Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Combined Filtration and Flocculation for Chlorella vulgaris Harvesting

Author(s): Lisendra Marbelia*, Muhammad R. Bilad, Pieter Rens and Ivo Vankelecom

Volume 15, Issue 1, 2023

Published on: 09 September, 2022

Page: [28 - 34] Pages: 7

DOI: 10.2174/1877946812666220517161412

Price: $65

Abstract

Background: The present study aims to explore the feasibility of using flocculation combined with filtration for microalgae harvesting, i.e., Chlorella vulgaris. This is important because microalgae have small sizes and its broth is stable, which makes it difficult to be harvested. The aforementioned facts cause the harvesting cost to be relatively high and become the bottleneck of microalgae processes.

Objective: The objective of this research is to find the relation between microalgae concentration, chitosan dosing as a flocculant, and its filterability on membranes.

Methods: Research was performed by first cultivating the microalgae in a lab-scale photobioreactor, followed by jar test, flocculation, and filtration experiment. Jar test flocculation was performed using chitosan and microalgae with different concentrations, by simply mixing it in a 100 mL bottle and analyzing the results with UV Vis Spectroscopy. Filtration experiments were performed using lab-made polyvinylidene fluoride membrane, in a 100 mL dead-end filtration cell and in a 5 L tank for submerged filtration. During both filtration tests, filtration flux and fouling were monitored and compared.

Results: Results showed that the chitosan concentration needed as a flocculant depends on the microalgae biomass concentration. For the filterability tests, the results proved that flocculation with chitosan enhanced the filterability of the microalgae broth both in dead-end and submerged filtration mode. For the used biomass concentration of around 400 mg/L, the filterability test showed an optimum concentration of chitosan at 7.5 to 10 mg/L, which resulted in a higher filtration flux and lower irreversible fouling in the dead-end filtration and a higher critical flux in the submerged filtration setup.

Conclusion: This increased filterability allowed higher fluxes to be operated, thus resulting in a more efficient harvesting process.

Keywords: Microalgae, membrane, filtration, flocculation, harvesting, efficiency.

Graphical Abstract

[1]
Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 2010, 14(1), 217-232.
[http://dx.doi.org/10.1016/j.rser.2009.07.020]
[2]
Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev., 2018, 92, 394-404.
[http://dx.doi.org/10.1016/j.rser.2018.04.034]
[3]
Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy, 2010, 2(1), 012701.
[http://dx.doi.org/10.1063/1.3294480]
[4]
Mathimani, T.; Mallick, N. A comprehensive review on harvesting of microalgae for biodiesel - Key challenges and future directions. Renew. Sustain. Energy Rev., 2018, 91, 1103-1120.
[http://dx.doi.org/10.1016/j.rser.2018.04.083]
[5]
Okoro, V.; Azimov, U.; Munoz, J.; Hernandez, H.H.; Phan, A.N. Microalgae cultivation and harvesting: Growth performance and use of flocculants - A review. Renew. Sustain. Energy Rev., 2019, 115, 109364.
[http://dx.doi.org/10.1016/j.rser.2019.109364]
[6]
Bilad, M.R.; Arafat, H.A.; Vankelecom, I.F.J. Membrane technology in microalgae cultivation and harvesting: A review. Biotechnol. Adv., 2014, 32(7), 1283-1300.
[http://dx.doi.org/10.1016/j.biotechadv.2014.07.008] [PMID: 25109678]
[7]
Zhao, Z.; Muylaert, K.; Vankelecom, I.F.J. Combining patterned membrane filtration and flocculation for economical microalgae harvesting. Water Res., 2021, 198, 117181.
[http://dx.doi.org/10.1016/j.watres.2021.117181] [PMID: 33962236]
[8]
Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol., 2013, 31(4), 233-239.
[http://dx.doi.org/10.1016/j.tibtech.2012.12.005] [PMID: 23336995]
[9]
Ogbonna, C.N.; Nwoba, E.G. Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review. Renew. Sustain. Energy Rev., 2021, 139, 110690.
[http://dx.doi.org/10.1016/j.rser.2020.110690]
[10]
Matter, I.A.; Hoang Bui, V.K.; Jung, M.; Seo, J.Y.; Kim, Y.E.; Lee, Y.C.; Oh, Y.K. Flocculation harvesting techniques for microalgae: A review. Appl. Sci., (Basel), 2019, 9(15), 3069.
[http://dx.doi.org/10.3390/app9153069]
[11]
Lee, D.J.; Liao, G.Y.; Chang, Y.R.; Chang, J.S. Chitosan coagulation–membrane filtration of Chlorella vulgaris. Int. J. Hydrogen Energy, 2012, 37(20), 15643-15647.
[http://dx.doi.org/10.1016/j.ijhydene.2012.02.048]
[12]
Najjar, Y.S.H.; Abu-Shamleh, A. Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Res., 2020, 51, 102046.
[http://dx.doi.org/10.1016/j.algal.2020.102046]
[13]
Zhao, Z.; Li, Y.; Muylaert, K.; Vankelecom, I.F.J. Synergy between membrane filtration and flocculation for harvesting microalgae. Separ. Purif. Tech., 2020, 240, 116603.
[http://dx.doi.org/10.1016/j.seppur.2020.116603]
[14]
Chang, Y.R.; Lee, D.J. Coagulation-membrane filtration of Chlorella vulgaris at different growth phases. Dry. Technol., 2012, 30(11-12), 1317-1322.
[http://dx.doi.org/10.1080/07373937.2012.662710]
[15]
Mo, W.; Soh, L.; Werber, J.R.; Elimelech, M.; Zimmerman, J.B. Application of membrane dewatering for algal biofuel. Algal Res., 2015, 11, 1-12.
[http://dx.doi.org/10.1016/j.algal.2015.05.018]
[16]
Marbelia, L.; Bilad, M.R.; Maes, S.; Arafat, H.A.; Vankelecom, I.F.J. Poly(vinylidene fluoride)-based membranes for microalgae filtration. Chem. Eng. Technol., 2018, 41(7), 1305-1312.
[http://dx.doi.org/10.1002/ceat.201700622]
[17]
Zhang, M.; Yao, L.; Maleki, E.; Liao, B.Q.; Lin, H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Res., 2019, 44, 101686.
[http://dx.doi.org/10.1016/j.algal.2019.101686]
[18]
Marbelia, L.; Mulier, M.; Vandamme, D.; Muylaert, K.; Szymczyk, A.; Vankelecom, I.F.J. Polyacrylonitrile membranes for microalgae filtration: Influence of porosity, surface charge and microalgae species on membrane fouling. Algal Res., 2016, 19, 128-137.
[http://dx.doi.org/10.1016/j.algal.2016.08.004]
[19]
Marbelia, L.; Bilad, M.R.; Piassecka, A.; Jishna, P.S.; Naik, P.; Vankelecom, I.F.J. Study of PVDF asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR): Influence of phase inversion parameters and filtration performance. Separ. Purif. Tech., 2016, 162, 6-13.
[http://dx.doi.org/10.1016/j.seppur.2016.02.008]
[20]
van der Marel, P.; Zwijnenburg, A.; Kemperman, A.; Wessling, M.; Temmink, H.; van der Meer, W. An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor. J. Membr. Sci., 2009, 332(1-2), 24-29.
[http://dx.doi.org/10.1016/j.memsci.2009.01.046]
[21]
Vandamme, D.; Muylaert, K.; Fraeye, I.; Foubert, I. Floc characteristics of Chlorella vulgaris: Influence of flocculation mode and presence of organic matter. Bioresour. Technol., 2014, 151, 383-387.
[http://dx.doi.org/10.1016/j.biortech.2013.09.112]
[22]
Gerchman, Y.; Vasker, B.; Tavasi, M.; Mishael, Y.; Kinel-Tahan, Y.; Yehoshua, Y. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Bioresour. Technol., 2017, 228, 141-146.
[http://dx.doi.org/10.1016/j.biortech.2016.12.040] [PMID: 28061396]
[23]
Rickman, M.; Pellegrino, J.; Davis, R. Fouling phenomena during membrane filtration of microalgae. J. Membr. Sci., 2012, 423–424, 33-42.
[http://dx.doi.org/10.1016/j.memsci.2012.07.013]
[24]
Liao, Y.; Bokhary, A.; Maleki, E.; Liao, B. A review of membrane fouling and its control in algal-related membrane processes. Bioresour. Technol., 2018, 264, 343-358.
[http://dx.doi.org/10.1016/j.biortech.2018.06.102] [PMID: 29983228]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy