.2017.12.015] [PMID: 29307704]
[53]
Brettschneider, J.; Tredici, K.D.; Lee, V.M.Y.; Trojanowski, J.Q. Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat. Rev. Neurosci., 2015, 16(2), 109-120.
[http://dx.doi.org/10.1038/nrn3887] [PMID: 25588378]
[54]
Guo, J.L.; Lee, V.M.Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med., 2014, 20(2), 130-138.
[http://dx.doi.org/10.1038/nm.3457] [PMID: 24504409]
[55]
Tyson, T.; Steiner, J.A.; Brundin, P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J. Neurochem., 2016, 139(Suppl. 1), 275-289.
[http://dx.doi.org/10.1111/jnc.13449] [PMID: 26617280]
[56]
Srikanth, V.; Maczurek, A.; Phan, T.; Steele, M.; Westcott, B.; Juskiw, D.; Münch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 763-777.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.016] [PMID: 19464758]
[57]
Pan, L.; Meng, L.; He, M.; Zhang, Z. Tau in the pathophysiology of Parkinson’s disease. J. Mol. Neurosci., 2021, 71(11), 2179-2191.
[http://dx.doi.org/10.1007/s12031-020-01776-5] [PMID: 33459970]
[58]
Tokuda, T.; Qureshi, M.M.; Ardah, M.T.; Varghese, S.; Shehab, S.A.S.; Kasai, T.; Ishigami, N.; Tamaoka, A.; Nakagawa, M.; El-Agnaf, O.M.A. Detection of elevated levels of-synuclein oligomers in CSF from patients with Parkinson disease. Neurology, 2010, 75(20), 1766-1770.
[http://dx.doi.org/10.1212/WNL.0b013e3181fd613b] [PMID: 20962290]
[59]
Mandelkow, E.M.; Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med., 2012, 2(7), a006247.
[http://dx.doi.org/10.1101/cshperspect.a006247] [PMID: 22762014]
[60]
Lei, P.; Ayton, S.; Finkelstein, D.I.; Adlard, P.A.; Masters, C.L.; Bush, A.I. Tau protein: Relevance to Parkinson’s disease. Int. J. Biochem. Cell Biol., 2010, 42(11), 1775-1778.
[http://dx.doi.org/10.1016/j.biocel.2010.07.016] [PMID: 20678581]
[61]
De Vos, K.J.; Grierson, A.J.; Ackerley, S.; Miller, C.C.J. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci., 2008, 31(1), 151-173.
[http://dx.doi.org/10.1146/annurev.neuro.31.061307.090711] [PMID: 18558852]
[62]
Lee, V.M.Y.; Giasson, B.I.; Trojanowski, J.Q. More than just two peas in a pod: Common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends Neurosci., 2004, 27(3), 129-134.
[http://dx.doi.org/10.1016/j.tins.2004.01.007] [PMID: 15036877]
[63]
Castillo-Carranza, D.L.; Guerrero-Muñoz, M.J.; Sengupta, U.; Gerson, J.E.; Kayed, R. α-synuclein oligomers induce a unique toxic tau strain. Biol. Psychiatry, 2018, 84(7), 499-508.
[http://dx.doi.org/10.1016/j.biopsych.2017.12.018] [PMID: 29478699]
[64]
Giasson, B.I.; Forman, M.S.; Higuchi, M.; Golbe, L.I.; Graves, C.L.; Kotzbauer, P.T.; Trojanowski, J.Q.; Lee, V.M.Y. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science, 2003, 300(5619), 636-640.
[http://dx.doi.org/10.1126/science.1082324] [PMID: 12714745]
[65]
Chen, W. Studying the interactions between tau, amyloid, and α-synuclein in Alzheimer’s disease animal and human cell models. UC Irvine Electronic Theses and Dissertations; University of California: Irvine, 2016. https://escholarship.org/uc/item/78t3557g
[66]
Duka, T.; Rusnak, M.; Drolet, R.E.; Duka, V.; Wersinger, C.; Goudreau, J.L.; Sidhu, A. Alpha-Synuclein induces hyperphosphorylation of Tau in the MPTP model of Parkinsonism. FASEB J., 2006, 20(13), 2302-2312.
[http://dx.doi.org/10.1096/fj.06-6092com] [PMID: 17077307]
[67]
Haggerty, T.; Credle, J.; Rodriguez, O.; Wills, J.; Oaks, A.W.; Masliah, E.; Sidhu, A. Hyperphosphorylated Tau in an α-synuclein-overexpressing transgenic model of Parkinson’s disease. Eur. J. Neurosci., 2011, 33(9), 1598-1610.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07660.x] [PMID: 21453448]
[68]
Cools, R.; Barker, R.A.; Sahakian, B.J.; Robbins, T.W. Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb. Cortex, 2001, 11(12), 1136-1143.
[http://dx.doi.org/10.1093/cercor/11.12.1136] [PMID: 11709484]
[69]
Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci., 2007, 30(5), 244-250.
[http://dx.doi.org/10.1016/j.tins.2007.03.009] [PMID: 17418429]
[70]
Chinaglia, G.; Alvarez, F.J.; Probst, A.; Palacios, J.M. Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson’s disease and progressive supranuclear palsy: A quantitative autoradiographic study using [3H]mazindol. Neuroscience, 1992, 49(2), 317-327.
[http://dx.doi.org/10.1016/0306-4522(92)90099-N] [PMID: 1436470]
[71]
German, D.C.; Manaye, K.; Smith, W.K.; Woodward, D.J.; Saper, C.B. Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization. Ann. Neurol., 1989, 26(4), 507-514.
[http://dx.doi.org/10.1002/ana.410260403] [PMID: 2817827]
[72]
Antkiewicz-Michaluk, L. Endogenous risk factors in Parkinson’s disease: Dopamine and tetrahydroisoquinolines. Pol. J. Pharmacol., 2002, 54(6), 567-572.
[PMID: 12866710]
[73]
Contu, V.R.; Kotake, Y.; Toyama, T.; Okuda, K.; Miyara, M.; Sakamoto, S.; Samizo, S.; Sanoh, S.; Kumagai, Y.; Ohta, S. Endogenous neurotoxic dopamine derivative covalently binds to Parkinson’s disease-associated ubiquitin C-terminal hydrolase L1 and alters its structure and function. J. Neurochem., 2014, 130(6), 826-838.
[http://dx.doi.org/10.1111/jnc.12762] [PMID: 24832624]
[74]
Zhou, Z.; Kerk, S.; Meng Lim, T. Endogenous dopamine (DA) renders dopaminergic cells vulnerable to challenge of proteasome inhibitor MG132. Free Radic. Res., 2008, 42(5), 456-466.
[http://dx.doi.org/10.1080/10715760802005177] [PMID: 18484277]
[75]
Laitinen, L.V.; Bergenheim, A.T.; Hariz, M.I. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J. Neurosurg., 1992, 76(1), 53-61.
[http://dx.doi.org/10.3171/jns.1992.76.1.0053] [PMID: 1727169]
[76]
Lim, E.W.; Aarsland, D.; Ffytche, D.; Taddei, R.N.; van Wamelen, D.J.; Wan, Y.M.; Tan, E.K.; Ray Chaudhuri, K. Kings Parcog group MDS Nonmotor study group. Amyloid-β and Parkinson’s disease. J. Neurol., 2019, 266(11), 2605-2619.
[http://dx.doi.org/10.1007/s00415-018-9100-8] [PMID: 30377818]
[77]
Caccamo, A.; Oddo, S.; Sugarman, M.C.; Akbari, Y.; LaFerla, F.M. Age- and region-dependent alterations in Aβ-degrading enzymes: Implications for Aβ-induced disorders. Neurobiol. Aging, 2005, 26(5), 645-654.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.06.013] [PMID: 15708439]
[78]
Kummer, M.P.; Heneka, M.T. Truncated and modified amyloid-beta species. Alzheimers Res. Ther., 2014, 6(3), 28.
[http://dx.doi.org/10.1186/alzrt258] [PMID: 25031638]
[79]
Rochester, L.; Galna, B.; Lord, S.; Yarnall, A.J.; Morris, R.; Duncan, G.; Khoo, T.K.; Mollenhauer, B.; Burn, D.J. Decrease in Aβ42 predicts dopa-resistant gait progression in early Parkinson disease. Neurology, 2017, 88(16), 1501-1511.
[http://dx.doi.org/10.1212/WNL.0000000000003840] [PMID: 28330963]
[80]
Gmitterová, K.; Heinemann, U.; Gawinecka, J.; Varges, D.; Ciesielczyk, B.; Valkovic, P.; Benetin, J.; Zerr, I. 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener. Dis., 2009, 6(5-6), 263-269.
[http://dx.doi.org/10.1159/000237221] [PMID: 19955696]
[81]
Isobe, C.; Abe, T.; Terayama, Y. Levels of reduced and oxidized coenzymeQ-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci. Lett., 2010, 469(1), 159-163.
[http://dx.doi.org/10.1016/j.neulet.2009.11.065] [PMID: 19944739]
[82]
García-Moreno, J.M.; Martín de Pablos, A.; García-Sánchez, M.I.; Méndez-Lucena, C.; Damas-Hermoso, F.; Rus, M.; Chacón, J.; Fernández, E. May serum levels of advanced oxidized protein products serve as a prognostic marker of disease duration in patients with idiopathic Parkinson’s disease? Antioxid. Redox Signal., 2013, 18(11), 1296-1302.
[http://dx.doi.org/10.1089/ars.2012.5026] [PMID: 23121480]
[83]
Kikuchi, A.; Takeda, A.; Onodera, H.; Kimpara, T.; Hisanaga, K.; Sato, N.; Nunomura, A.; Castellani, R.J.; Perry, G.; Smith, M.A.; Itoyama, Y. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol. Dis., 2002, 9(2), 244-248.
[http://dx.doi.org/10.1006/nbdi.2002.0466] [PMID: 11895375]
[84]
Shiping, S.; Wang, L.; Li, J.; Fan, C.; Zhao, Z. Aptamer-based biosensors, TrAC. Trends Analyt. Chem., 2008, 27(2), 108-117.
[85]
Yuan, T.; Liu, Z.Y.; Hu, L.Z.; Xu, G.B. Electrochemical and electrochemiluminescent aptasensors. Chin. J. Anal. Chem., 2011, 39(7), 972-977.
[http://dx.doi.org/10.1016/S1872-2040(10)60451-3]
[86]
Melinte, G.; Selvolini, G.; Cristea, C.; Marrazza, G. Aptasensors for lysozyme detection: Recent advances. Talanta, 2021, 226, 122169.
[http://dx.doi.org/10.1016/j.talanta.2021.122169] [PMID: 33676711]
[87]
Willner, I.; Zayats, M. Electronic aptamer-based sensors. Angew. Chem. Int. Ed., 2007, 46(34), 6408-6418.
[http://dx.doi.org/10.1002/anie.200604524] [PMID: 17600802]
[88]
Wu, D.; Xin, X.; Pang, X.; Pietraszkiewicz, M.; Hozyst, R.; Sun, X.; Wei, Q. Application of europium multiwalled carbon nanotubes as novel luminophores in an electrochemiluminescent aptasensor for thrombin using multiple amplification strategies. ACS Appl. Mater. Interfaces, 2015, 7(23), 12663-12670.
[http://dx.doi.org/10.1021/acsami.5b03381] [PMID: 26005759]
[89]
Zhou, W.; Jimmy Huang, P-J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst (Lond.), 2014, 139(11), 2627-2640.
[http://dx.doi.org/10.1039/c4an00132j] [PMID: 24733714]
[90]
Pividori, M.; Merkoçi, A.; Alegret, S. Electrochemical genosensor design: Immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron., 2000, 15(5-6), 291-303.
[http://dx.doi.org/10.1016/S0956-5663(00)00071-3] [PMID: 11219741]
[91]
Mazaafrianto, D.N.; Ishida, A.; Maeki, M.; Tani, H.; Tokeshi, M. Label-free electrochemical sensor for ochratoxin a using a microfabricated electrode with immobilized aptamer. ACS Omega, 2018, 3(12), 16823-16830.
[http://dx.doi.org/10.1021/acsomega.8b01996]
[92]
Zamay, G.S.; Zamay, T.N.; Kolovskii, V.A.; Shabanov, A.V.; Glazyrin, Y.E.; Veprintsev, D.V.; Krat, A.V.; Zamay, S.S.; Kolovskaya, O.S.; Gargaun, A.; Sokolov, A.E.; Modestov, A.A.; Artyukhov, I.P.; Chesnokov, N.V.; Petrova, M.M.; Berezovski, M.V.; Zamay, A.S. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci. Rep., 2016, 6(1), 34350.
[http://dx.doi.org/10.1038/srep34350] [PMID: 27694916]
[93]
Ding, S.; Mosher, C.; Lee, X.Y.; Das, S.R.; Cargill, A.A.; Tang, X.; Chen, B.; McLamore, E.S.; Gomes, C.; Hostetter, J.M.; Claussen, J.C. Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprising a ternary surface monolayer on a gold interdigitated electrode array. ACS Sens., 2017, 2(2), 210-217.
[http://dx.doi.org/10.1021/acssensors.6b00581] [PMID: 28723140]
[94]
So, H.M.; Won, K.; Kim, Y.H.; Kim, B.K.; Ryu, B.H.; Na, P.S.; Kim, H.; Lee, J.O. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc., 2005, 127(34), 11906-11907.
[http://dx.doi.org/10.1021/ja053094r] [PMID: 16117506]
[95]
Shi, S.S.; Jia, L.P.; Ma, R.N.; Jia, W.L.; Wang, H.S. A label-free electrochemical aptasensor for 8-hydroxy-2′-deoxyguanosine detection. J. Electroanal. Chem. (Lausanne), 2015, 759, 107-112.
[http://dx.doi.org/10.1016/j.jelechem.2015.10.040]
[96]
Kim, Y.J.; Kim, Y.S.; Niazi, J.H.; Gu, M.B. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. Eng., 2010, 33(1), 31-37.
[http://dx.doi.org/10.1007/s00449-009-0371-4] [PMID: 19701778]
[97]
Peng, Y.; Zhang, D.; Li, Y.; Qi, H.; Gao, Q.; Zhang, C. Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Biosens. Bioelectron., 2009, 25(1), 94-99.
[http://dx.doi.org/10.1016/j.bios.2009.06.001] [PMID: 19559590]
[98]
Zhou, L.; Wang, M-H.; Wang, J-P.; Ye, Z-Z. Application of biosensor surface immobilization methods for aptamer. Chin. J. Anal. Chem., 2011, 39(3), 432-438.
[http://dx.doi.org/10.1016/S1872-2040(10)60429-X]
[99]
Sharma, R.; Ragavan, K.V.; Thakur, M.S.; Raghavarao, K.S.M.S. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron., 2015, 74(74), 612-627.
[http://dx.doi.org/10.1016/j.bios.2015.07.017] [PMID: 26190473]
[100]
Tertiş, M.; Melinte, G.; Ciui, B.; Şimon, I.; Ştiufiuc, R.; Săndulescu, R.; Cristea, C. A novel label free electrochemical magnetoimmunosensor for human interleukin-6 quantification in serum. Electroanalysis, 2019, 31(2), 282-292.
[http://dx.doi.org/10.1002/elan.201800620]
[101]
Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol., 2016, 36(3), 465-481.
[PMID: 25608959]
[102]
Cheng, L.; Xu, C.; Cui, H.; Liao, F.; Hong, N.; Ma, G.; Xiong, J.; Fan, H. A sensitive homogenous aptasensor based on tetraferrocene labeling for thrombin detection. Anal. Chim. Acta, 2020, 1111, 1-7.
[http://dx.doi.org/10.1016/j.aca.2020.03.017] [PMID: 32312386]
[103]
Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Electrochemical Aptasensors. Electroanalysis, 2009, 21(11), 1237-1250.
[http://dx.doi.org/10.1002/elan.200804554]
[104]
Wang, X.; Li, L.; Gu, X.; Yu, B.; Jiang, M. Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe. Mikrochim. Acta, 2021, 188(2), 49.
[http://dx.doi.org/10.1007/s00604-021-04704-5] [PMID: 33495901]
[105]
Wu, L.; Zhang, X.; Liu, W.; Xiong, E.; Chen, J. Sensitive electrochemical aptasensor by coupling “signal-on” and “signal-off” strategies. Anal. Chem., 2013, 85(17), 8397-8402.
[http://dx.doi.org/10.1021/ac401810t] [PMID: 23998713]
[106]
Seo, H.B.; Gu, M.B. Aptamer-based sandwich-type biosensors. J. Biol. Eng., 2017, 11(1), 11.
[http://dx.doi.org/10.1186/s13036-017-0054-7] [PMID: 28293287]
[107]
Radi, A-E.; Abd-Ellatief, M.R. Electrochemical aptasensors: Current status and future perspectives. Diagnostics (Basel), 2021, 11(1), 104.
[http://dx.doi.org/10.3390/diagnostics11010104] [PMID: 33440751]
[108]
Han, K.; Liang, Z.; Zhou, N. Design strategies for aptamer-based biosensors. Sensors (Basel), 2010, 10(5), 4541-4557.
[http://dx.doi.org/10.3390/s100504541] [PMID: 22399891]
[109]
Maugi, R.; Gamble, B.; Bunka, D.; Platt, M. A simple displacement aptamer assay on resistive pulse sensor for small molecule detection. Talanta, 2021, 225, 122068.
[http://dx.doi.org/10.1016/j.talanta.2020.122068] [PMID: 33592786]
[110]
Li, Z.; Mohamed, M.A.; Vinu Mohan, A.M.; Zhu, Z.; Sharma, V.; Mishra, G.K.; Mishra, R.K. Application of electrochemical aptasensors toward clinical diagnostics, food, and environmental monitoring: Review. Sensors (Basel), 2019, 19(24), 5435.
[http://dx.doi.org/10.3390/s19245435] [PMID: 31835479]
[111]
Tao, D.; Wang, J.; Song, S.; Cai, K.; Jiang, M.; Cheng, J.; Hu, L.; Jaffrezic-Renault, N.; Guo, Z.; Pan, H. Polythionine and gold nanostar-based impedimetric aptasensor for label-free detection of α-synuclein oligomers. J. Appl. Electrochem., 2021, 51(11), 1523-1533.
[http://dx.doi.org/10.1007/s10800-021-01589-3]
[112]
Jang, S.J.; Lee, C.S.; Kim, T.H. α-synuclein oligomer detection with aptamer switch on reduced graphene oxide electrode. Nanomaterials (Basel), 2020, 10(5), 832.
[http://dx.doi.org/10.3390/nano10050832] [PMID: 32349285]
[113]
You, X.; Gopinath, S.C.B.; Lakshmipriya, T.; Li, D. High-affinity detection of alpha-synuclein by aptamer-gold conjugates on an amine-modified dielectric surface. J. Anal. Methods Chem., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/6526850] [PMID: 31886023]
[114]
Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Hassanzadeh-Khayat, M.; Emrani, A.S.; Abnous, K. A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer. Biosens. Bioelectron., 2019, 123, 14-18.
[http://dx.doi.org/10.1016/j.bios.2018.09.081] [PMID: 30278340]
[115]
Tao, D.; Shui, B.; Gu, Y.; Cheng, J.; Zhang, W.; Jaffrezic-Renault, N.; Song, S.; Guo, Z. Development of a label-free electrochemical aptasensor for the detection of Tau381 and its preliminary application in AD and non-AD patients’ sera. Biosensors, 2019, 9(3), 84.
[http://dx.doi.org/10.3390/bios9030084] [PMID: 31262001]
[116]
Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. A novel electrochemical aptamer–antibody sandwich assay for the detection of tau-381 in human serum. Analyst, 2018, 143(15), 3549-3554.
[http://dx.doi.org/10.1039/C8AN00527C] [PMID: 30004544]
[117]
Álvarez-Martos, I.; Campos, R.; Ferapontova, E.E. Surface state of the dopamine RNA aptamer affects specific recognition and binding of dopamine by the aptamer-modified electrodes. Analyst, 2015, 140(12), 4089-4096.
[http://dx.doi.org/10.1039/C5AN00480B] [PMID: 25882962]
[118]
Li, B.R.; Hsieh, Y.J.; Chen, Y.X.; Chung, Y.T.; Pan, C.Y.; Chen, Y.T. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J. Am. Chem. Soc., 2013, 135(43), 16034-16037.
[http://dx.doi.org/10.1021/ja408485m] [PMID: 24125072]
[119]
Xu, Y.; Hun, X.; Liu, F.; Wen, X.; Luo, X. Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe. Mikrochim. Acta, 2015, 182(9-10), 1797-1802.
[http://dx.doi.org/10.1007/s00604-015-1509-5]
[120]
Zhang, Y.; Figueroa-Miranda, G.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Amperometric aptasensor for amyloid-β oligomer detection by optimized stem-loop structures with an adjustable detection range. ACS Sens., 2019, 4(11), 3042-3050.
[http://dx.doi.org/10.1021/acssensors.9b01630] [PMID: 31674772]
[121]
You, M.; Yang, S.; An, Y.; Zhang, F.; He, P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J. Electroanal. Chem., 2020, 862, 114017.
[http://dx.doi.org/10.1016/j.jelechem.2020.114017]
[122]
Deng, C.; Liu, H.; Si, S.; Zhu, X.; Tu, Q.; Jin, Y.; Xiang, J. An electrochemical aptasensor for amyloid-β oligomer based on double-stranded DNA as “conductive spring”. Mikrochim. Acta, 2020, 187(4), 239.
[http://dx.doi.org/10.1007/s00604-020-4217-8] [PMID: 32189141]
[123]
Jia, L.P.; Wang, L.J.; Ma, R.N.; Shang, L.; Zhang, W.; Xue, Q.W.; Wang, H.S. An electrochemical aptasensor for the highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on the hybridization chain reaction. Talanta, 2018, 179, 414-419.
[http://dx.doi.org/10.1016/j.talanta.2017.11.036] [PMID: 29310253]
[124]
Jia, L.P.; Feng, Z.; Zhao, R.N.; Ma, R.N.; Zhang, W.; Shang, L.; Jia, W.L.; Wang, H.S. Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2′-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction. Analyst (Lond.), 2020, 145(10), 3605-3611.
[http://dx.doi.org/10.1039/D0AN00233J] [PMID: 32266898]
[125]
Han, J.T.; Cho, J.Y.; Kim, J.H.; Jang, J.I.; Kim, J.S.; Lee, H.J.; Park, J.H.; Chae, J.S.; Roh, K.C.; Lee, W.; Hwang, J.Y.; Kim, H.Y.; Jeong, H.J.; Jeong, S.Y.; Lee, G-W. Structural recovery of highly oxidized single-walled carbon nanotubes fabricated by kneading and electrochemical applications. Chem. Mater., 2019, 31(9), 3468-3475.
[http://dx.doi.org/10.1021/acs.chemmater.9b00719]
[126]
Chen, Y.; Zhang, X.; Xu, C.; Xu, H. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim. Acta, 2019, 309, 424-431.
[http://dx.doi.org/10.1016/j.electacta.2019.04.072]
[127]
Sharifi, S.; Vahed, S.Z.; Ahmadian, E.; Dizaj, S.M.; Eftekhari, A.; Khalilov, R.; Ahmadi, M.; Hamidi-Asl, E.; Labib, M. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens. Bioelectron., 2020, 150, 111933.
[http://dx.doi.org/10.1016/j.bios.2019.111933] [PMID: 31818764]
[128]
Kholafazad Kordasht, H.; Pazhuhi, M.; Pashazadeh-Panahi, P.; Hasanzadeh, M.; Shadjou, N. Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent Advances. TrAC, 2019, 124, 115778.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy