Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

A Review on the Catalytic Applications of Polyaniline Supported Palladium (Pd@PANI) in C–C Coupling Reactions

Author(s): Bandameeda Ramesh Naidu and Krishnaiah Maddeboina*

Volume 26, Issue 13, 2022

Published on: 13 July, 2022

Page: [1311 - 1320] Pages: 10

DOI: 10.2174/1385272826666220517123128

Price: $65

Abstract

The C ̶ C bond formation via the cross-coupling and homocoupling reactions of organic partners are central to the synthesis of many chemical probes and have valuable applications in the medicinal and pharmaceutical industries. Polyaniline (PANI) is the most useful performing polymer due to its non-toxicity, high stability, easy synthetic accessibility, and simplicity of doping/dedoping by treatment with aqueous acid and base. PANI plays a pivotal role as a polymer base for palladium (Pd) species and in most cases, the catalysts showed high yield, reaction transformation, and reusability. In this review, we discuss the application of the Pd@PANI catalyst for cross-coupling/homocoupling reactions, analysis, characterization, and reusability. We covered all literature about Pd@PANI catalyst functions in Suzuki-Miyaura, Heck, Sonogashira, and Ullmann coupling reactions.

Keywords: Pd@PANI, cross-coupling reactions, homocoupling reaction, Suzuki-Miyaura cross-coupling, Heck cross-coupling, Sonogashira cross-coupling, Ullmann reaction.

« Previous
Graphical Abstract

[1]
Korch, K.M.; Watson, D.A. Cross-coupling of heteroaromatic electrophiles. Chem. Rev., 2019, 119(13), 8192-8228.
[http://dx.doi.org/10.1021/acs.chemrev.8b00628] [PMID: 31184483]
[2]
Li, C-J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev., 2005, 105(8), 3095-3165.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
[3]
Rao, K.U.; Venkateswarlu, K. PdII-porphyrin complexes–the first use as safer and efficient catalysts for Miyaura Borylation. Synlett, 2018, 29(8), 1055-1060.
[http://dx.doi.org/10.1055/s-0036-1591549]
[4]
Roy, D.; Uozumi, Y. Recent advances in palladium-catalyzed cross-coupling reactions at ppm to ppb molar catalysts loadings. Adv. Synth. Catal., 2018, 360(4), 602-625.
[http://dx.doi.org/10.1002/adsc.201700810]
[5]
Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Recent advances in homogeneous nickel catalysis. Nature, 2014, 509(7500), 299-309.
[http://dx.doi.org/10.1038/nature13274] [PMID: 24828188]
[6]
Prasad, S.S.; Naidu, B.R.; Hanafiah, M.M.; Lakshmidevi, J.; Marella, R.K.; Lakkaboyana, S.K.; Venkateswarlu, K. Porphyrin N-pincer Pd(II)-complexes in water: a base-free and nature-inspired protocol for the oxidative self-coupling of potassium aryltrifluoroborates in open-air. Molecules, 2021, 26(17), 5390.
[http://dx.doi.org/10.3390/molecules26175390] [PMID: 34500823]
[7]
(a) Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acids with haloarenes in the presence of bases. Synth. Commun., 1981, 11(7), 513-519.
[http://dx.doi.org/10.1080/00397918108063618];
(b) Rao, K.U.; Appa, R.M.; Lakshmidevi, J.; Vijitha, R.; Rao, K.S.V.K.; Narasimhulu, M.; Venkateswarlu, K.C. (sp2)−C(sp2) coupling in water: palladium(II) complexes of N-pincer tetradentate porphyrins as effective catalysts. Asian J. Org. Chem., 2017, 6(6), 751-757.
[http://dx.doi.org/10.1002/ajoc.201700068];
(c) Aabaka, S.R.; Mao, J.; Lavanya, M.; Venkateswarlu, K.; Huang, Z.; Mao, J.; Yang, X.; Lin, C. Nanocellulose supported PdNPs as in situ formed nano catalyst for the Suzuki coupling reaction in aqueous media: a green approach and waste to wealth. J. Organomet. Chem., 937, 121719.
[8]
Adrio, J.; Carretero, J.C. Functionalized Grignard reactions in Kumada cross-coupling reactions. ChemCatChem, 2010, 2(11), 1384-1386.
[http://dx.doi.org/10.1002/cctc.201000237]
[9]
Negishi, E.; King, A.O.; Okukado, N. Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reactions of aryl and benzylzinc derivatives with aryl halides. J. Org. Chem., 1977, 42(10), 1821-1823.
[http://dx.doi.org/10.1021/jo00430a041]
[10]
Milstein, D.; Stille, J.K. A general, selective, and facial method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc., 1978, 100(11), 3636-3638.
[http://dx.doi.org/10.1021/ja00479a077]
[11]
Nakao, Y.; Takeda, M.; Matsumoto, T.; Hiyama, T. Cross-coupling reactions through the intramolecular activation of alkyl(triorgano)silanes. Angew. Chem. Int. Ed. Engl., 2010, 49(26), 4447-4450.
[http://dx.doi.org/10.1002/anie.201000816] [PMID: 20455231]
[12]
Sonogashira, K. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2 carbon halides. J. Organomet. Chem., 2002, 653(1-2), 46-49.
[http://dx.doi.org/10.1016/S0022-328X(02)01158-0]
[13]
(a) Amatore, C.; Jutand, A. Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc. Chem. Res., 2000, 33(5), 314-321.
[http://dx.doi.org/10.1021/ar980063a] [PMID: 10813876];
(b) Rao, K.U.; Lakshmidevi, J.; Appa, R.M.; Prasad, S.S.; Narasimhulu, M.; Vijitha, R.; Rao, K.S.V.K.; Venkateswarlu, K. Palladium(II)-porphyrin complexes as efficient and eco-friendly catalysts for Mizoroki-Heck coupling. ChemistrySelect, 2017, 2(24), 7394-7398.
[http://dx.doi.org/10.1002/slct.201701413]
[14]
Lakshmidevi, J.; Appa, R.M.; Naidu, B.R.; Prasad, S.S.; Sarma, L.S.; Venkateswarlu, K. WEPA: a bio-derived medium for added base, π-acid and ligand free Ullmann coupling of aryl halides using Pd(OAc)2. Chem. Commun. (Camb.), 2018, 54(87), 12333-12336.
[http://dx.doi.org/10.1039/C8CC06940A] [PMID: 30320316]
[15]
Khan, F.; Dlugosch, M.; Liu, X.; Banwell, M.G. The palladium-catalyzed Ullmann cross-coupling reaction: a modern variant on a time-honored process. Acc. Chem. Res., 2018, 51(8), 1784-1795.
[http://dx.doi.org/10.1021/acs.accounts.8b00169] [PMID: 30010313]
[16]
Ishida, T.; Haruta, M. Gold catalysts: towards sustainable chemistry. Angew. Chem. Int. Ed., 2007, 46(38), 7154-7156.
[http://dx.doi.org/10.1002/anie.200701622] [PMID: 17702085]
[17]
Quast, A.D.; Bornstein, M.; Greydanus, B.J.; Zharov, I.; Shumaker-Parry, J.S. Robust polymer-coated diamond supports for noble-metal nanoparticle catalysts. ACS Catal., 2016, 6(7), 4729-4738.
[http://dx.doi.org/10.1021/acscatal.6b01243]
[18]
Jiji, S.G.; Gopchandran, K.G. Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. Colloid Interface Sci. Commun., 2019, 29, 9-16.
[http://dx.doi.org/10.1016/j.colcom.2018.12.003]
[19]
Diagboya, P.N.; Mtunzi, F.M.; Düring, R-A.; Olu-Owolabi, B.I. Empirical assessment and reusability of an eco-friendly amine-functionalized SBA-15 adsorbent for aqueous Ivermectine. Ind. Eng. Chem. Res., 2021, 60(6), 2365-2373.
[http://dx.doi.org/10.1021/acs.iecr.0c05115]
[20]
Bahuguna, A.; Choudhary, P.; Chhabra, T.; Krishnan, V. Ammonia-doped polyaniline-graphitic carbon nitride nanocomposite as a heterogeneous green catalyst for synthesis of indole-substituted 4H-chromens. ACS Omega, 2018, 3(9), 12163-12178.
[http://dx.doi.org/10.1021/acsomega.8b01687] [PMID: 31459291]
[21]
Saal, A.; Hagenmann, T.; Schubert, U.S. Polymers for battery applications-active materials, membranes, and binders. Adv. Energy Mater., 2021, 11(43), 2001984.
[http://dx.doi.org/10.1002/aenm.202001984]
[22]
Adhikari, B.; Majumdar, S. Polymers in sensors applications. Prog. Polym. Sci., 2004, 29(7), 699-766.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.03.002]
[23]
Abu-Thabit, N.Y. Chemical oxidative polymerization of polyaniline: A practical approach for preparation of smart conductive textiles. J. Chem. Educ., 2016, 93(9), 1606-1611.
[http://dx.doi.org/10.1021/acs.jchemed.6b00060]
[24]
Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci., 2009, 34(8), 783-810.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.003]
[25]
Blinova, N.V.; Stejskal, J.; Trchová, M. Cirić-Marjanović G.; Sapurina, I. Polymerization of aniline on polyaniline membranes. J. Phys. Chem. B, 2007, 111(10), 2440-2448.
[http://dx.doi.org/10.1021/jp067370f] [PMID: 17311453]
[26]
Li, D.; Huang, J.; Kaner, R.B. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res., 2009, 42(1), 135-145.
[http://dx.doi.org/10.1021/ar800080n] [PMID: 18986177]
[27]
Littke, A.F.; Fu, G.C. Palladium-catalyzed coupling reactions of aryl chlorides. Angew. Chem. Int. Ed., 2002, 41(22), 4176-4211.
[http://dx.doi.org/10.1002/1521-3773(20021115)41:22<4176:AID-ANIE4176>3.0.CO;2-U] [PMID: 12434342]
[28]
(a) Venkateswarlu, K. Ashes from organic waste as reagents in the synthetic chemistry: a review. Environ. Chem. Lett., 2021, 19(5), 3887-3950.
[http://dx.doi.org/10.1007/s10311-021-01253-4];
(b) Appa, R.M.; Prasad, S.S.; Lakshmidevi, J.; Naidu, B.R.; Narasimhulu, M.; Venkateswarlu, K. Palladium-catalyzed room-temperature Suzuki-Miyaura coupling in water extract of pomegranate ash, a bio-derived sustainable and renewable medium. Appl. Organometal. Chem., 2019, 33, 5126.
[http://dx.doi.org/10.1002/aoc.5126];
(c) Appa, R.M.; Lakshmidevi, J.; Naidu, B.R.; Venkateswarlu, K. Pd-catalyzed oxidative homocoupling of arylboronic acids in WEPA: a sustainable access to symmetrical biaryls under added base and ligand-free ambient conditions. Mol. Catal, 2021, 501, 111366.
[http://dx.doi.org/10.1016/j.mcat.2020.111366];
(d) Lakshmidevi, J.; Vakati, V.; Naidu, B.R.; Raghavender, M.; Rao, K.S.V.K.; Venkateswarlu, K. Pd(5%)-KIT-6, Pd(5%)-SBA-15 and Pd(5%)-SBA-16 catalysts inwater extract of pomegranate ash: a case study in heterogenization of Suzuki-Miyaura reaction under base and ligand free conditions. Sustain. Chem. Pharm., 2021, 19, 100371.
[http://dx.doi.org/10.1016/j.scp.2020.100371];
(e) Appa, R.M.; Raghavendra, P.; Lakshmidevi, J.; Naidu, B.R.; Sarma, L.S.; Venkateswarlu, K. Structure controlled Au@Pd NPs/rGO as robust heterogeneous catalyst for Suzuki coupling in biowaste derived water extract of pomegranate ash. Appl. Organomet. Chem., 2021, 35, 6188.
[http://dx.doi.org/10.1002/aoc.6188];
(f) Naidu, B.R.; Lakshmidevi, J.; Naik, B.S.S.; Venkateswarlu, K. Water extract of pomegranate ash as waste originated biorenewable catalyst for the novel synthesis of chiral tert-butanesulfinyl aldimines in water. Mol. Catal., 2021, 511, 111719.
[http://dx.doi.org/10.1016/j.mcat.2021.111719]
[29]
Likhar, P.R.; Kantam, M.L.; Bhargava, S. Polyaniline-supported metal catalysts for green synthesis. Indian J. Chem., 2012, 51A, 155-165.http://nopr.niscair.res.in/handle/123456789/13371
[30]
Christoffel, F.; Ward, T.R. Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review. Catal. Lett., 2018, 148(2), 489-511.
[http://dx.doi.org/10.1007/s10562-017-2285-0]
[31]
Ramos, I.T.L.; Silva, R.J.M.; Silva, T.M.S.; Camara, C.A. Palladium-catalyzed coupling reactions in flavonoids: A retrospective of recent synthetic approaches. Synth. Commun., 2021, 51(23), 3520-3545.
[http://dx.doi.org/10.1080/00397911.2021.1988643]
[32]
Devendar, P.; Qu, R-Y.; Kang, W-M.; He, B.; Yang, G-F. Palladium-catalyzed cross-coupling reactions: A powerful tool for the synthesis of agrochemicals. J. Agric. Food Chem., 2018, 66(34), 8914-8934.
[http://dx.doi.org/10.1021/acs.jafc.8b03792] [PMID: 30060657]
[33]
Campeau, L.C.; Hazari, N. Cross-Coupling and related reactions: connecting past success to the development of new reactions for the future. Organometallics, 2019, 38(1), 3-35.
[http://dx.doi.org/10.1021/acs.organomet.8b00720] [PMID: 31741548]
[34]
Kanchana, U.S.; Diana, E.J.; Mathew, T.V.; Anilkumar, G. Recent developments in the metal catalysed cross-coupling reactions for the synthesis of the enone system of chalcones. Appl. Organomet. Chem., 2020, 34, 1.
[http://dx.doi.org/10.1002/1521-3773(20021115)41:22<4176:AID-ANIE4176>3.0.CO;2-U]
[35]
Yang, L.; Xie, H.; An, G.; Li, G. Acid-enabled palladium-catalyzed β-C(sp3)-H functionalization of weinreb amides. J. Org. Chem., 2021, 86(11), 7872-7880.
[http://dx.doi.org/10.1021/acs.joc.1c00781] [PMID: 33985328]
[36]
Cheng, Y.; Zheng, J.; Tian, C.; He, Y.; Zhang, C.; Tan, Q.; An, G.; Li, G. Palladium-catalyzed C−H arylation of aliphatic and aromatic ketones using dipeptide transient directing groups. Asian J. Org. Chem., 2019, 8(4), 526-531.
[http://dx.doi.org/10.1002/ajoc.201900037]
[37]
Cheng, Y.; Yu, S.; He, Y.; An, G.; Li, G.; Yang, Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem. Sci. (Camb.), 2021, 12(9), 3216-3225.
[http://dx.doi.org/10.1039/D0SC05409G] [PMID: 34164090]
[38]
Degfie, T.A.; Mamo, T.T.; Mekonnen, Y.S. Optimized biodiesel production from waste cooking oil (WCO) using Calcium Oxide (CaO) Nano-catalyst. Sci. Rep., 2019, 9(1), 18982.
[http://dx.doi.org/10.1038/s41598-019-55403-4] [PMID: 31831823]
[39]
Fernández, G.A.; Chopa, A.B.; Silbestri, G.F. A structure/catalytic activity study of gold(i)–NHC complexes, as well as their recyclability and reusability, in the hydration of alkynes in aqueous medium. Catal. Sci. Technol., 2016, 6(6), 1921-1929.
[http://dx.doi.org/10.1039/C5CY01278C]
[40]
Ma, S.; Shanga, C.; Liu, Z-P. Heterogeneous catalysis from structure to activity via SSW-NN method. J. Chem. Phys., 2019, 151(5), 050901.
[http://dx.doi.org/10.1063/1.5113673]
[41]
Yu, L.; Han, Z. Palladium nanoparticles on polyaniline (Pd@PANI): A practical catalyst for Suzuki cross-couplings. Mater. Lett., 2016, 184, 312-314.
[http://dx.doi.org/10.1016/j.matlet.2016.08.056]
[42]
Kantam, M.L.; Roy, M.; Roy, S.; Sreedhar, B.; Madhavendra, S.S.; Choudary, B.M.; De, R.L. Polyaniline supported palladium catalyzed Suzuki-Miyaura cross-coupling of bromo- and chloroarenes in water. Tetrahedron, 2007, 63(33), 8002-8009.
[http://dx.doi.org/10.1016/j.tet.2007.05.064]
[43]
Islam, R.U.; Witcomb, M.J.; Lingen, E.V.D.; Scurrell, M.S.; Otterlo, W.V.; Mallick, K. In-situ synthesis of a palladium-polyaniline hybrid catalyst for a Suzuki coupling reaction. J. Organomet. Chem., 2011, 66(10), 2206-2210.
[http://dx.doi.org/10.1016/j.jorganchem.2010.11.039]
[44]
Houdayer, A.; Schneider, R.; Billaud, D.; Ghanbaja, J.; Lambert, J. Heck and Suzuki-Miyaura couplings catalyzed by nanosized palladium in polyaniline. Appl. Organomet. Chem., 2005, 19(12), 1239-1249.
[http://dx.doi.org/10.1002/aoc.999]
[45]
Dutt, S.; Kumar, R.; Siril, P.F. Green synthesis of a palladium-polyaniline nanocomposite for green-Suzuki-Miyaura coupling reactions. RSC Advances, 2015, 5(43), 33786-33791.
[http://dx.doi.org/10.1039/C5RA05007C]
[46]
Gallon, B.J.; Kojima, R.W.; Kaner, R.B.; Diaconescu, P.L. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. Angew. Chem. Int. Ed., 2007, 46(38), 7251-7254.
[http://dx.doi.org/10.1002/anie.200701389] [PMID: 17657750]
[47]
Wang, Q.; Jing, X.; Han, J.; Yu, L.; Xu, Q. Design and fabrication of low-loading palladium nano polyaniline (nano Pd@PANI): an effective catalyst for Suzuki cross-coupling with high TON. Mater. Lett., 2018, 215, 65-67.
[http://dx.doi.org/10.1016/j.matlet.2017.12.064]
[48]
Lemke, W.M.; Kaner, R.B.; Diaconescu, P.L. A mechanistic study of cross-coupling reactions catalyzed by palladium nanoparticles supported on polyaniline nanofibers. Inorg. Chem. Front., 2015, 2(1), 35-41.
[http://dx.doi.org/10.1039/C4QI00130C]
[49]
Patel, H.A.; Patel, A.L.; Bedekar, A.V. Polyaniline coated on celite, a heterogeneous support for palladium: applications in catalytic Suzuki and one-pot Suzuki-aldol reactions. New J. Chem., 2016, 40(10), 8935-8945.
[http://dx.doi.org/10.1039/C6NJ02402E]
[50]
Chen, Y.; Lu, S.; Liu, W.; Han, J. Redox-induced in situ formation of Pd nanoparticles on surface of Fe3O4/PANI core/shell hydrides as high-performance catalysts for Suzuki cross-coupling reactions. Colloid Polym. Sci., 2015, 293(8), 2301-2309.
[http://dx.doi.org/10.1007/s00396-015-3619-3]
[51]
Chaicharoenwimolkul, L.; Chairam, S.; Namkajorn, M.; Khamthip, A.; Kamonsatikul, C.; Tewasekson, U.; Jindabot, S.; Pon-On, W.; Somsook, E. Effect of ferrocene substituted and ferricinium additive on the properties of polyaniline derivatives and catalytic activities of Palladium-doped poly(m-ferrocenylaniline)-catalyzed Suzuki-Miyaura cross-coupling reactions. J. Appl. Polym. Sci., 2013, 130(3), 1489-1497.
[http://dx.doi.org/10.1002/app.39279]
[52]
Patel, H.A.; Patel, A.L.; Bedekar, A.V. Polyaniline-anchored palladium catalyst-mediated Mizoroki-Heck and Suzuki-Miyaura reactions and one-pot Wittig-Heck and Wittig-Suzuki reactions. Appl. Organomet. Chem., 2015, 29(1), 1-6.
[http://dx.doi.org/10.1002/aoc.3234]
[53]
Patel, H.A.; Patel, A.L.; Bedekar, A.V. Celite-polyaniline supported palladium as catalyst for one-pot Suzuki-aldol-O-alkylation reaction. Indian J. Chem., 2019, 58B, 1233-1238. http://nopr.niscair.res.in/handle/123456789/51464
[54]
Fan, H.; Qi, Z.; Sui, D.; Mao, F.; Chen, R.; Huang, J. Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for Suzuki-Miyaura reactions. Chin. J. Catal., 2017, 38(3), 589-596.
[http://dx.doi.org/10.1016/S1872-2067(17)62772-4]
[55]
Wang, G.; Hao, P.; Chang, Y.; Zhang, Q.; Liu, W.; Duan, B.; Zhan, H.; Bi, S. Copper and palladium bimetallic sub-nanoparticles were stabilized on modified polyaniline materials as an efficient catalyst to promote C-C coupling reactions in aqueous solution. Nanoscale, 2022, 14(6), 2256-2265.
[http://dx.doi.org/10.1039/D1NR07640J] [PMID: 35080546]
[56]
Yu, L.; Huang, Y.; Wei, Z.; Ding, Y.; Su, C.; Xu, Q. Heck reaction catalyzed by ultrasmall and uniform Pd nanoparticles supported on polyaniline. J. Org. Chem., 2015, 80(17), 8677-8683.
[http://dx.doi.org/10.1021/acs.joc.5b01358] [PMID: 26274575]
[57]
Rostamnia, S.; Kholdi, S. Synthesis of hybrid interfacial silica-based nanospheres composites as a support for ultra-small palladium nanoparticles and applications of PdNPs/HSN in Mizoroki-Heck reaction. J. Phys. Chem. Solids, 2017, 111, 47-53.
[http://dx.doi.org/10.1016/j.jpcs.2017.07.012]
[58]
Nie, G.; Zhang, L.; Cui, Y. Preparation of Pd nanoparticles deposited on a polyaniline/multiwall carbon nanotubes nanocomposite and their application in the Heck coupling. React. Kinet. Mech. Catal., 2013, 108(1), 193-204.
[http://dx.doi.org/10.1007/s11144-012-0506-5]
[59]
Likhar, P.R.; Roy, M.; Roy, S.; Subhas, M.S.; Kantam, M.L.; Sreedhar, B. Highly efficient and reusable polyaniline-supported palladium catalyst for open-air oxidative Heck reaction under base-and ligand-free conditions. Adv. Synth. Catal., 2008, 13(13), 1968-1974.
[http://dx.doi.org/10.1002/adsc.200800329]
[60]
Soh, S.K.C.; Shamsuddin, M. Polyaniline-supported Palladium (II)-Schiff base complex as efficient catalyst for Mizoroki-Heck cross-coupling reaction. Mal. J. Fund. Appl. Sci., 2012, 2(2), 98-104.
[http://dx.doi.org/10.11113/mjfas.v8n2.130]
[61]
Yu, L.; Han, Z.; Ding, Y. Gram-scale preparation of Pd@PANI: a practical catalyst regent for copper-free and ligand-free Sonogashira couplings. Org. Process Res. Dev., 2016, 20(12), 2124-2129.
[http://dx.doi.org/10.1021/acs.oprd.6b00322]
[62]
Wang, G.; Wu, Z.; Liang, Y.; Liu, W.; Zhan, H.; Song, M.; Sun, Y. Exploring the coordination confinement effect of divalent palladium/zero palladium doped polyaniline-networking: as an excellent-performance nanocomposite catalyst for C-C coupling reactions. J. Catal., 2020, 384, 177-188.
[http://dx.doi.org/10.1016/j.jcat.2020.02.021]
[63]
Liu, Y.; Tang, D.; Cao, K.; Yu, L.; Han, J.; Xu, Q. Probing the support effect at the molecular level in the polyaniline-supported palladium nanoparticle-catalyzed Ullmann reaction of aryl iodides. J. Catal., 2018, 360, 250-260.
[http://dx.doi.org/10.1016/j.jcat.2018.01.026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy