Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Review Article

The Involvement of Melatonin and Tasimelteon against Alzheimer’s Disease

Author(s): Mrinalini Ravikumar, Sumithra Mohan* and Chitra Velpandian

Volume 18, Issue 3, 2023

Published on: 15 August, 2022

Page: [284 - 296] Pages: 13

DOI: 10.2174/1574886317666220517125644

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease with progressive cognition and memory loss, insomnia, and other abnormal behavioral changes. Amongst various hypotheses for AD pathophysiology, occupational stress-induced Alzheimer’s has recently been reported in many AD cases.

Objective: Studies pertaining to the same suggest that stress leads to insomnia or sleep disruption, which further leads to neuroinflammation due to oxidative stress, both of which are major harbingers of AD. Additionally, overall sleep deficit is associated with progressive cognitive and memory decline, which adds more inconvenience to Alzheimer’s disease. Based on this, any triumphant AD management needs a pharmacological intervention that can not only antagonize the amyloid betainduced neurotoxicity but also correct the sleep-wake cycle disruption. Chronobiotic therapeutics like melatonin offer vital neuroprotective effects by eliciting its action through more than one of the pathologies of AD. This is also bolstered by the finding that endogenous melatonin levels are lower in AD patients. This melatonin replacement therapy can be especially useful in AD treatment, but only in the early phases of the disease and in cases where the melatonin receptors are intact and functioning.

Conclusion: To negate such limitations and extend the action and therapeutic efficacy of melatonin- mediated actions towards AD treatment, melatonin analogue like tasimelteon can pose a high therapeutic value in AD treatment superior to that provided by melatonin. This review encapsulates all details about how AD is believed to occur and how current situations influence it, along with how melatonin and tasimelteon act towards treating Alzheimer’s.

Keywords: Alzheimer’s disease, sleep initiation and maintenance disorders, melatonin, oxidative stress, neuroinflammatory diseases, tasimelteon.

[1]
Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol 2019; 18(5): 459-80.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[2]
Ehrenberg AJ, Khatun A, Coomans E, et al. Relevance of biomarkers across different neurodegenerative diseases Alzheimers Res Ther Open Access 2020; 12: 1-1.
[3]
Ma T, Klann E. PERK: A novel therapeutic target for neurodegenerative diseases? Alzheimers Res Ther 2014; 6(3): 30.
[http://dx.doi.org/10.1186/alzrt260] [PMID: 25031640]
[4]
Zhang X, Shi J, Tian J, Robinson AC, Davidson YS, Mann DM. Expression of one important chaperone protein, heat shock protein 27, in neurodegenerative diseases. Alzheimers Res Ther 2014; 6(9): 78.
[http://dx.doi.org/10.1186/s13195-014-0078-x] [PMID: 25621016]
[5]
Golde TE, Miller VM. Proteinopathy-induced neuronal senescence: A hypothesis for brain failure in Alzheimer’s and other neurodegenerative diseases. Alzheimers Res Ther 2009; 1(2): 5.
[http://dx.doi.org/10.1186/alzrt5] [PMID: 19822029]
[6]
Fecto F, Esengul YT, Siddique T. Protein recycling pathways in neurodegenerative diseases. Alzheimers Res Ther 2014; 6(2): 13.
[http://dx.doi.org/10.1186/alzrt243] [PMID: 25031631]
[7]
Thakur AK, Kamboj P, Goswami K, Ahuja K. Pathophysiology and management of Alzheimer’s disease: An overview. J Anal Pharm Res 2018; 7(1): 1-11.
[http://dx.doi.org/10.15406/japlr.2018.07.00230]
[8]
Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimer's dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[9]
St George-Hyslop PH, Petit A. Molecular biology and genetics of Alzheimer’s disease. C R Biol 2005; 328(2): 119-30.
[http://dx.doi.org/10.1016/j.crvi.2004.10.013] [PMID: 15770998]
[10]
Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences. Clin Epidemiol 2014; 6: 37-48.
[http://dx.doi.org/10.2147/CLEP.S37929] [PMID: 24470773]
[11]
Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging 2014; 35 (Suppl. 2): S74-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.033] [PMID: 24913896]
[12]
Rahman MA, Rahman MS, Uddin MJ, Mamum-Or-Rashid ANM, Pang MG, Rhim H. Emerging risk of environmental factors: Insight mechanisms of Alzheimer’s diseases. Environ Sci Pollut Res Int 2020; 27(36): 44659-72.
[http://dx.doi.org/10.1007/s11356-020-08243-z] [PMID: 32201908]
[13]
Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ. Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging 2004; 25(5): 619-27.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.12.021] [PMID: 15172740]
[14]
Wiseman FK, Al-Janabi T, Hardy J, et al. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat Rev Neurosci 2015; 16(9): 564-74.
[http://dx.doi.org/10.1038/nrn3983] [PMID: 26243569]
[15]
Sivanandam TM, Thakur MK. Traumatic brain injury: A risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 2012; 36(5): 1376-81.
[http://dx.doi.org/10.1016/j.neubiorev.2012.02.013] [PMID: 22390915]
[16]
Fu P, Yung KK. Air pollution and Alzheimer’s disease: A systematic review and Meta-Analysis. J Alzheimers Dis Rep 2020; 77(2): 701-14.
[17]
Tyas SL. Alcohol use and the risk of developing Alzheimer’s disease. Alcohol Res Health 2001; 25(4): 299-306.
[PMID: 11910708]
[18]
Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat Rev Neurol 2014; 10(2): 115-9.
[http://dx.doi.org/10.1038/nrneurol.2013.269] [PMID: 24366271]
[19]
de la Torre JC. How do heart disease and stroke become risk factors for Alzheimer’s disease? Neurol Res 2006; 28(6): 637-44.
[http://dx.doi.org/10.1179/016164106X130362] [PMID: 16945216]
[20]
Sun Y, Ma C, Sun H, et al. Metabolism: A novel shared link between diabetes mellitus and alzheimer’s disease. J Diabetes Res 2020; 2020: 4981814.
[http://dx.doi.org/10.1155/2020/4981814] [PMID: 32083135]
[21]
Express Scripts. America’s state of mind report. Available from: https://www.express-scripts.com/corporate/ americas- state-of-mind-report
[22]
Lim KH, Yang S, Kim SH, Joo JY. Elevation of ACE2 as a SARS-CoV-2 entry receptor gene expression in Alzheimer’s disease. J Infect 2020; 81(3): e33-4.
[http://dx.doi.org/10.1016/j.jinf.2020.06.072] [PMID: 32619698]
[23]
Oakman J, Kinsman N, Stuckey R, Graham M, Weale V. A rapid review of mental and physical health effects of working at home: How do we optimise health? BMC Public Health 2020; 20(1): 1825.
[http://dx.doi.org/10.1186/s12889-020-09875-z] [PMID: 33256652]
[24]
Grover S, Sahoo S, Mehra A, et al. Psychological impact of COVID-19 lockdown: An online survey from India. Indian J Psychiatry 2020; 62(4): 354-62.
[http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_427_20] [PMID: 33165368]
[25]
Alzueta E, Perrin P, Baker FC, et al. How the COVID-19 pandemic has changed our lives: A study of psychological correlates across 59 countries. J Clin Psychol 2021; 77(3): 556-70.
[http://dx.doi.org/10.1002/jclp.23082] [PMID: 33128795]
[26]
Utsugi M, Saijo Y, Yoshioka E, et al. Relationships of occupational stress to insomnia and short sleep in Japanese workers. Sleep 2005; 28(6): 728-35.
[http://dx.doi.org/10.1093/sleep/28.6.728] [PMID: 16477960]
[27]
Morin CM, Carrier J. The acute effects of the COVID-19 pandemic on insomnia and psychological symptoms. Sleep Med 2021; 77: 346-7.
[http://dx.doi.org/10.1016/j.sleep.2020.06.005] [PMID: 32595107]
[28]
Justice NJ. The relationship between stress and Alzheimer’s disease. Neurobiol Stress 2018; 8: 127-33.
[http://dx.doi.org/10.1016/j.ynstr.2018.04.002] [PMID: 29888308]
[29]
Shokri-Kojori E, Wang GJ, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA 2018; 115(17): 4483-8.
[http://dx.doi.org/10.1073/pnas.1721694115] [PMID: 29632177]
[30]
Dar NJ, Glazner GW. Deciphering the neuroprotective and neurogenic potential of soluble amyloid precursor protein alpha (sAPPα). Cell Mol Life Sci 2020; 77(12): 2315-30.
[http://dx.doi.org/10.1007/s00018-019-03404-x] [PMID: 31960113]
[31]
Habib A, Sawmiller D, Tan J. Restoring soluble amyloid precursor protein α functions as a potential treatment for Alzheimer’s disease. J Neurosci Res 2017; 95(4): 973-91.
[http://dx.doi.org/10.1002/jnr.23823] [PMID: 27531392]
[32]
Yan Y, Xu TH, Melcher K, Xu HE. Defining the minimum substrate and charge recognition model of gamma-secretase. Acta Pharmacol Sin 2017; 38(10): 1412-24.
[http://dx.doi.org/10.1038/aps.2017.35] [PMID: 28414207]
[33]
Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012; 2012: 731526.
[http://dx.doi.org/10.1155/2012/731526] [PMID: 22690349]
[34]
Sajjad R, Arif R, Shah AA, Manzoor I, Mustafa G. Pathogenesis of Alzheimer’s Disease: Role of Amyloid-beta and Hyperphosphorylated Tau Protein. Indian J Pharm Sci 2018; 80(4): 581-91.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000397]
[35]
Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease Oxid Med Cell Longev 2013; 2013.
[http://dx.doi.org/10.1155/2013/316523]
[36]
Bonda DJ, Lee HG, Blair JA, Zhu X, Perry G, Smith MA. Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 2011; 3(3): 267-70.
[http://dx.doi.org/10.1039/c0mt00074d] [PMID: 21298161]
[37]
Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018; 141(7): 1917-33.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[38]
Lim MM, Gerstner JR, Holtzman DM. The sleep-wake cycle and Alzheimer’s disease: What do we know? Neurodegener Dis Manag 2014; 4(5): 351-62.
[http://dx.doi.org/10.2217/nmt.14.33] [PMID: 25405649]
[39]
Zhang B, Veasey SC, Wood MA, et al. Impaired rapid eye movement sleep in the Tg2576 APP murine model of Alzheimer’s disease with injury to pedunculopontine cholinergic neurons. Am J Pathol 2005; 167(5): 1361-9.
[http://dx.doi.org/10.1016/S0002-9440(10)61223-0] [PMID: 16251420]
[40]
Wisor JP, Edgar DM, Yesavage J, et al. Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer’s disease: A role for cholinergic transmission. Neuroscience 2005; 131(2): 375-85.
[http://dx.doi.org/10.1016/j.neuroscience.2004.11.018] [PMID: 15708480]
[41]
Manaye KF, Mouton PR, Xu G, et al. Age-related loss of noradrenergic neurons in the brains of triple transgenic mice. Age 2013; 35(1): 139-47.
[http://dx.doi.org/10.1007/s11357-011-9343-0] [PMID: 22127507]
[42]
Weinshenker D. Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 2008; 5(3): 342-5.
[http://dx.doi.org/10.2174/156720508784533286] [PMID: 18537547]
[43]
Platt B, Drever B, Koss D, et al. Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS One 2011; 6(11): e27068.
[http://dx.doi.org/10.1371/journal.pone.0027068] [PMID: 22096518]
[44]
Roh JH, Huang Y, Bero AW, et al. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 2012; 4(150): 150ra122.
[http://dx.doi.org/10.1126/scitranslmed.3004291] [PMID: 22956200]
[45]
Slats D, Claassen JA, Lammers GJ, Melis RJ, Verbeek MM, Overeem S. Association between hypocretin-1 and amyloid-β42 cerebrospinal fluid levels in Alzheimer’s disease and healthy controls. Curr Alzheimer Res 2012; 9(10): 1119-25.
[http://dx.doi.org/10.2174/156720512804142840] [PMID: 22742854]
[46]
Fronczek R, van Geest S, Frölich M, et al. Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging 2012; 33(8): 1642-50.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.014] [PMID: 21546124]
[47]
Deuschle M, Schilling C, Leweke FM, et al. Hypocretin in cerebrospinal fluid is positively correlated with Tau and pTau. Neurosci Lett 2014; 561: 41-5.
[http://dx.doi.org/10.1016/j.neulet.2013.12.036] [PMID: 24373987]
[48]
Kang JE, Lim MM, Bateman RJ, et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 2009; 326(5955): 1005-7.
[http://dx.doi.org/10.1126/science.1180962] [PMID: 19779148]
[49]
Pak VM, Onen SH, Bliwise DL, Kutner NG, Russell KL, Onen F. Sleep Disturbances in MCI and AD: Neuroinflammation as a Possible Mediating Pathway. Front Aging Neurosci 2020; 12: 69.
[http://dx.doi.org/10.3389/fnagi.2020.00069] [PMID: 32457592]
[50]
Green TRF, Ortiz JB, Wonnacott S, Williams RJ, Rowe RK. The bidirectional relationship between sleep and inflammation links traumatic brain injury and Alzheimer’s disease. Front Neurosci 2020; 14: 894.
[http://dx.doi.org/10.3389/fnins.2020.00894] [PMID: 32982677]
[51]
Di Meco A, Joshi YB, Praticò D. Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer’s disease with plaques and tangles. Neurobiol Aging 2014; 35(8): 1813-20.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.011] [PMID: 24629673]
[52]
Heneka MT, Ramanathan M, Jacobs AH, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 2006; 26(5): 1343-54.
[http://dx.doi.org/10.1523/JNEUROSCI.4236-05.2006] [PMID: 16452658]
[53]
Spiers JG, Chen HC. Chronic sleep disruption potentiates locus ceruleus tauopathy in a mouse model of alzheimer’s disease. J Neurosci 2019; 39(25): 4844-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3265-18.2019] [PMID: 31217341]
[54]
Zhu B, Dong Y, Xu Z, et al. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol Dis 2012; 48(3): 348-55.
[http://dx.doi.org/10.1016/j.nbd.2012.06.022] [PMID: 22776332]
[55]
Basner M, Rao H, Goel N, Dinges DF. Sleep deprivation and neurobehavioral dynamics. Curr Opin Neurobiol 2013; 23(5): 854-63.
[http://dx.doi.org/10.1016/j.conb.2013.02.008] [PMID: 23523374]
[56]
Blackwell T, Yaffe K, Ancoli-Israel S, et al. Association of sleep characteristics and cognition in older community-dwelling men: The MrOS sleep study. Sleep 2011; 34(10): 1347-56.
[http://dx.doi.org/10.5665/SLEEP.1276] [PMID: 21966066]
[57]
Potvin O, Lorrain D, Forget H, et al. Sleep quality and 1-year incident cognitive impairment in community-dwelling older adults. Sleep 2012; 35(4): 491-9.
[http://dx.doi.org/10.5665/sleep.1732] [PMID: 22467987]
[58]
Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA. Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep 2013; 36(7): 1027-32.
[http://dx.doi.org/10.5665/sleep.2802] [PMID: 23814339]
[59]
Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[60]
Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006; 59(3): 512-9.
[http://dx.doi.org/10.1002/ana.20730] [PMID: 16372280]
[61]
Fagan AM, Xiong C, Jasielec MS, et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci Transl Med 2014; 6(226): 226ra30.
[http://dx.doi.org/10.1126/scitranslmed.3007901] [PMID: 24598588]
[62]
Huang Y, Potter R, Sigurdson W, et al. β-amyloid dynamics in human plasma. Arch Neurol 2012; 69(12): 1591-7.
[http://dx.doi.org/10.1001/archneurol.2012.18107] [PMID: 23229043]
[63]
Ju YE, McLeland JS, Toedebusch CD, et al. Sleep quality and preclinical Alzheimer disease. JAMA Neurol 2013; 70(5): 587-93.
[http://dx.doi.org/10.1001/jamaneurol.2013.2334] [PMID: 23479184]
[64]
Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: A randomized clinical trial. JAMA Neurol 2014; 71(8): 971-7.
[http://dx.doi.org/10.1001/jamaneurol.2014.1173] [PMID: 24887018]
[65]
Bedrosian TA, Nelson RJ. Pro: Alzheimer’s disease and circadian dysfunction: Chicken or egg? Alzheimers Res Ther 2012; 4(4): 25.
[http://dx.doi.org/10.1186/alzrt128] [PMID: 22883711]
[66]
Choe YM, Byun MS, Yi D, et al. Sleep experiences during different lifetime periods and in vivo Alzheimer pathologies. Alzheimers Res Ther 2019; 11(1): 79.
[http://dx.doi.org/10.1186/s13195-019-0536-6] [PMID: 31511066]
[67]
Niu L, Zhang F, Xu X, et al. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology. Brain Pathol 2021; e13028.
[http://dx.doi.org/10.1111/bpa.13028] [PMID: 34668266]
[68]
Ni J, Wu Z, Meng J, et al. An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain. J Neuroinflammation 2019; 16(1): 1-5.
[http://dx.doi.org/10.1186/s12974-018-1391-2] [PMID: 30606213]
[69]
Wirianto M, Wang CY, Kim E, et al. The clock modulator Nobiletin mitigates astrogliosis-associated neuroinflammation and disease hallmarks in an Alzheimer’s disease model. FASEB J 2022; 36(3): e22186.
[http://dx.doi.org/10.1096/fj.202101633R] [PMID: 35120261]
[70]
Minakawa EN, Wada K, Nagai Y. Sleep disturbance as a potential modifiable risk factor for Alzheimer’s disease. Int J Mol Sci 2019; 20(4): 803.
[http://dx.doi.org/10.3390/ijms20040803] [PMID: 30781802]
[71]
Park J, Suh SW, Kim GE, et al. Smaller pineal gland is associated with rapid eye movement sleep behavior disorder in Alzheimer’s disease. Alzheimers Res Ther 2020; 12(1): 157.
[http://dx.doi.org/10.1186/s13195-020-00725-z] [PMID: 33220712]
[72]
Lucey BP, McCullough A, Landsness EC, et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci Transl Med 2019; 11(474): eaau6550.
[http://dx.doi.org/10.1126/scitranslmed.aau6550] [PMID: 30626715]
[73]
Jagust WJ, Mormino EC. Lifespan brain activity, β-amyloid, and Alzheimer’s disease. Trends Cogn Sci 2011; 15(11): 520-6.
[http://dx.doi.org/10.1016/j.tics.2011.09.004] [PMID: 21983147]
[74]
Horovitz SG, Braun AR, Carr WS, et al. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci USA 2009; 106(27): 11376-81.
[http://dx.doi.org/10.1073/pnas.0901435106] [PMID: 19549821]
[75]
Sämann PG, Wehrle R, Hoehn D, et al. Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex 2011; 21(9): 2082-93.
[http://dx.doi.org/10.1093/cercor/bhq295] [PMID: 21330468]
[76]
Bero AW, Yan P, Roh JH, et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 2011; 14(6): 750-6.
[http://dx.doi.org/10.1038/nn.2801] [PMID: 21532579]
[77]
Cirrito JR, Yamada KA, Finn MB, et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 2005; 48(6): 913-22.
[http://dx.doi.org/10.1016/j.neuron.2005.10.028] [PMID: 16364896]
[78]
Naylor E, Aillon DV, Barrett BS, et al. Lactate as a biomarker for sleep. Sleep 2012; 35(9): 1209-22.
[PMID: 22942499]
[79]
Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342(6156): 373-7.
[http://dx.doi.org/10.1126/science.1241224] [PMID: 24136970]
[80]
Wilson CJ, Finch CE, Cohen HJ. Cytokines and cognition--the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 2002; 50(12): 2041-56.
[http://dx.doi.org/10.1046/j.1532-5415.2002.50619.x] [PMID: 12473019]
[81]
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 1010-31.
[http://dx.doi.org/10.2174/1570159X15666170313123454] [PMID: 28294066]
[82]
Srinivasan V, Kaur C, Pandi-Perumal S, Brown GM, Cardinali DP. Melatonin and its agonist ramelteon in Alzheimer’s disease: Possible therapeutic value. Int J Alzheimers Dis 2011; 2011: 2011.
[http://dx.doi.org/10.4061/2011/741974] [PMID: 21197086]
[83]
Reiter RJ. The melatonin rhythm: Both a clock and a calendar. Experientia 1993; 49(8): 654-64.
[http://dx.doi.org/10.1007/BF01923947] [PMID: 8395408]
[84]
Dawson D, Armstrong SM. Chronobiotics--drugs that shift rhythms. Pharmacol Ther 1996; 69(1): 15-36.
[http://dx.doi.org/10.1016/0163-7258(95)02020-9] [PMID: 8857301]
[85]
Wurtman RJ, Zhdanova I. Improvement of sleep quality by melatonin. Lancet 1995; 346(8988): 1491.
[http://dx.doi.org/10.1016/S0140-6736(95)92509-0] [PMID: 7491013]
[86]
Monti JM, Alvariño F, Cardinali D, Savio I, Pintos A. Polysomnographic study of the effect of melatonin on sleep in elderly patients with chronic primary insomnia. Arch Gerontol Geriatr 1999; 28(2): 85-98.
[http://dx.doi.org/10.1016/S0167-4943(98)00129-0] [PMID: 15374088]
[87]
Carrillo-Vico A, Reiter RJ, Lardone PJ, et al. The modulatory role of melatonin on immune responsiveness. Curr Opin Investig Drugs 2006; 7(5): 423-31.
[PMID: 16729718]
[88]
Srinivasan V, Maestroni GJ, Cardinali DP, Esquifino AI, Perumal SR, Miller SC. Melatonin, immune function and aging. Immun Ageing 2005; 2(1): 17.
[http://dx.doi.org/10.1186/1742-4933-2-17] [PMID: 16316470]
[89]
Reiter RJ, Garcia JJ, Pie J. Oxidative toxicity in models of neurodegeneration: Responses to melatonin. Restor Neurol Neurosci 1998; 12(2, 3): 135-42.
[90]
Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: A multitasking molecule Prog Brain Res 2010; 181: 127-51.
[http://dx.doi.org/10.1016/S0079-6123(08)81008-4] [PMID: 20478436]
[91]
Reiter RJ. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1980; 1(2): 109-31.
[http://dx.doi.org/10.1210/edrv-1-2-109] [PMID: 6263600]
[92]
Jung-Hynes B, Reiter RJ, Ahmad N. Sirtuins, melatonin and circadian rhythms: Building a bridge between aging and cancer. J Pineal Res 2010; 48(1): 9-19.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00729.x] [PMID: 20025641]
[93]
Lewy AJ. Circadian misalignment in mood disturbances. Curr Psychiatry Rep 2009; 11(6): 459-65.
[http://dx.doi.org/10.1007/s11920-009-0070-5] [PMID: 19909668]
[94]
Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: The Mel1b melatonin receptor. Proc Natl Acad Sci USA 1995; 92(19): 8734-8.
[http://dx.doi.org/10.1073/pnas.92.19.8734] [PMID: 7568007]
[95]
Carlberg C, Wiesenberg I. The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: An unexpected relationship. J Pineal Res 1995; 18(4): 171-8.
[http://dx.doi.org/10.1111/j.1600-079X.1995.tb00157.x] [PMID: 8531047]
[96]
Benítez-King G. Melatonin as a cytoskeletal modulator: Implications for cell physiology and disease. J Pineal Res 2006; 40(1): 1-9.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00282.x] [PMID: 16313492]
[97]
Urata Y, Honma S, Goto S, et al. Melatonin induces γ-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med 1999; 27(7-8): 838-47.
[http://dx.doi.org/10.1016/S0891-5849(99)00131-8] [PMID: 10515588]
[98]
Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, Nopparat C, Govitrapong P. Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J 2018; 17: 634-46.
[PMID: 30108467]
[99]
Tyagi E, Agrawal R, Nath C, Shukla R. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 2010; 640(1-3): 206-10.
[http://dx.doi.org/10.1016/j.ejphar.2010.04.041] [PMID: 20450904]
[100]
Negi G, Kumar A, Sharma SS. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: Effects on NF-κB and Nrf2 cascades. J Pineal Res 2011; 50(2): 124-31.
[PMID: 21062351]
[101]
Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 2019; 14(2): 278-94.
[http://dx.doi.org/10.1007/s11481-018-9824-3] [PMID: 30478761]
[102]
Ali T, Hao Q, Ullah N, et al. Melatonin act as an antidepressant via attenuation of neuroinflammation by targeting Sirt1/Nrf2/HO-1 signaling. Front Mol Neurosci 2020; 13: 96.
[http://dx.doi.org/10.3389/fnmol.2020.00096] [PMID: 32595452]
[103]
Ali T, Rahman SU, Hao Q, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2): e12667.
[http://dx.doi.org/10.1111/jpi.12667] [PMID: 32375205]
[104]
Yuan H, Wu G, Zhai X, Lu B, Meng B, Chen J. Melatonin and rapamycin attenuate isoflurane-induced cognitive impairment through inhibition of neuroinflammation by suppressing the mTOR signaling in the hippocampus of aged mice. Front Aging Neurosci 2019; 11: 314.
[http://dx.doi.org/10.3389/fnagi.2019.00314] [PMID: 31803045]
[105]
Peters JL, Earnest BJ, Tjalkens RB, Cassone VM, Zoran MJ. Modulation of intercellular calcium signaling by melatonin in avian and mammalian astrocytes is brain region-specific. J Comp Neurol 2005; 493(3): 370-80.
[http://dx.doi.org/10.1002/cne.20779] [PMID: 16261532]
[106]
Peters JL, Cassone VM, Zoran MJ. Melatonin modulates intercellular communication among cultured chick astrocytes. Brain Res 2005; 1031(1): 10-9.
[http://dx.doi.org/10.1016/j.brainres.2004.09.064] [PMID: 15621008]
[107]
Das A, Belagodu A, Reiter RJ, Ray SK, Banik NL. Cytoprotective effects of melatonin on C6 astroglial cells exposed to glutamate excitotoxicity and oxidative stress. J Pineal Res 2008; 45(2): 117-24.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00582.x] [PMID: 18373557]
[108]
Shelat PB, Chalimoniuk M, Wang JH, et al. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 2008; 106(1): 45-55.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05347.x] [PMID: 18346200]
[109]
Kim YS, Kim H, Sung YH, Lee SH, Kim CJ. The effect of melatonin on glutamate‐and its subtype agonists‐induced ion currents in rat hippocampal CA1 neurons. FASEB J 2007; 21(6): A1277-7.
[110]
Zhang QZ, Gong YS, Zhang JT. Antagonistic effects of melatonin on glutamate release and neurotoxicity in cerebral cortex. Chung Kuo Yao Li Hsueh Pao 1999; 20(9): 829-34.
[PMID: 11245092]
[111]
Masilamoni JG, Jesudason EP, Dhandayuthapani S, et al. The neuroprotective role of melatonin against amyloid β peptide injected mice. Free Radic Res 2008; 42(7): 661-73.
[http://dx.doi.org/10.1080/10715760802277388] [PMID: 18654881]
[112]
Deng WG, Tang ST, Tseng HP, Wu KK. Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 2006; 108(2): 518-24.
[http://dx.doi.org/10.1182/blood-2005-09-3691] [PMID: 16609073]
[113]
Steinhilber D, Brungs M, Werz O, et al. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem 1995; 270(13): 7037-40.
[http://dx.doi.org/10.1074/jbc.270.13.7037] [PMID: 7706239]
[114]
Becker-André M, Wiesenberg I, Schaeren-Wiemers N, et al. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 1994; 269(46): 28531-4.
[http://dx.doi.org/10.1016/S0021-9258(19)61934-4] [PMID: 7961794]
[115]
Wiesenberg I, Missbach M, Kahlen JP, Schräder M, Carlberg C. Transcriptional activation of the nuclear receptor RZR α by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res 1995; 23(3): 327-33.
[http://dx.doi.org/10.1093/nar/23.3.327] [PMID: 7885826]
[116]
Hoppe JB, Frozza RL, Horn AP, et al. Amyloid-β neurotoxicity in organotypic culture is attenuated by melatonin: Involvement of GSK-3β, tau and neuroinflammation. J Pineal Res 2010; 48(3): 230-8.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00747.x] [PMID: 20136701]
[117]
Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, et al. Alzheimer’s disease: Pathological mechanisms and the beneficial role of melatonin. J Pineal Res 2012; 52(2): 167-202.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00937.x] [PMID: 22107053]
[118]
Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010; 8(3): 228-42.
[http://dx.doi.org/10.2174/157015910792246155] [PMID: 21358973]
[119]
Tarocco A, Caroccia N, Morciano G, et al. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis 2019; 10(4): 317.
[http://dx.doi.org/10.1038/s41419-019-1556-7] [PMID: 30962427]
[120]
Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: Recent insights and new perspectives. J Pineal Res 2013; 54(1): 1-14.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01014.x] [PMID: 22725668]
[121]
García JA, Volt H, Venegas C, et al. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J 2015; 29(9): 3863-75.
[http://dx.doi.org/10.1096/fj.15-273656] [PMID: 26045547]
[122]
Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Age-related alterations in Ca2+ signals and mitochondrial membrane potential in exocrine cells are prevented by melatonin. J Pineal Res 2008; 45(2): 191-8.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00576.x] [PMID: 18318704]
[123]
Rajaratnam SM, Polymeropoulos MH, Fisher DM, et al. Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: Two randomised controlled multicentre trials. Lancet 2009; 373(9662): 482-91.
[http://dx.doi.org/10.1016/S0140-6736(08)61812-7] [PMID: 19054552]
[124]
Williams WP III, McLin DE III, Dressman MA, Neubauer DN. Comparative review of approved melatonin agonists for the treatment of circadian rhythm sleep‐wake disorders. Pharmacotherapy. Pharmacotherapy 2016; 36(9): 1028-41.
[http://dx.doi.org/10.1002/phar.1822] [PMID: 27500861]
[125]
Lavedan C, Forsberg M, Gentile AJ. Tasimelteon: A selective and unique receptor binding profile. Neuropharmacology 2015; 91: 142-7.
[http://dx.doi.org/10.1016/j.neuropharm.2014.12.004] [PMID: 25534555]
[126]
Keating GM. Tasimelteon: A review in non-24-hour sleep-wake disorder in totally blind individuals. CNS Drugs 2016; 30(5): 461-8.
[http://dx.doi.org/10.1007/s40263-016-0330-y] [PMID: 27003694]
[127]
Rajaratnam SM, Polymeropoulos MH, Fisher DM, et al. Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: Two randomized controlled multicentre trials. Obstet Gynecol Surv 2009; 64(9): 604-5.
[http://dx.doi.org/10.1097/01.ogx.0000358014.55641.1c]
[128]
Johnsa JD, Neville MW. Tasimelteon: A melatonin receptor agonist for non-24-hour sleep-wake disorder. Ann Pharmacother 2014; 48(12): 1636-41.
[http://dx.doi.org/10.1177/1060028014550476] [PMID: 25204464]
[129]
Lockley SW, Dressman MA, Licamele L, et al. Tasimelteon for non-24-hour sleep-wake disorder in totally blind people (SET and RE-SET): Two multicentre, randomised, double-masked, placebo-controlled phase 3 trials. Lancet 2015; 386(10005): 1754-64.
[http://dx.doi.org/10.1016/S0140-6736(15)60031-9] [PMID: 26466871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy