Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Advances and Challenges in the Investigation of Metastasis in Diffuse Large B-Cell Lymphoma

Author(s): Yingying Chen*, Lingling Jiang, Lixia Liu, Min Ruan, Zhicheng Zhou, Mingzhen Yang* and Leiming Xia*

Volume 22, Issue 22, 2022

Published on: 17 August, 2022

Page: [2808 - 2812] Pages: 5

DOI: 10.2174/1389557522666220519085134

Price: $65

Abstract

Diffuse Large B-cell Lymphoma (DLBCL), an aggressive cancer of the B cells, is the most common pathological type of Non-hodgkin’s Lymphoma (NHL), and the typical heterogeneity of the disease is due to metastasis, which indicates a poor prognosis. Currently, the key mechanism of metastasis remains largely unknown, and research focus on the same in DLBCL. Recent studies have focused on the role of Mesenchymal-epithelial Transition (MET) and Epithelial- mesenchymal Transition (EMT), the Extracellular Matrix (ECM), chemokines, cancer stem cells, and non-coding RNAs in DLBCL. Here, we have summarised the advances and challenges in the investigation of metastasis in DLBCL and attempted to reveal the potential targets that can improve patient survival.

Keywords: Metastasis, DLBCL, EMT and MET, ECM, chemokines, cancer stem cells, non-coding RNA.

Graphical Abstract

[1]
Youssef, Y.; Karkhanis, V.; Chan, W.K.; Jeney, F.; Canella, A.; Zhang, X.; Sloan, S.; Prouty, A.; Helmig-Mason, J.; Tsyba, L.; Hanel, W.; Zheng, X.; Zhang, P.; Chung, J.H.; Lucas, D.M.; Kauffman, Z.; Larkin, K.; Strohecker, A.M.; Ozer, H.G.; Lapalombella, R.; Zhou, H.; Xu-Monette, Z.Y.; Young, K.H.; Han, R.; Nurmemmedov, E.; Nuovo, G.; Maddocks, K.; Byrd, J.C.; Baiocchi, R.A.; Alinari, L. Transducin β-like protein 1 controls multiple oncogenic networks in diffuse large B-cell lymphoma Haematologica, 2021, 106(11), 2927-2939.
[PMID: 33054136]
[2]
Hui, D.; Proctor, B.; Donaldson, J.; Shenkier, T.; Hoskins, P.; Klasa, R.; Savage, K.; Chhanabhai, M.; Gascoyne, R.D.; Connors, J.M.; Sehn, L.H. Prognostic implications of extranodal involvement in patients with diffuse large B-cell lymphoma treated with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone. Leuk. Lymphoma, 2010, 51(9), 1658-1667.
[http://dx.doi.org/10.3109/10428194.2010.504872] [PMID: 20795790]
[3]
Shen, R.; Xu, P.P.; Wang, N.; Yi, H.M.; Dong, L.; Fu, D.; Huang, J.Y.; Huang, H.Y.; Janin, A.; Cheng, S.; Wang, L.; Zhao, W.L. Influence of oncogenic mutations and tumor microenvironment alterations on extranodal invasion in diffuse large B-cell lymphoma. Clin. Transl. Med., 2020, 10(7), e221.
[http://dx.doi.org/10.1002/ctm2.221] [PMID: 33252851]
[4]
Adams, H.J.; de Klerk, J.M.; Fijnheer, R.; Heggelman, B.G.; Dubois, S.V.; Nievelstein, R.A.; Kwee, T.C. Where does diffuse large B-cell lymphoma relapse? J. Comput. Assist. Tomogr., 2016, 40(4), 531-536.
[http://dx.doi.org/10.1097/RCT.0000000000000395] [PMID: 26966953]
[5]
Zhang, M.; Du, Y.; Shang, J.; Zhang, D.; Dong, X.; Chen, H. Knockdown of UCA1 restrains cell proliferation and metastasis of diffuse large B-cell lymphoma by counteracting miR-331-3p expression Oncol. Lett., 2021, 21(1), 39.
[PMID: 33262831]
[6]
Lee, J.W.; Oh, D.; Eom, K.Y.; Kim, J.H.; Kim, W.C.; Chung, M.J.; Lee, J.H. The prognostic value of PET/CT evaluation with Deauville score on the recurrence and survival in diffuse large B-cell lymphoma: A multi-institutional study of KROG 17-02. Clin. Exp. Metastasis, 2020, 37(1), 125-131.
[http://dx.doi.org/10.1007/s10585-019-09992-z] [PMID: 31555945]
[7]
Qiao, L.Y.; Li, H.B.; Zhang, Y.; Shen, D.; Liu, P.; Che, Y.Q. CD24 Contributes to treatment effect in ABC-DLBCL patients with R-CHOP resistance. Pharm. Genomics Pers. Med., 2021, 14, 591-599.
[http://dx.doi.org/10.2147/PGPM.S310816] [PMID: 34079334]
[8]
Lemma, S.; Karihtala, P.; Haapasaari, K.M.; Jantunen, E.; Soini, Y.; Bloigu, R.; Pasanen, A.K.; Turpeenniemi-Hujanen, T.; Kuittinen, O. Biological roles and prognostic values of the epithelial-mesenchymal transition-mediating transcription factors Twist, ZEB1 and Slug in diffuse large B-cell lymphoma. Histopathology, 2013, 62(2), 326-333.
[http://dx.doi.org/10.1111/his.12000] [PMID: 23190132]
[9]
Minezaki, T.; Usui, Y.; Asakage, M.; Takanashi, M.; Shimizu, H.; Nezu, N.; Narimatsu, A.; Tsubota, K.; Umazume, K.; Yamakawa, N.; Kuroda, M.; Goto, H. High-throughput microRNA profiling of vitreoretinal lymphoma: Vitreous and serum microRNA profiles distinct from uveitis. J. Clin. Med., 2020, 9(6), E1844.
[http://dx.doi.org/10.3390/jcm9061844] [PMID: 32545709]
[10]
Gao, Y.; Sun, B.; Hu, J.; Ren, H.; Zhou, H.; Chen, L.; Liu, R.; Zhang, W. Identification of gene modules associated with survival of diffuse large B-cell lymphoma treated with CHOP-based chemotherapy. Pharmacogenomics J., 2020, 20(5), 705-716.
[http://dx.doi.org/10.1038/s41397-020-0161-6] [PMID: 32042095]
[11]
Moreno, M.J.; Gallardo, A.; Novelli, S.; Mozos, A.; Aragó, M.; Pavón, M.Á.; Céspedes, M.V.; Pallarès, V.; Falgàs, A.; Alcoceba, M.; Blanco, O.; Gonzalez-Díaz, M.; Sierra, J.; Mangues, R.; Casanova, I. CXCR7 expression in diffuse large B-cell lymphoma identifies a subgroup of CXCR4+ patients with good prognosis. PLoS One, 2018, 13(6), e0198789.
[http://dx.doi.org/10.1371/journal.pone.0198789] [PMID: 29920526]
[12]
Du, H.; Gao, L.; Luan, J.; Zhang, H.; Xiao, T.; Chemokine Receptor, C-X-C. C-X-C Chemokine receptor 4 in diffuse large B cell lymphoma: Achievements and challenges. Acta Haematol., 2019, 142(2), 64-70.
[http://dx.doi.org/10.1159/000497430] [PMID: 31096215]
[13]
Song, S.; Li, Y.; Zhang, K.; Zhang, X.; Huang, Y.; Xu, M.; Li, S.; Guan, X.; Yang, T.; Liu, Z.; Jiang, J.; Luo, Y.; Lan, Y. Cancer stem cells of diffuse large B cell lymphoma are not enriched in the CD45+CD19- cells but in the ALDHhigh cells. J. Cancer, 2020, 11(1), 142-152.
[http://dx.doi.org/10.7150/jca.35000] [PMID: 31892981]
[14]
Tian, M.; Li, Y.; Zheng, W.; Liu, Q.Q.; Zhang, X.L.; Liu, J.L.; Zhang, S.; Sheng, Y.X.; Fan, C.B.; Zhang, W.L. LncRNA PCAT1 enhances cell proliferation, migration and invasion by miR-508-3p/NFIB axis in diffuse large B-cell lymphoma Eur. Rev. Med. Pharmacol. Sci., 2021, 25(6), 2567-2576.
[PMID: 33829443]
[15]
Heuberger, J.; Birchmeier, W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb. Perspect. Biol., 2010, 2(2), a002915.
[http://dx.doi.org/10.1101/cshperspect.a002915] [PMID: 20182623]
[16]
Xu, P.P.; Sun, Y.F.; Fang, Y.; Song, Q.; Yan, Z.X.; Chen, Y.; Jiang, X.F.; Fei, X.C.; Zhao, Y.; Leboeuf, C.; Li, B.; Wang, C.F.; Janin, A.; Wang, L.; Zhao, W.L. JAM-A overexpression is related to disease progression in diffuse large B-cell lymphoma and downregulated by lenalidomide. Sci. Rep., 2017, 7(1), 7433.
[http://dx.doi.org/10.1038/s41598-017-07964-5] [PMID: 28785100]
[17]
Wang, Z.; Zhang, M.; Quereda, V.; Frydman, S.M.; Ming, Q.; Luca, V.C.; Duckett, D.R.; Ji, H. Discovery of an orally bioavailable small-molecule inhibitor for the β-catenin/b-cell lymphoma 9 protein-protein interaction. J. Med. Chem., 2021, 64(16), 12109-12131.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00742] [PMID: 34382808]
[18]
Tsao, C.W.; Li, J.S.; Lin, Y.W.; Wu, S.T.; Cha, T.L.; Liu, C.Y. Regulation of carcinogenesis and mediation through Wnt/β-catenin signaling by 3,3′-diindolylmethane in an enzalutamide-resistant prostate cancer cell line. Sci. Rep., 2021, 11(1), 1239.
[http://dx.doi.org/10.1038/s41598-020-80519-3] [PMID: 33441906]
[19]
Singh, A.B.; Sharma, A.; Smith, J.J.; Krishnan, M.; Chen, X.; Eschrich, S.; Washington, M.K.; Yeatman, T.J.; Beauchamp, R.D.; Dhawan, P. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology, 2011, 141(6), 2140-2153.
[http://dx.doi.org/10.1053/j.gastro.2011.08.038] [PMID: 21878201]
[20]
Orsulic, S.; Huber, O.; Aberle, H.; Arnold, S.; Kemler, R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J. Cell Sci., 1999, 112(Pt 8), 1237-1245.
[http://dx.doi.org/10.1242/jcs.112.8.1237] [PMID: 10085258]
[21]
Montserrat, N.; Gallardo, A.; Escuin, D.; Catasus, L.; Prat, J.; Gutiérrez-Avignó, F.J.; Peiró, G.; Barnadas, A.; Lerma, E. Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: A cooperative effort? Hum. Pathol., 2011, 42(1), 103-110.
[http://dx.doi.org/10.1016/j.humpath.2010.05.019] [PMID: 20970163]
[22]
Wang, Y.; Tan, J.; Wu, H.; Yi, C. High glucose promotes epithelial-mesenchymal transition, migration and invasion in A20 murine diffuse large B-cell lymphoma cells through increased expression of high mobility group at-hook 2 (HMGA2). Med. Sci. Monit., 2019, 25, 3860-3868.
[http://dx.doi.org/10.12659/MSM.916195] [PMID: 31124542]
[23]
Wieczorek, E.; Jablonska, E.; Wasowicz, W.; Reszka, E. Matrix metalloproteinases and genetic mouse models in cancer research: A mini-review. Tumour Biol., 2015, 36(1), 163-175.
[http://dx.doi.org/10.1007/s13277-014-2747-6] [PMID: 25352026]
[24]
Duś-Szachniewicz, K.; Drobczyński, S.; Ziółkowski, P.; Kołodziej, P.; Walaszek, K.M.; Korzeniewska, A.K.; Agrawal, A.; Kupczyk, P.; Woźniak, M. Physiological hypoxia (Physioxia) impairs the early adhesion of single lymphoma cell to marrow stromal cell and extracellular matrix. Optical tweezers study. Int. J. Mol. Sci., 2018, 19(7), E1880.
[http://dx.doi.org/10.3390/ijms19071880] [PMID: 29949925]
[25]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[26]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[27]
Marchant, D.J.; Bellac, C.L.; Moraes, T.J.; Wadsworth, S.J.; Dufour, A.; Butler, G.S.; Bilawchuk, L.M.; Hendry, R.G.; Robertson, A.G.; Cheung, C.T.; Ng, J.; Ang, L.; Luo, Z.; Heilbron, K.; Norris, M.J.; Duan, W.; Bucyk, T.; Karpov, A.; Devel, L.; Georgiadis, D.; Hegele, R.G.; Luo, H.; Granville, D.J.; Dive, V.; McManus, B.M.; Overall, C.M. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat. Med., 2014, 20(5), 493-502.
[http://dx.doi.org/10.1038/nm.3508] [PMID: 24784232]
[28]
Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006, 69(3), 562-573.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[29]
Ma, B.; Ran, R.; Liao, H.; Zhang, H. The paradoxical role of matrix metalloproteinase-11 in cancer. Biomed. Pharmacother., 2021, 141, 111899.
[http://dx.doi.org/10.1016/j.biopha.2021.111899]
[30]
Kasper, G.; Reule, M.; Tschirschmann, M.; Dankert, N.; Stout-Weider, K.; Lauster, R.; Schrock, E.; Mennerich, D.; Duda, G.N.; Lehmann, K.E. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: Involvement of the IGF-1 signalling pathway. BMC Cancer, 2007, 7(1), 12.
[http://dx.doi.org/10.1186/1471-2407-7-12] [PMID: 17233884]
[31]
Yang, C.; Cao, F.; Huang, S.; Zheng, Y. Follistatin-like 3 correlates with lymph node metastasis and serves as a biomarker of extracellular matrix remodeling in colorectal cancer. Front. Immunol., 2021, 12, 717505.
[http://dx.doi.org/10.3389/fimmu.2021.717505] [PMID: 34335633]
[32]
Zhao, H.; Guo, L.; Zhao, H.; Zhao, J.; Weng, H.; Zhao, B. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget, 2015, 6(7), 5022-5040.
[http://dx.doi.org/10.18632/oncotarget.3217] [PMID: 25669980]
[33]
Hu, T.H.; Yao, Y.; Yu, S.; Han, L.L.; Wang, W.J.; Guo, H.; Tian, T.; Ruan, Z.P.; Kang, X.M.; Wang, J.; Wang, S.H.; Nan, K.J. SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/β-catenin signaling pathway. Cancer Lett., 2014, 354(2), 417-426.
[http://dx.doi.org/10.1016/j.canlet.2014.08.012] [PMID: 25150783]
[34]
Moreno, M.J.; Bosch, R.; Dieguez-Gonzalez, R.; Novelli, S.; Mozos, A.; Gallardo, A.; Pavón, M.Á.; Céspedes, M.V.; Grañena, A.; Alcoceba, M.; Blanco, O.; Gonzalez-Díaz, M.; Sierra, J.; Mangues, R.; Casanova, I. CXCR4 expression enhances diffuse large B cell lymphoma dissemination and decreases patient survival. J. Pathol., 2015, 235(3), 445-455.
[http://dx.doi.org/10.1002/path.4446] [PMID: 25231113]
[35]
Roccaro, A.M.; Mishima, Y.; Sacco, A.; Moschetta, M.; Tai, Y.T.; Shi, J.; Zhang, Y.; Reagan, M.R.; Huynh, D.; Kawano, Y.; Sahin, I.; Chiarini, M.; Manier, S.; Cea, M.; Aljawai, Y.; Glavey, S.; Morgan, E.; Pan, C.; Michor, F.; Cardarelli, P.; Kuhne, M.; Ghobrial, I.M. CXCR4 Regulates extra-medullary myeloma through epithelial-mesenchymal-transition-like transcriptional activation. Cell Rep., 2015, 12(4), 622-635.
[http://dx.doi.org/10.1016/j.celrep.2015.06.059] [PMID: 26190113]
[36]
Yang, P.; Wang, G.; Huo, H.; Li, Q.; Zhao, Y.; Liu, Y. SDF-1/CXCR4 signaling up-regulates survivin to regulate human sacral chondrosarcoma cell cycle and epithelial-mesenchymal transition via ERK and PI3K/AKT pathway. Med. Oncol., 2015, 32(1), 377.
[http://dx.doi.org/10.1007/s12032-014-0377-x] [PMID: 25428386]
[37]
Ruiduo, C.; Ying, D.; Qiwei, W. CXCL9 promotes the progression of diffuse large B-cell lymphoma through up-regulating β-catenin. Biomed. Pharmacother., 2018, 107, 689-695.
[38]
Jang, J.W.; Song, Y.; Kim, S.H.; Kim, J.S.; Kim, K.M.; Choi, E.K.; Kim, J.; Seo, H.R. CD133 confers cancer stem-like cell properties by stabilizing EGFR-AKT signaling in hepatocellular carcinoma. Cancer Lett., 2017, 389, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2016.12.023] [PMID: 28034805]
[39]
Hassani Najafabadi, A.; Zhang, J.; Aikins, M.E.; Najaf Abadi, Z.I.; Liao, F.; Qin, Y.; Okeke, E.B.; Scheetz, L.M.; Nam, J.; Xu, Y.; Adams, D.; Lester, P.; Hetrick, T.; Schwendeman, A.; Wicha, M.S.; Chang, A.E.; Li, Q.; Moon, J. J. Cancer immunotherapyvia targeting cancer stem cells using vaccine nanodiscs. Nano Lett., 2020, 20(10), 7783-7792.
[http://dx.doi.org/10.1021/acs.nanolett.0c03414] [PMID: 32926633]
[40]
Prince, M.E.P.; Zhou, L.; Moyer, J.S.; Tao, H.; Lu, L.; Owen, J.; Etigen, M.; Zheng, F.; Chang, A.E.; Xia, J.; Wolf, G.; Wicha, M.S.; Huang, S.; Ren, X.; Li, Q. Evaluation of the immunogenicity of ALDH(high) human head and neck squamous cell carcinoma cancer stem cells in vitro . Oral Oncol., 2016, 59, 30-42.
[http://dx.doi.org/10.1016/j.oraloncology.2016.05.013] [PMID: 27424180]
[41]
Hu, Y.; Lu, L.; Xia, Y.; Chen, X.; Chang, A.E.; Hollingsworth, R.E.; Hurt, E.; Owen, J.; Moyer, J.S.; Prince, M.E.; Dai, F.; Bao, Y.; Wang, Y.; Whitfield, J.; Xia, J.C.; Huang, S.; Wicha, M.S.; Li, Q. Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res., 2016, 76(16), 4661-4672.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2664] [PMID: 27325649]
[42]
Lan, J.; Huang, B.; Liu, R.; Ju, X.; Zhou, Y.; Jiang, J.; Liang, W.; Shen, Y.; Li, F.; Pang, L. Expression of cancer stem cell markers and their correlation with pathogenesis in vascular tumors Int. J. Clin. Exp. Pathol., 2015, 8(10), 12621-12633.
[PMID: 26722452]
[43]
Du, L.; Li, Y.J.; Fakih, M.; Wiatrek, R.L.; Duldulao, M.; Chen, Z.; Chu, P.; Garcia-Aguilar, J.; Chen, Y. Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal. Nat. Commun., 2016, 7(1), 12326.
[http://dx.doi.org/10.1038/ncomms12326] [PMID: 27465491]
[44]
Leech, A.O.; Cruz, R.G.; Hill, A.D.; Hopkins, A.M. Paradigms lost-an emerging role for over-expression of tight junction adhesion proteins in cancer pathogenesis Ann. Transl. Med., 2015, 3(13), 184.
[PMID: 26366401]
[45]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[46]
Chang, K.C.; Chen, R.Y.; Wang, Y.C.; Hung, L.Y.; Medeiros, L.J.; Chen, Y.P.; Chen, T.Y.; Yang, J.C.; Chiang, P.M. Stem cell characteristics promote aggressiveness of diffuse large B-cell lymphoma. Sci. Rep., 2020, 10(1), 21342.
[http://dx.doi.org/10.1038/s41598-020-78508-7] [PMID: 33288848]
[47]
Chen, J.; Ge, X.; Zhang, W.; Ding, P.; Du, Y.; Wang, Q.; Li, L.; Fang, L.; Sun, Y.; Zhang, P.; Zhou, Y.; Zhang, L.; Lv, X.; Li, L.; Zhang, X.; Zhang, Q.; Xue, K.; Gu, H.; Lei, Q.; Wong, J.; Hu, W. PI3K/AKT inhibition reverses R-CHOP resistance by destabilizing SOX2 in diffuse large B cell lymphoma. Theranostics, 2020, 10(7), 3151-3163.
[http://dx.doi.org/10.7150/thno.41362] [PMID: 32194860]
[48]
Liu, J.; Xu, R.; Mai, S.J.; Ma, Y.S.; Zhang, M.Y.; Cao, P.S.; Weng, N.Q.; Wang, R.Q.; Cao, D.; Wei, W.; Guo, R.P.; Zhang, Y.J.; Xu, L.; Chen, M.S.; Zhang, H.Z.; Huang, L.; Fu, D.; Wang, H.Y. LncRNA CSMD1-1 promotes the progression of Hepatocellular Carcinoma by activating MYC signaling. Theranostics, 2020, 10(17), 7527-7544.
[http://dx.doi.org/10.7150/thno.45989] [PMID: 32685003]
[49]
Huang, D.; Chen, J.; Yang, L.; Ouyang, Q.; Li, J.; Lao, L.; Zhao, J.; Liu, J.; Lu, Y.; Xing, Y.; Chen, F.; Su, F.; Yao, H.; Liu, Q.; Su, S.; Song, E. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol., 2018, 19(10), 1112-1125.
[http://dx.doi.org/10.1038/s41590-018-0207-y] [PMID: 30224822]
[50]
Zhao, C.C.; Jiao, Y.; Zhang, Y.Y.; Ning, J.; Zhang, Y.R.; Xu, J.; Wei, W.; Kang-Sheng, G. Lnc SMAD5-AS1 as ceRNA inhibit proliferation of diffuse large B cell lymphoma via Wnt/β-catenin pathway by sponging miR-135b-5p to elevate expression of APC. Cell Death Dis., 2019, 10(4), 252.
[http://dx.doi.org/10.1038/s41419-019-1479-3] [PMID: 30874550]
[51]
Liang, C.; Qi, Z.; Ge, H.; Liang, C.; Zhang, Y.; Wang, Z.; Li, R.; Guo, J. Long non-coding RNA PCAT-1 in human cancers: A metaanalysis. Clin. Chim. Acta, 2018, 480, 47-55.
[52]
Yu, B.; Wang, B.; Wu, Z.; Wu, C.; Ling, J.; Gao, X.; Zeng, H. LncRNA SNHG8 Promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma via sponging miR-335-5p. Front. Oncol., 2021, 11, 650287.
[http://dx.doi.org/10.3389/fonc.2021.650287] [PMID: 33816305]
[53]
Zhu, Q.; Li, Y.; Guo, Y.; Hu, L.; Xiao, Z.; Liu, X.; Wang, J.; Xu, Q.; Tong, X. Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J. Cell. Mol. Med., 2019, 23(11), 7395-7405.
[http://dx.doi.org/10.1111/jcmm.14601] [PMID: 31483572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy