Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Application of Aromatic Substituted 2,2,2-Trifluoro Diazoethanes in Organic Reactions

Author(s): Cai Zhang*

Volume 26, Issue 7, 2022

Published on: 30 June, 2022

Page: [639 - 650] Pages: 12

DOI: 10.2174/1385272826666220516113815

Price: $65

Abstract

This review provides an overview of metal-, nonmetal-, light-, or catalyst freepromoting reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with organic molecules for the synthesis of trifluoromethyl-substituted compounds. Several approaches will be reviewed and divided into (i) copper-, iron-, Trop(BF4)-, B(C6F5)3-, light-, or rhodiumpromoted reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with silanes, amines, mercaptans, phosphonates, p-cyanophenol, benzoic acid, diphenylphosphinic acid, boranes and nBu3SnH, (ii) rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with amides and phenylhydroxylamine, (iii) copper-, rhodium-, silver-, and lightcatalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkynes, (iv) palladium-, copper-, rhodium- and iron-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkenes, (v) BF3·OEt2-, copper-, tin- or TBAB-catalyzed reactions of aromatic substituted 2,2,2- trifluoro diazoethanes with HF·Py, (difluoroiodo)toluene (p-TolIF2), TMSCF3, AgSCF3, TMSCF2Br or 1,3- dicarbonyl compounds, (vi) palladium-, copper-, gold/silver- or rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with indoles, benzene compounds or pyridines, and (vii) palladium-catalyzed reaction of aromatic substituted 2,2,2-trifluoro diazoethanes with benzyl or allyl bromides.

Keywords: 2, 2, 2-trifluoro diazoethane, insertion reaction, silanes, alkynes, alkenes, benzyl bromides.

Next »
Graphical Abstract

[1]
Pesenti, C.; Viani, F. The influence of fluorinated molecules (semiochemicals and enzyme substrate analogues) on the insect communication system. ChemBioChem, 2004, 5(5), 590-613.
[http://dx.doi.org/10.1002/cbic.200300829] [PMID: 15122631]
[2]
Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[3]
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev., 2016, 116(2), 422-518.
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
[4]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[5]
Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
[6]
Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
[7]
Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.A.; Coelho, J.A.S.; Toste, F.D. Modern approaches for asymmetric construction of carbon-fluorine quaternary stereogenic centers: Synthetic challenges and pharmaceutical needs. Chem. Rev., 2018, 118, 3887-3964.
[http://dx.doi.org/10.1021/acs.chemrev.7b00778]
[8]
Inoue, M.; Sumii, Y.; Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega, 2020, 5(19), 10633-10640.
[http://dx.doi.org/10.1021/acsomega.0c00830] [PMID: 32455181]
[9]
Yerien, D.E.; Bonesi, S.; Postigo, A. Fluorination methods in drug discovery. Org. Biomol. Chem., 2016, 14(36), 8398-8427.
[http://dx.doi.org/10.1039/C6OB00764C] [PMID: 27506398]
[10]
Johnson, B.M.; Shu, Y.Z.; Zhuo, X.; Meanwell, N.A. Metabolic and pharmaceutical aspects of fluorinated compounds. J. Med. Chem., 2020, 63(12), 6315-6386.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01877] [PMID: 32182061]
[11]
Zhang, C. Recent advances in trifluoromethylation of organic compounds using Umemoto’s reagents. Org. Biomol. Chem., 2014, 12(34), 6580-6589.
[http://dx.doi.org/10.1039/C4OB00671B] [PMID: 25011917]
[12]
Zhou, F.; Cheng, Y.; Liu, X.P.; Chen, J.R.; Xiao, W.J. A visible light photoredox catalyzed carbon radical-mediated generation of ortho-quinone methides for 2,3-dihydrobenzofuran synthesis. Chem. Commun. (Camb.), 2019, 55(21), 3117-3120.
[http://dx.doi.org/10.1039/C9CC00727J] [PMID: 30789618]
[13]
Zhou, X.; Li, G.; Shao, Z.; Fang, K.; Gao, H.; Li, Y.; She, Y. Four-component acyloxy-trifluoromethylation of arylalkenes mediated by a photoredox catalyst. Org. Biomol. Chem., 2018, 17(1), 24-29.
[http://dx.doi.org/10.1039/C8OB02239A] [PMID: 30324949]
[14]
Umemoto, T.; Zhang, B.; Zhu, T.; Zhou, X.; Zhang, P.; Hu, S.; Li, Y. Powerful, thermally stable, one-pot-preparable, and recyclable electrophilic trifluoromethylating agents: 2,8-difluoro- and 2,3,7,8-tetrafluoro-S-(trifluoro-methyl)dibenzothiophenium salts. J. Org. Chem., 2017, 82(15), 7708-7719.
[http://dx.doi.org/10.1021/acs.joc.7b00669] [PMID: 28541682]
[15]
Tsujibayashi, S.; Kataoka, Y.; Hirano, S.; Matsubara, H. An ab initio and DFT study of trifluoromethylation using Umemoto’s reagent. Org. Biomol. Chem., 2018, 16(24), 4517-4526.
[http://dx.doi.org/10.1039/C8OB00805A] [PMID: 29873381]
[16]
Chen, L.; Ma, P.; Yang, B.; Zhao, X.; Huang, X.; Zhang, J. Photocatalyst and additive-free visible light induced trifluoromethylation-arylation of N-arylacrylamides with Umemoto’s reagent. Chem. Commun. (Camb.), 2021, 57(8), 1030-1033.
[http://dx.doi.org/10.1039/D0CC07502G] [PMID: 33406204]
[17]
Mei, L.; Moutet, J.; Stull, S.M.; Gianetti, T.L. Synthesis of CF3-containing spirocyclic indolines via a red-light-mediated trifluoromethylation/dearomatization cascade. J. Org. Chem., 2021, 86(15), 10640-10653.
[http://dx.doi.org/10.1021/acs.joc.1c01313] [PMID: 34255497]
[18]
Wang, Y.; Velkos, G.; Israel, N.J.; Rosenkranz, M.; Büchner, B.; Liu, F.; Popov, A.A. Electrophilic trifluoromethylation of dimetallofullerene anions en route to air-stable single-molecule magnets with high blocking temperature of magnetization. J. Am. Chem. Soc., 2021, 143(43), 18139-18149.
[http://dx.doi.org/10.1021/jacs.1c07021] [PMID: 34669376]
[19]
Oh, H.; Park, A.; Jeong, K.S.; Han, S.B.; Lee, H. Copper-catalyzed 1,2-bistrifluoromethylation of terminal alkenes. Adv. Synth. Catal., 2019, 361(9), 2136-2140.
[http://dx.doi.org/10.1002/adsc.201801675]
[20]
Zhang, C. Application of Langlois’ Reagent in trifluoromethylation reactions. Adv. Synth. Catal., 2014, 356(14-15), 2895-2906.
[http://dx.doi.org/10.1002/adsc.201400370]
[21]
Liu, J.; Zhao, X.; Jiang, L.; Yi, W. Tf2O-promoted trifluoromethythiolation of various arenes using NaSO2CF3. Adv. Synth. Catal., 2018, 360(20), 4012-4016.
[http://dx.doi.org/10.1002/adsc.201800702]
[22]
Min, M.Y.; Song, R.J.; Ouyang, X.H.; Li, J.H. Copper-catalyzed intermolecular oxidative trifluoromethyl-arylation of styrenes with NaSO2CF3 and indoles involving C-H functionalization. Chem. Commun. (Camb.), 2019, 55(25), 3646-3649.
[http://dx.doi.org/10.1039/C9CC00469F] [PMID: 30849147]
[23]
Sun, H.; Cui, G.; Shang, H.; Cui, B. Mn(OAc)3-mediated addition reactions of NaSO2CF3 and perhalogenated carboxylic acids with unactivated alkenes conjectured by a single electron transfer and halogen abstraction mechanism. J. Org. Chem., 2020, 85(23), 15241-15255.
[http://dx.doi.org/10.1021/acs.joc.0c02086] [PMID: 33200607]
[24]
Guerrero, I.; Correa, A. Cu-catalyzed site-selective C(sp2)-H radical trifluoromethylation of tryptophan-containing peptides. Org. Lett., 2020, 22(5), 1754-1759.
[http://dx.doi.org/10.1021/acs.orglett.0c00033] [PMID: 32052977]
[25]
Liu, M.; Luo, Z.X.; Li, T.; Xiong, D.C.; Ye, X.S. Electrochemical trifluoromethylation of glycals. J. Org. Chem., 2021, 86(22), 16187-16194.
[http://dx.doi.org/10.1021/acs.joc.1c01318] [PMID: 34435785]
[26]
Jos, S.; Santos, W.L. Copper-catalyzed synthesis of α-trifluoromethylacrylates from trifluoroborylacrylates via stereoretentive radical trifluoromethylation. Adv. Synth. Catal., 2021, 363(2), 425-430.
[http://dx.doi.org/10.1002/adsc.202000937]
[27]
Chu, L.; Qing, F.L. Oxidative trifluoromethylation and trifluoromethylthiolation reactions using (trifluoromethyl)trimethylsilane as a nucleophilic CF3 source. Acc. Chem. Res., 2014, 47(5), 1513-1522.
[http://dx.doi.org/10.1021/ar4003202] [PMID: 24773518]
[28]
Nebra, N.; Grushin, V.V. Distinct mechanism of oxidative trifluoromethylation with a well-defined Cu(II) fluoride promoter: Hidden catalysis. J. Am. Chem. Soc., 2014, 136(49), 16998-17001.
[http://dx.doi.org/10.1021/ja5103508] [PMID: 25423256]
[29]
Nosik, P.S.; Ryabukhin, S.V.; Grygorenko, O.O.; Volochnyuk, D.M. Transition metal-free gem-difluorocyclopropanation of alkenes with CF3SiMe3-NaI system: A recipe for electron-deficient substrates. Adv. Synth. Catal., 2018, 360(21), 4104-4114.
[http://dx.doi.org/10.1002/adsc.201801006]
[30]
Nosik, P.S.; Poturai, A.S.; Pashko, M.O.; Melnykov, K.P.; Ryabukhin, S.V.; Volochnyuk, D.M.; Grygorenko, O.O. N-Difluorocyclopropyl-substituted pyrazoles: Syn-thesis and reactivity. Eur. J. Org. Chem., 2019, 2019(27), 4311-4319.
[http://dx.doi.org/10.1002/ejoc.201900123]
[31]
Sumii, Y.; Nagasaka, T.; Wang, J.; Uno, H.; Shibata, N. Synthesis of chiral gem-difluoromethylene compounds by enantioselective ethoxycarbonyldifluoromethylation of MBH fluorides via silicon-assisted C-F bond activation. J. Org. Chem., 2020, 85(23), 15699-15707.
[http://dx.doi.org/10.1021/acs.joc.0c02201] [PMID: 33146018]
[32]
Zhao, Y.; Lin, J.H.; Hang, X.C.; Xiao, J.C. Ag-mediated trifluoromethylthiolation of inert Csp3-H bond. J. Org. Chem., 2018, 83(22), 14120-14125.
[http://dx.doi.org/10.1021/acs.joc.8b02207] [PMID: 30379072]
[33]
Jiang, L.; Yan, Q.; Wang, R.; Ding, T.; Yi, W.; Zhang, W. Trifluoromethanesulfinyl chloride for electrophilic trifluoromethythiolation and bifunctional chlorotrifluoro-methythiolation. Chem. Eur. J., 2018, 24(70), 18749-18756.
[http://dx.doi.org/10.1002/chem.201804027] [PMID: 30240046]
[34]
Sun, D.W.; Jiang, M.; Liu, J.T. Novel bifunctionalization of activated methylene: Base-promoted trifluoromethylthiolation of β-diketones with trifluoromethanesulfinyl chloride. Chem. Eur. J., 2019, 25(46), 10797-10802.
[http://dx.doi.org/10.1002/chem.201901781] [PMID: 31106453]
[35]
Yan, J.; Jiang, M.; Song, L.P.; Liu, J.T. Oxytrifluoromethylthiolation of 2,3-allenoates with trifluoromethanesulfinyl chloride: A synthetic approach to trifluoromethyl-thiolated 4-oxo-2(E)-alkenoates and furans. Adv. Synth. Catal., 2020, 362(14), 2882-2887.
[http://dx.doi.org/10.1002/adsc.202000304]
[36]
Zhang, C. Recent developments in trifluoromethylation or difluoroalkylation by use of difluorinated phosphonium salts. Adv. Synth. Catal., 2017, 359(3), 372-383.
[http://dx.doi.org/10.1002/adsc.201601011]
[37]
Zheng, Y.; Jia, Y.; Yuan, Y.; Jiang, Z.X.; Yang, Z. --Free deoxyhydrotrifluoromethylation of α-keto esters with Ph3P+CF2CO2–: Synthesis of α-CF3-substituted esters. J. Org. Chem., 2020, 85(16), 10913-10923.
[http://dx.doi.org/10.1021/acs.joc.0c01518] [PMID: 32692174]
[38]
Panferova, L.I.; Tsymbal, A.V.; Levin, V.V.; Struchkova, M.I.; Dilman, A.D. Reactions of gem-difluorinated phosphonium salts induced by light. Org. Lett., 2016, 18(5), 996-999.
[http://dx.doi.org/10.1021/acs.orglett.6b00117] [PMID: 26862998]
[39]
Trifonov, A.L.; Panferova, L.I.; Levin, V.V.; Kokorekin, V.A.; Dilman, A.D. Visible-light-promoted iododifluoromethylation of alkenes via (phos-phonio)difluoromethyl radical cation. Org. Lett., 2020, 22(6), 2409-2413.
[http://dx.doi.org/10.1021/acs.orglett.0c00604] [PMID: 32118450]
[40]
Smirnov, V.O.; Volodin, A.D.; Korlyukov, A.A.; Dilman, A.D. All-carbon phosphoranes via difluorocarbene trapping. Chem. Commun. (Camb.), 2021, 57(39), 4823-4826.
[http://dx.doi.org/10.1039/D1CC01075A] [PMID: 33982701]
[41]
Choi, S. Ha, S.; Park, C.M. α-Diazo oxime ethers for N-heterocycle synthesis. Chem. Commun. (Camb.), 2017, 53(45), 6054-6064.
[http://dx.doi.org/10.1039/C7CC02650A] [PMID: 28516179]
[42]
Loy, N.S.Y.; Kim, S.; Park, C.M. Synthesis of unsymmetrical pyrazines based on α-diazo oxime ethers. Org. Lett., 2015, 17(3), 395-397.
[http://dx.doi.org/10.1021/ol5034173] [PMID: 25590992]
[43]
Da Ho, L.; Otog, N.; Fujisawa, I.; Iwasa, S. Catalytic asymmetric carbene transfer reactions of diazo oxime ethers with olefins and their synthetic applications. Org. Lett., 2019, 21(18), 7470-7474.
[http://dx.doi.org/10.1021/acs.orglett.9b02771] [PMID: 31482700]
[44]
Jiang, Y.; Chan, W.C.; Park, C.M. Expedient synthesis of highly substituted pyrroles via tandem rearrangement of α-diazo oxime ethers. J. Am. Chem. Soc., 2012, 134(9), 4104-4107.
[http://dx.doi.org/10.1021/ja300552c] [PMID: 22332783]
[45]
Park, S.; Kim, H.; Son, J.Y.; Um, K.; Lee, S.; Baek, Y.; Seo, B.; Lee, P.H. Synthesis of imidazopyridines via copper-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers. J. Org. Chem., 2017, 82(19), 10209-10218.
[http://dx.doi.org/10.1021/acs.joc.7b01714] [PMID: 28869378]
[46]
Lourdusamy, E.; Yao, L.; Park, C.M. Stereoselective synthesis of α-diazo oxime ethers and their application in the synthesis of highly substituted pyrroles through a [3+2] cycloaddition. Angew. Chem. Int. Ed. Engl., 2010, 49(43), 7963-7967.
[http://dx.doi.org/10.1002/anie.201004073] [PMID: 20845351]
[47]
Keipour, H.; Carreras, V.; Ollevier, T. Recent progress in the catalytic carbene insertion reactions into the silicon-hydrogen bond. Org. Biomol. Chem., 2017, 15(26), 5441-5456.
[http://dx.doi.org/10.1039/C7OB00807D] [PMID: 28639662]
[48]
Liu, L.; Zhang, J. Gold-catalyzed transformations of α-diazocarbonyl compounds: Selectivity and diversity. Chem. Soc. Rev., 2016, 45(3), 506-516.
[http://dx.doi.org/10.1039/C5CS00821B] [PMID: 26658761]
[49]
Zhao, X.; Zhang, Y.; Wang, J. Recent developments in copper-catalyzed reactions of diazo compounds. Chem. Commun. (Camb.), 2012, 48(82), 10162-10173.
[http://dx.doi.org/10.1039/c2cc34406h] [PMID: 22892543]
[50]
Damiano, C.; Sonzini, P.; Gallo, E. Iron catalysts with N-ligands for carbene transfer of diazo reagents. Chem. Soc. Rev., 2020, 49(14), 4867-4905.
[http://dx.doi.org/10.1039/D0CS00221F] [PMID: 32530443]
[51]
Yang, C.; Chen, C.; Li, S.; He, X.; Zuo, Y.; Hu, W.; Zhou, T.; Wang, J.; Shang, Y. Rh(III)-Catalyzed relay double carbenoid insertion and diannulation of sulfoximine benzamides with α-diazo carbonyl compounds: Access to furo[2,3-c]isochromenes. Org. Lett., 2020, 22(7), 2506-2511.
[http://dx.doi.org/10.1021/acs.orglett.9b04659] [PMID: 32083484]
[52]
Ramakrishna, K.; Sivasankar, C. Synthesis of aminobenzoic acid derivatives via chemoselective carbene insertion into the -NH bond catalyzed by Cu(I) complex. J. Org. Chem., 2016, 81(15), 6609-6616.
[http://dx.doi.org/10.1021/acs.joc.6b01249] [PMID: 27392207]
[53]
Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Recent progress on donor and donor-donor carbenes. Chem. Soc. Rev., 2020, 49(3), 908-950.
[http://dx.doi.org/10.1039/C9CS00542K] [PMID: 31958107]
[54]
Chu, W.D.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective synthesis of trisubstituted allenes via Cu(I)-catalyzed coupling of diazoalkanes with terminal alkynes. J. Am. Chem. Soc., 2016, 138(44), 14558-14561.
[http://dx.doi.org/10.1021/jacs.6b09674] [PMID: 27788320]
[55]
Wu, L.; Shi, M. 1,3-Dipolar cycloaddition reactions of vinylidenecyclopropane-diesters with aromatic diazomethanes generated in situ. J. Org. Chem., 2010, 75(7), 2296-2301.
[http://dx.doi.org/10.1021/jo100105k] [PMID: 20205439]
[56]
Taber, D.F.; Tian, W. Rhodium-catalyzed intramolecular C-H insertion of α-aryl-α-diazo ketones. J. Org. Chem., 2007, 72(9), 3207-3210.
[http://dx.doi.org/10.1021/jo0624694] [PMID: 17385917]
[57]
Gilman, H.; Jones, R.G. 2,2,2-Trifluoroethylamine and 2,2,2-trifluorodiazoethane. J. Am. Chem. Soc., 1943, 65(8), 1458-1460.
[http://dx.doi.org/10.1021/ja01248a005]
[58]
Mykhailiuk, P.K. 2,2,2-Trifluorodiazoethane (CF3CHN2): A long journey since 1943. Chem. Rev., 2020, 120(22), 12718-12755.
[http://dx.doi.org/10.1021/acs.chemrev.0c00406] [PMID: 32940457]
[59]
Mertens, L.; Koenigs, R.M. Fluorinated diazoalkanes - a versatile class of reagents for the synthesis of fluorinated compounds. Org. Biomol. Chem., 2016, 14(45), 10547-10556.
[http://dx.doi.org/10.1039/C6OB01618A] [PMID: 27722720]
[60]
Guo, R.; Lv, N.; Zhang, F.G.; Ma, J.A. Zinc-mediated Mannich-type reaction of 2,2,2-trifluorodiazoethane with imines: Access to β-CF3-amines. Org. Lett., 2018, 20(22), 6994-6997.
[http://dx.doi.org/10.1021/acs.orglett.8b02816] [PMID: 30375873]
[61]
Rong, M.Y.; Yang, L.; Nie, J.; Zhang, F.G.; Ma, J.A. Construction of chiral -trifluoromethyl alcohols enabled by catalytic enantioselective Aldol-type reaction of CF3CHN2. Org. Lett., 2019, 21(11), 4280-4283.
[http://dx.doi.org/10.1021/acs.orglett.9b01468] [PMID: 31124694]
[62]
Peng, X.; Zhang, X.; Li, S.; Lu, Y.; Lan, L.; Yang, C. Silver-mediated synthesis of novel 3-CF3/CN/phosphonatesubstituted pyrazoles as pyrrolomycin analogues from 3-formylchromones and diazo Compounds. Org. Chem. Front., 2019, 6(11), 1775-1779.
[http://dx.doi.org/10.1039/C9QO00324J]
[63]
Kumar, A.; Ahamad, S.; Kant, R.; Mohanan, K. Silver-Catalyzed Three-Component Route to Trifluoromethylated 1,2,3-Triazolines Using Aldehydes, Amines, and Tri-fluorodiazoethane. Org. Lett., 2019, 21(8), 2962-2965.
[http://dx.doi.org/10.1021/acs.orglett.9b01159] [PMID: 30973234]
[64]
Guo, R.; Zheng, Y.; Ma, J.A. Electrophilic reaction of 2,2,2-trifluorodiazoethane with the in situ generated N-heterocyclic carbenes: Access to N-aminoguanidines. Org. Lett., 2016, 18(17), 4170-4173.
[http://dx.doi.org/10.1021/acs.orglett.6b01191] [PMID: 27540867]
[65]
Zhang, F.G.; Zeng, J.L.; Tian, Y.Q.; Zheng, Y.; Cahard, D.; Ma, J.A. Telescoping reactions with trifluorodiazoethane-derived Aza-Wittig reagents and allenyl esters. Chem. Eur. J., 2018, 24(30), 7749-7754.
[http://dx.doi.org/10.1002/chem.201801171] [PMID: 29566280]
[66]
Ollevier, T.; Carreras, V. Emerging applications of aryl trifluoromethyl diazoalkanes and diazirines in synthetic transformations. ACS Org. Inorg. Au, 2022, 2(2), 83-98.
[http://dx.doi.org/10.1021/acsorginorgau.1c00027]
[67]
Neda, I.; Kaukorat, T.; Schmutzler, R.; Niemeyer, U.; Kutscher, B.; Pohl, J.; Engel, J. Benzodiaza-, benzoxaza-, and benzodioxaphosphorinones formation, reactivity, structure, and biological activity. Phosphorus Sulfur Silicon Relat. Elem., 2000, 162(1), 81-218.
[http://dx.doi.org/10.1080/10426500008045221]
[68]
Neda, I.; Kaukorat, T.; Schmutzler, R. Verbindungen mit dem 1,3,2-benzodiazaphosphorinan-4-on grundgerüst: Synthese von neuartigen N,N′,N′- trimethylethylendia-minsubstituierten derivaten mit drei- und vierfach koordinier tem phosphor. Phosphorus Sulfur Silicon Relat. Elem., 1993, 80(1-4), 241-250.
[http://dx.doi.org/10.1080/10426509308036896]
[69]
Plinta, H.J.; Neda, I.; Fischer, A.; Jones, P.G.; Schmutzler, R. A new synthesis of P-substituted 2,3-dihydro-1,3-dimethyl-1,3,2δ3-benzodiazaphosphorin-4(1H)-ones and alkylaminodifluorophosphanes with chlorodifluorophosphane. — synthesis and structure of {cis-bis[bis(2-chloroethyl)aminodifluorophosphane]dichloro}platinum(II). Chem. Ber., 1995, 128(7), 695-701.
[http://dx.doi.org/10.1002/cber.19951280707]
[70]
Neda, I.; Plinta, H.J.; Schmutzler, R. Reactions of 1,3-dialkyl-1,3-diaza-2-chloro-5,6-benzo-1,3,2-phosphorinan-4-ones; preparation of P(III) derivatives. Z. Naturforsch. B. J. Chem. Sci., 1993, 48b(3), 333-340.
[http://dx.doi.org/10.1515/znb-1993-0312]
[71]
Neda, I.; Fischer, A.; Kaukorat, T.; Jones, P.G.; Schmutzler, R. Reaction of some dihydrobenzoxazaphosphorinones with nucleophiles; unusual oxidation, insertion, and rearrangement products and their characterisation by single-crystal X-ray analysis. Chem. Ber., 1994, 127, 1579-1586.
[http://dx.doi.org/10.1002/cber.19941270905]
[72]
Neda, I.; Farkens, M.; Fischer, A.; Jones, P.G.; Schmutzler, R. Chemistry of the l,3,5-triaza-2-phosphinane-4,6-diones, part V synthesis of phosphoryl(III)(λ4P) and thio-phosphoryl(III)(λ4P) derivatives of 1.3.5-triaza-2-phosphinane-4,6-diones. reactions with ketones. Z. Naturforsch., 1993, 48b, 860-866.
[http://dx.doi.org/10.1515/znb-1993-0702]
[73]
Sonnenburg, R.; Neda, I.; Fischer, A.; Jones, P.G.; Schmutzler, R. Synthesis of phosphorus-containing heterocycles from 2-aminonicotinic acid. Chem. Ber., 1995, 128, 627-634.
[http://dx.doi.org/10.1002/cber.19951280616]
[74]
Neda, I.; Melnicky, C.; Vollbrecht, A.; Schmutzler, R. An unusual N-alkylation reaction during the oxidative addition of hexafluoroacetone and tetrachloro-o-benzoquinone to p-bis(2-chloroethyl)amino-substituted λ3P-compounds. Synthesis, 1996, 1996(4), 473-474.
[http://dx.doi.org/10.1055/s-1996-4233]
[75]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Franz, M.H.; Kelter, G.; Fiebig, H.; Neda, I. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product ana-logs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties. Beilstein J. Org. Chem., 2013, 9, 2202-2215.
[http://dx.doi.org/10.3762/bjoc.9.259] [PMID: 24222789]
[76]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Daniliuc, C.G.; Franz, M.H.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. Novel 1,2,4-oxadiazoles and trifluoromethylpyridines related to natural products: Synthesis, structural analysis and investigation of their antitumor activity. Tetrahedron, 2016, 72(9), 1185-1199.
[http://dx.doi.org/10.1016/j.tet.2016.01.011]
[77]
Zhang, C.; Liu, Y. Advances in the synthesis of α,α-difluoro-γ-lactams. J. Heterocycl. Chem., 2022. jhet.4432
[http://dx.doi.org/10.1002/jhet.4432]
[78]
Zhang, C. Synthesis of trifluoromethyl or trifluoroacetyl substituted heterocyclic compounds from trifluoromethyl-α,β-ynones. J. Chin. Chem. Soc. (Taipei), 2022, jccs.202100544.
[http://dx.doi.org/10.1002/jccs.202100544]
[79]
Shepard, R.A.; Wentworth, S.E. Polyfluorodiazo compounds. II. 1-phenyl-2,2,2-trifluorodiazoethane. J. Org. Chem., 1967, 32(10), 3197-3199.
[http://dx.doi.org/10.1021/jo01285a059]
[80]
Davies, H.M.L.; Beckwith, R.E.J. Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem. Rev., 2003, 103(8), 2861-2904.
[http://dx.doi.org/10.1021/cr0200217] [PMID: 12914484]
[81]
Maftei, E.; Maftei, C.V.; Jones, P.G.; Freytag, M.; Franz, M.H.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. Trifluoromethylpyridine-substituted N-heterocyclic carbenes related to natural products: Synthesis, structure, and potential antitumor activity of some corresponding gold(I), rhodium(I), and iridium(I) complexes. Helv. Chim. Acta, 2016, 99(6), 469-481.
[http://dx.doi.org/10.1002/hlca.201500529]
[82]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Freytag, M.; Franz, M.H.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. N-heterocyclic carbenes (NHC) with 1,2,4-oxadiazole-substituents related to natural products: Synthesis, structure and potential antitumor activity of some corresponding gold(I) and silver(I) complexes. Eur. J. Med. Chem., 2015, 101, 431-441.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.053] [PMID: 26185007]
[83]
Mihorianu, M.; Franz, M.H.; Jones, P.G.; Freytag, M.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. N-Heterocyclic carbenes derived from imidazo-[1,5-a]pyridines related to natural products: Synthesis, structure and potential biological activity of some corresponding gold(I) and silver(I) complexes. Appl. Organomet. Chem., 2016, 30(7), 581-589.
[http://dx.doi.org/10.1002/aoc.3474]
[84]
Sau, S.C.; Hota, P.K.; Mandal, S.K.; Soleilhavoup, M.; Bertrand, G. Stable abnormal N-heterocyclic carbenes and their applications. Chem. Soc. Rev., 2020, 49(4), 1233-1252.
[http://dx.doi.org/10.1039/C9CS00866G] [PMID: 31998907]
[85]
Sau, S.C.; Santra, S.; Sen, T.K.; Mandal, S.K.; Koley, D. Abnormal N-heterocyclic carbene palladium complex: Living catalyst for activation of aryl chlorides in Suzuki-Miyaura cross coupling. Chem. Commun. (Camb.), 2012, 48(4), 555-557.
[http://dx.doi.org/10.1039/C1CC15732A] [PMID: 22068559]
[86]
Ahmed, J.; Sau, S.C.; Sreejyothi, P.; Hota, P.K.; Vardhanapu, P.K.; Vijaykumar, G.; Mandal, S.K. Direct C-H arylation of heteroarenes with aryl chlorides by using an abnormal N-heterocyclic-carbene–palladium catalyst. Eur. J. Org. Chem., 2017, 2017(5), 1004-1011.
[http://dx.doi.org/10.1002/ejoc.201601218]
[87]
P, S.; Sau, S.C.; Vardhanapu, P.K.; Mandal, S.K. Halo-bridged abnormal NHC palladium(II) dimer for catalytic dehydrogenative cross-coupling reactions of heteroarenes. J. Org. Chem., 2018, 83(16), 9403-9411.
[http://dx.doi.org/10.1021/acs.joc.8b01053] [PMID: 30015486]
[88]
Ren, Q.; Li, M.; Yuan, L.; Wang, J. Recent advances in N-heterocyclic carbene catalyzed achiral synthesis. Org. Biomol. Chem., 2017, 15(22), 4731-4749.
[http://dx.doi.org/10.1039/C7OB00568G] [PMID: 28540374]
[89]
Tsegaw, Y.A.; Kadam, P.E.; Tötsch, N.; Sanchez-Garcia, E.; Sander, W. Is magnetic bistability of carbenes a general phenomenon? Isolation of simple ar-yl(trifluoromethyl)carbenes in both their singlet and triplet States. J. Am. Chem. Soc., 2017, 139, 12310-12316.
[http://dx.doi.org/10.1021/jacs.7b06868]
[90]
Blanch, R.J.; Wentrup, C. Trifluoromethylphenylcarbenes. Carbene–Carbene interconversion on the singlet energy surface and rearrangement to trifluorobenzocyclobu-tene, trifluorostyrene, and trifluoromethylfulvenallenes. Aust. J. Chem., 2015, 68(1), 36-43.
[http://dx.doi.org/10.1071/CH14097]
[91]
Hyde, S.; Veliks, J.; Liégault, B.; Grassi, D.; Taillefer, M.; Gouverneur, V. Copper-catalyzed insertion into heteroatom-hydrogen bonds with trifluorodiazoalkanes. Angew. Chem. Int. Ed. Engl., 2016, 55(11), 3785-3789.
[http://dx.doi.org/10.1002/anie.201511954] [PMID: 26880039]
[92]
Keipour, H.; Ollevier, T. Iron-catalyzed carbene insertion reactions of α-diazoesters into Si-H bonds. Org. Lett., 2017, 19(21), 5736-5739.
[http://dx.doi.org/10.1021/acs.orglett.7b02488] [PMID: 29028345]
[93]
Tanbouza, N.; Keipour, H.; Ollevier, T. FeII-catalysed insertion reaction of a-diazocarbonyls into X–H bonds (X = Si, S, N, and O) in dimethyl carbonate as a suitable solvent alternative. RSC Advances, 2019, 9(54), 31241-31246.
[http://dx.doi.org/10.1039/C9RA07203A]
[94]
Carreras, V.; Besnard, C.; Gandon, V.; Ollevier, T. Asymmetric CuI-Catalyzed insertion reaction of 1-aryl-2,2,2-trifluoro-1-diazoethanes into Si-H Bonds. Org. Lett., 2019, 21(22), 9094-9098.
[http://dx.doi.org/10.1021/acs.orglett.9b03480] [PMID: 31657938]
[95]
Empel, C.; Jana, S.; Pei, C.; Nguyen, T.V.; Koenigs, R.M. Photochemical O-H functionalization of aryldiazoacetates with phenols via proton transfer. Org. Lett., 2020, 22(18), 7225-7229.
[http://dx.doi.org/10.1021/acs.orglett.0c02564] [PMID: 32866020]
[96]
Empel, C.; Nguyen, T.V.; Koenigs, R.M. Tropylium-catalyzed O-H insertion reactions of diazoalkanes with carboxylic acids. Org. Lett., 2021, 23(2), 548-553.
[http://dx.doi.org/10.1021/acs.orglett.0c04069] [PMID: 33400543]
[97]
Zhang, Y.; Zhang, X.; Zhao, J.; Jiang, J.B. (C6F5)3-catalyzed O-H insertion reactions of diazoalkanes with phosphinic acids. Org. Biomol. Chem., 2021, 19(26), 5772-5776.
[http://dx.doi.org/10.1039/D1OB01035B] [PMID: 34137768]
[98]
Kan, S.B.J.; Huang, X.; Gumulya, Y.; Chen, K.; Arnold, F.H. Genetically programmed chiral organoborane synthesis. Nature, 2017, 552(7683), 132-136.
[http://dx.doi.org/10.1038/nature24996] [PMID: 29186119]
[99]
Hyde, S.; Veliks, J.; Ascough, D.M.H.; Szpera, R.; Robert, S.; Paton, R.S.; Gouverneur, V. Enantioselective rhodium-catalysed insertion of trifluorodiazoethanes into tin hydrides. Tetrahedron, 2019, 75(1), 17-25.
[http://dx.doi.org/10.1016/j.tet.2018.11.022]
[100]
Hyster, T.K.; Ruhl, K.E.; Rovis, T. A coupling of benzamides and donor/acceptor diazo compounds to form γ-lactams via Rh(III)-catalyzed C-H activation. J. Am. Chem. Soc., 2013, 135(14), 5364-5367.
[http://dx.doi.org/10.1021/ja402274g] [PMID: 23548055]
[101]
Ye, B.; Cramer, N. Asymmetric synthesis of isoindolones by chiral cyclopentadienyl-rhodium(III)-catalyzed C-H functionalizations. Angew. Chem. Int. Ed. Engl., 2014, 53(30), 7896-7899.
[http://dx.doi.org/10.1002/anie.201404895] [PMID: 24916401]
[102]
Chen, L.; Zhang, L.; Shao, Y.; Xu, G.; Zhang, X.; Tang, S.; Sun, J. Rhodium-catalyzed C=N bond formation through a rebound hydrolysis mechanism and application in β-lactam synthesis. Org. Lett., 2019, 21(11), 4124-4127.
[http://dx.doi.org/10.1021/acs.orglett.9b01312] [PMID: 31140823]
[103]
Lv, X.; Kang, Z.; Xing, D.; Hu, W. Cu (I)-catalyzed three-component reaction of diazo compound with terminal alkyne and nitrosobenzene for the synthesis of trifluoro-methyl dihydroisoxazoles. Org. Lett., 2018, 20(16), 4843-4847.
[http://dx.doi.org/10.1021/acs.orglett.8b01981] [PMID: 30052452]
[104]
Pisella, G.; Gagnebin, A.; Waser, J. Three-component reaction for the synthesis of highly functionalized propargyl ethers. Chem. Eur. J., 2020, 26(45), 10199-10204.
[http://dx.doi.org/10.1002/chem.202001317] [PMID: 32187739]
[105]
Uehara, M.; Suematsu, H.; Yasutomi, Y.; Katsuki, T. Enantioenriched synthesis of cyclopropenes with a quaternary stereocenter, versatile building blocks. J. Am. Chem. Soc., 2011, 133(2), 170-171.
[http://dx.doi.org/10.1021/ja1089217] [PMID: 21033711]
[106]
Tran, U.P.N.; Hommelsheim, R.; Yang, Z.; Empel, C.; Hock, K.J.; Nguyen, T.V.; Koenigs, R.M. Catalytic synthesis of trifluoromethyl cyclopropenes and oligo-cyclopropenes. Chem. Eur. J., 2020, 26(6), 1254-1257.
[http://dx.doi.org/10.1002/chem.201904680] [PMID: 31617620]
[107]
Zhang, X.; Tian, C.; Wang, Z.; Sivaguru, P.; Nolan, S.P.; Bi, X. Fluoroalkyl N-triftosylhydrazones as easily decomposable diazo surrogates for asymmetric [2 + 1] cy-cloaddition: Synthesis of chiral fluoroalkyl cyclopropenes and cyclopropanes. ACS Catal., 2021, 11(14), 8527-8537.
[http://dx.doi.org/10.1021/acscatal.1c01483]
[108]
Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R.M. Blue-light-induced carbene-transfer reactions of diazoalkanes. Angew. Chem. Int. Ed. Engl., 2019, 58(4), 1203-1207.
[http://dx.doi.org/10.1002/anie.201811991] [PMID: 30480350]
[109]
Briones, J.F.; Davies, H.M.L. Silver triflate-catalyzed cyclopropenation of internal alkynes with donor-/acceptor-substituted diazo compounds. Org. Lett., 2011, 13(15), 3984-3987.
[http://dx.doi.org/10.1021/ol201503j] [PMID: 21707026]
[110]
Tanbouza, N.; Carreras, V.; Ollevier, T. Photochemical cyclopropenation of alkynes with diazirines as carbene precursors in continuous flow. Org. Lett., 2021, 23(14), 5420-5424.
[http://dx.doi.org/10.1021/acs.orglett.1c01750] [PMID: 34228924]
[111]
Mertens, L.; Hock, K.J.; Koenigs, R.M. Fluoroalkyl-substituted diazomethanes and their application in a general synthesis of pyrazoles and pyrazolines. Chem. Eur. J., 2016, 22(28), 9542-9545.
[http://dx.doi.org/10.1002/chem.201601707] [PMID: 27168358]
[112]
Denton, J.R.; Sukumaran, D.; Davies, H.M.L. Enantioselective synthesis of trifluoromethyl-substituted cyclopropanes. Org. Lett., 2007, 9(14), 2625-2628.
[http://dx.doi.org/10.1021/ol070714f] [PMID: 17552531]
[113]
Adly, F.G.; Gardiner, M.G.; Ghanem, A. Design and synthesis of novel chiral dirhodium(II) carboxylate complexes for asymmetric cyclopropanation reactions. Chem. Eur. J., 2016, 22(10), 3447-3461.
[http://dx.doi.org/10.1002/chem.201504817] [PMID: 26833989]
[114]
Wang, H.X.; Wan, Q.; Low, K.H.; Zhou, C.Y.; Huang, J.S.; Zhang, J.L.; Che, C.M. Stable group 8 metal porphyrin mono- and bis(dialkylcarbene) complexes: Synthesis, characterization, and catalytic activity. Chem. Sci. (Camb.), 2019, 11(8), 2243-2259.
[http://dx.doi.org/10.1039/C9SC05432D] [PMID: 32180931]
[115]
Guo, Y.; Pei, C.; Koenigs, R.M. Substrate-controlled cyclopropanation reactions of glycals with aryl diazoacetates. ChemCatChem, 2020, 12(16), 4014-4018.
[http://dx.doi.org/10.1002/cctc.202000569]
[116]
Pisella, G.; Gagnebin, A.; Waser, J. Copper-catalyzed oxyvinylation of diazo compounds. Org. Lett., 2020, 22(10), 3884-3889.
[http://dx.doi.org/10.1021/acs.orglett.0c01150] [PMID: 32356663]
[117]
Pei, C.; Yang, Z.; Koenigs, R.M. Synthesis of trifluoromethylated tetrasubstituted allenes via palladium-catalyzed carbene transfer reaction. Org. Lett., 2020, 22(18), 7300-7304.
[http://dx.doi.org/10.1021/acs.orglett.0c02638] [PMID: 32866017]
[118]
Emer, E.; Twilton, J.; Tredwell, M.; Calderwood, S.; Collier, T.L.; Liégault, B.; Taillefer, M.; Gouverneur, V. Diversity-oriented approach to CF3CHF-, CF3CFBr-, CF3CF2-, (CF3)2CH-, and CF3(SCF3)CH-substituted arenes from 1-(diazo-2,2,2-trifluoroethyl)arenes. Org. Lett., 2014, 16(22), 6004-6007.
[http://dx.doi.org/10.1021/ol5030184] [PMID: 25379614]
[119]
Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J. Trifluoromethylthiolation of diazo compounds through copper carbene migratory insertion. Eur. J. Org. Chem., 2014, 2014(15), 3093-3096.
[http://dx.doi.org/10.1002/ejoc.201402105]
[120]
Zhang, Z.; Yu, W.; Wu, C.; Wang, C.; Zhang, Y.; Wang, J. Reaction of diazo compounds with difluorocarbene: An efficient approach towards 1,1-difluoroolefins. Angew. Chem. Int. Ed. Engl., 2016, 55(1), 273-277.
[http://dx.doi.org/10.1002/anie.201509711] [PMID: 26768823]
[121]
Liu, Z.; Sivaguru, P.; Zanoni, G.; Anderson, E.A.; Bi, X. Catalyst-dependent chemoselective formal insertion of diazo compounds into C-C or C-H bonds of 1,3-dicarbonyl compounds. Angew. Chem. Int. Ed. Engl., 2018, 57(29), 8927-8931.
[http://dx.doi.org/10.1002/anie.201802834] [PMID: 29737051]
[122]
Yang, Z.; Möller, M.; Koenigs, R.M. Synthesis of gem-Difluoro Olefins through C-H Functionalization and β-fluoride Elimination Reactions. Angew. Chem. Int. Ed. Engl., 2020, 59(14), 5572-5576.
[http://dx.doi.org/10.1002/anie.201915500] [PMID: 31885145]
[123]
Yang, Z.; Pei, C.; Koenigs, R.M. Access to gem-difluoro olefins via C-H functionalization and dual role of anilines. Org. Lett., 2020, 22(18), 7234-7238.
[http://dx.doi.org/10.1021/acs.orglett.0c02568] [PMID: 32866023]
[124]
Jana, S.; Empel, C.; Pei, C.; Nguyen, T.V.; Koenigs, R.M. Gold-catalyzed CH functionalization of phenothiazines with aryldiazoacetates. Adv. Synth. Catal., 2020, 362(24), 5721-5727.
[http://dx.doi.org/10.1002/adsc.202000962]
[125]
Jana, S.; Empel, C.; Nguyen, T.V.; Koenigs, R.M. Multi C-H functionalization reactions of carbazole heterocycles via gold-catalyzed carbene transfer reactions. Chem. Eur. J., 2021, 27(8), 2628-2632.
[http://dx.doi.org/10.1002/chem.202004724] [PMID: 33278310]
[126]
Xu, G.; Chen, P.; Liu, P.; Tang, S.; Zhang, X.; Sun, J. Access to N-substituted 2-pyridones by catalytic intermolecular dearomatization and 1,4-acyl transfer. Angew. Chem. Int. Ed. Engl., 2019, 58(7), 1980-1984.
[http://dx.doi.org/10.1002/anie.201812937] [PMID: 30516877]
[127]
Wang, X.; Xu, Y.; Deng, Y.; Zhou, Y.; Feng, J.; Ji, G.; Zhang, Y.; Wang, J. Pd-carbene migratory insertion: Application to the synthesis of trifluoromethylated alkenes and dienes. Chem. Eur. J., 2014, 20(4), 961-965.
[http://dx.doi.org/10.1002/chem.201304143] [PMID: 24425676]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy