Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

MEG8: An Indispensable Long Non-coding RNA in Multiple Cancers

Author(s): Zhuoying Du, Fangshun Tan, Jinlan Chen, Bei Wang, Yuling Liu, Fangnan Zhao, Yinxin Wu and Chengfu Yuan*

Volume 28, Issue 20, 2022

Published on: 16 May, 2022

Page: [1688 - 1694] Pages: 7

DOI: 10.2174/1381612828666220516090245

Price: $65

Abstract

Background: As a member of long non-coding RNAs (lncRNAs), maternally expressed gene 8 (MEG8) has been found involving in the progression of a variety of cancers and playing a regulatory role. Therefore, MEG8 may turn into a new therapeutic target for cancer in the future. The purpose of this review is to illustrate the molecular mechanism and physiological function of MEG8 in various cancers.

Methods: We retrieved and analyzed related articles about MEG8, lncRNAs, and cancers, and then summarize the pathophysiological mechanisms of MEG8 in cancer development.

Results: LncRNA MEG8 participates in various cancers progression, thus influencing the proliferation, migration, and invasion of cancers. However, the expression of MEG8 is abnormally upregulated in non-small cell lung cancer (NSCLC), pancreatic cancer (PC), liver cancer (HCC), pituitary adenoma (PA) and hemangioma (HA), and inhibited in colorectal cancer (CRC), ovarian cancer (OC) and giant cell tumor (GCT), suggesting its clinical value in cancer therapy.

Conclusion: LncRNA MEG8 is expected to be a new therapeutic target or biomarker for a wide range of cancers in the future.

Keywords: Long non-coding RNA, MEG8, tumorigenesis, molecular mechanism, therapeutic target, pancreatic cancer, ovarian cancer.

« Previous
[1]
Kornienko AE, Guenzl PM, Barlow DP, et al. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11(1): 59.
[http://dx.doi.org/10.1186/1741-7007-11-59] [PMID: 23721193]
[2]
Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 2013; 26(2): 155-65.
[http://dx.doi.org/10.1038/modpathol.2012.160] [PMID: 22996375]
[3]
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10(1): 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[4]
Lehner B, Kunz P, Saehr H, et al. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chro-mosome 14.32 in giant cell tumor of bone. BMC Cancer 2014; 14(1): 495.
[http://dx.doi.org/10.1186/1471-2407-14-495] [PMID: 25005035]
[5]
Liu Y, Li L, Shang P, et al. LncRNA MEG8 promotes tumor progression of non-small cell lung cancer via regulating miR-107/CDK6 axis. Anticancer Drugs 2020; 31(10): 1065-73.
[http://dx.doi.org/10.1097/CAD.0000000000000970] [PMID: 32649368]
[6]
Guo K, Qi D, Huang B. LncRNA MEG8 promotes NSCLC progression by modulating the miR-15a-5p-miR-15b-5p/PSAT1 axis. Cancer Cell Int 2021; 21(1): 84.
[http://dx.doi.org/10.1186/s12935-021-01772-8] [PMID: 33526036]
[7]
Terashima M, Ishimura A, Wanna-Udom S, et al. MEG8 long noncoding RNA contributes to epigenetic progression of the epithelial-mesenchymal transition of lung and pancreatic cancer cells. J Biol Chem 2018; 293(47): 18016-30.
[http://dx.doi.org/10.1074/jbc.RA118.004006] [PMID: 30262664]
[8]
Lou J, Yan W, Li QY, et al. LncRNA MEG8 plays an oncogenic role in hepatocellular carcinoma progression through miR-367-3p/14-3-3ζ/TGFβR1 axis. Neoplasma 2021; 68(2): 273-82.
[http://dx.doi.org/10.4149/neo_2020_200730N785] [PMID: 33147050]
[9]
Chen T, Lin H, Chen X, et al. LncRNA Meg8 suppresses activation of hepatic stellate cells and epithelial-mesenchymal transition of hepatocytes via the Notch pathway. Biochem Biophys Res Commun 2020; 521(4): 921-7.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.015] [PMID: 31711641]
[10]
Zhu HB, Li B, Guo J, et al. LncRNA MEG8 promotes TNF-α expression by sponging miR-454-3p in bone-invasive pituitary adenomas. Aging (Albany NY) 2021; 13(10): 14342-54.
[http://dx.doi.org/10.18632/aging.203048] [PMID: 34016788]
[11]
Ma Q, Dai X, Lu W, Qu X, Liu N, Zhu C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem Biophys Res Commun 2021; 556: 72-8.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.132] [PMID: 33839417]
[12]
Kalmár A, Nagy ZB, Galamb O, et al. Genome-wide expression profiling in colorectal cancer focusing on lncRNAs in the adenoma-carcinoma transition. BMC Cancer 2019; 19(1): 1059.
[http://dx.doi.org/10.1186/s12885-019-6180-5] [PMID: 31694571]
[13]
Lei J, He ZY, Wang J, et al. Identification of MEG8/miR-378d/SOBP axis as a novel regulatory network and associated with immune infiltrates in ovarian carcinoma by integrated bioinformatics anal-ysis. Cancer Med 2021; 10(8): 2924-39.
[http://dx.doi.org/10.1002/cam4.3854] [PMID: 33742531]
[14]
Zhou K, Liu M, Cao Y. New insight into microRNA functions in cancer: oncogene-microrna-tumor suppressor gene network. Front Mol Biosci 2017; 4: 46.
[http://dx.doi.org/10.3389/fmolb.2017.00046] [PMID: 28736730]
[15]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[16]
Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin N Am 2016; 25(3): 447-68.
[http://dx.doi.org/10.1016/j.soc.2016.02.003] [PMID: 27261908]
[17]
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94(12): 1313-26.
[http://dx.doi.org/10.1007/s00109-016-1475-3] [PMID: 27695879]
[18]
Xia B, Yang S, Liu T, et al. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer 2015; 14(1): 57.
[http://dx.doi.org/10.1186/s12943-015-0322-4] [PMID: 25889927]
[19]
Xia H, Li Y, Lv X. MicroRNA 107 inhibits tumor growth and metastasis by targeting the BDNF mediated PI3K/AKT pathway in human non small lung cancer. Int J Oncol 2021; 59(3): 59.
[http://dx.doi.org/10.3892/ijo.2021.5246] [PMID: 34278461]
[20]
Kumar S, Sharawat SK, Ali A, et al. Identification of differentially expressed circulating serum microRNA for the diagnosis and progno-sis of Indian non-small cell lung cancer patients. Curr Probl Cancer 2020; 44(4)100540
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100540] [PMID: 32007320]
[21]
Zhou X, Zhang Z, Liang X. Regulatory network analysis to reveal important miRNAs and genes in non-small cell lung cancer. Cell J 2020; 21(4): 459-66.
[PMID: 31376328]
[22]
Ferlay J, Partensky C, Bray F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol 2016; 55(9-10): 1158-60.
[http://dx.doi.org/10.1080/0284186X.2016.1197419] [PMID: 27551890]
[23]
Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19(11): 1438-49.
[http://dx.doi.org/10.1038/nm.3336] [PMID: 24202396]
[24]
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73(23): 4493-515.
[http://dx.doi.org/10.1007/s00018-016-2303-1] [PMID: 27392607]
[25]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLO-BOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[26]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391(10127): 1301-14.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[27]
Xu J, Lin H, Li G, et al. The miR-367-3p increases sorafenib chemotherapy efficacy to suppress hepatocellular carcinoma metastasis through altering the androgen receptor signals. EBioMedicine 2016; 12: 55-67.
[http://dx.doi.org/10.1016/j.ebiom.2016.07.013] [PMID: 27688096]
[28]
Tang Y, Wang R, Zhang Y, et al. Co-Upregulation of 14-3-3ζ and P-Akt is associated with oncogenesis and recurrence of hepatocellular carcinoma. Cell Physiol Biochem 2018; 45(3): 1097-107.
[http://dx.doi.org/10.1159/000487351] [PMID: 29439255]
[29]
Tang Y, Liu S, Li N, et al. 14-3-3ζ promotes hepatocellular carcinoma venous metastasis by modulating hypoxia-inducible factor-1α. Oncotarget 2016; 7(13): 15854-67.
[http://dx.doi.org/10.18632/oncotarget.7493] [PMID: 26910835]
[30]
Topcul M, Cetin I. Clinical significance of epithelial-mesenchymal transition and cancer stem cells. J BUON 2016; 21(2): 312-9.
[PMID: 27273939]
[31]
Fabregat I, Fernando J, Mainez J, Sancho P. TGF-beta signaling in cancer treatment. Curr Pharm Des 2014; 20(17): 2934-47.
[http://dx.doi.org/10.2174/13816128113199990591] [PMID: 23944366]
[32]
Kamdem SD, Moyou-Somo R, Brombacher F, et al. Host regulators of liver fibrosis during human schistosomiasis. Front Immunol 2018; 9: 2781.
[http://dx.doi.org/10.3389/fimmu.2018.02781] [PMID: 30546364]
[33]
Yanguas SC, Cogliati B, Willebrords J, et al. Experimental models of liver fibrosis. Arch Toxicol 2016; 90(5): 1025-48.
[http://dx.doi.org/10.1007/s00204-015-1543-4] [PMID: 26047667]
[34]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[35]
Henrique D, Schweisguth F. Mechanisms of Notch signaling: A simple logic deployed in time and space. Development 2019; 146(3): 146.
[http://dx.doi.org/10.1242/dev.172148] [PMID: 30709911]
[36]
Trouillas J, Roy P, Sturm N, et al. A new prognostic clinicopathological classification of pituitary adenomas: A multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 2013; 126(1): 123-35.
[http://dx.doi.org/10.1007/s00401-013-1084-y] [PMID: 23400299]
[37]
Zada G, Woodmansee WW, Ramkissoon S, et al. Atypical pituitary adenomas: Incidence, clinical characteristics, and implications. J Neurosurg 2011; 114(2): 336-44.
[http://dx.doi.org/10.3171/2010.8.JNS10290] [PMID: 20868211]
[38]
Zhu H, Guo J, Shen Y, et al. Functions and mechanisms of tumor necrosis factor-α and noncoding RNAs in bone-invasive pituitary adenomas. Clin Cancer Res 2018; 24(22): 5757-66.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0472] [PMID: 29980532]
[39]
Jia J, Huang X, Zhang WF, et al. Human monocyte-derived hemangioma-like endothelial cells: Evidence from an in vitro study. Cardiovasc Pathol 2008; 17(4): 212-8.
[http://dx.doi.org/10.1016/j.carpath.2007.09.003] [PMID: 18402811]
[40]
Ji Y, Chen S, Li K, et al. Signaling pathways in the development of infantile hemangioma. J Hematol Oncol 2014; 7(1): 13.
[http://dx.doi.org/10.1186/1756-8722-7-13] [PMID: 24479731]
[41]
Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 2019; 31(51)e1904197
[http://dx.doi.org/10.1002/adma.201904197] [PMID: 31595562]
[42]
Chen Y, Kuang D, Zhao X, et al. miR-497-5p inhibits cell proliferation and invasion by targeting KCa3.1 in angiosarcoma. Oncotarget 2016; 7(36): 58148-61.
[http://dx.doi.org/10.18632/oncotarget.11252] [PMID: 27531900]
[43]
Chen X, Li J, Kang R, et al. Ferroptosis: Machinery and regulation. Autophagy 2021; 17(9): 2054-81.
[http://dx.doi.org/10.1080/15548627.2020.1810918] [PMID: 32804006]
[44]
Muto T, Bussey HJ, Morson BC. The evolution of cancer of the colon and rectum. Cancer 1975; 36(6): 2251-70.
[http://dx.doi.org/10.1002/cncr.2820360944] [PMID: 1203876]
[45]
Shinya H, Wolff WI. Morphology, anatomic distribution and cancer potential of colonic polyps. Ann Surg 1979; 190(6): 679-83.
[http://dx.doi.org/10.1097/00000658-197912000-00001] [PMID: 518167]
[46]
Cheah PY. Recent advances in colorectal cancer genetics and diagnostics. Crit Rev Oncol Hematol 2009; 69(1): 45-55.
[http://dx.doi.org/10.1016/j.critrevonc.2008.08.001] [PMID: 18774731]
[47]
Piver MS. Treatment of ovarian cancer at the crossroads: 50 years after single-agent melphalan chemotherapy. Oncology (Williston Park) 2006; 20: 1156-8.
[48]
Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: Current clinical perspectives and future potential. Clin Cancer Res 2013; 19(5): 961-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2243] [PMID: 23307860]
[49]
Stewart C, Ralyea C, Lockwood S. Ovarian cancer: An integrated review. Semin Oncol Nurs 2019; 35(2): 151-6.
[http://dx.doi.org/10.1016/j.soncn.2019.02.001] [PMID: 30867104]
[50]
Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 2016; 4(1): 59.
[http://dx.doi.org/10.1186/s40425-016-0165-6] [PMID: 27777769]
[51]
Viswanathan S, Jambhekar NA. Metastatic giant cell tumor of bone: Are there associated factors and best treatment modalities? Clin Orthop Relat Res 2010; 468(3): 827-33.
[http://dx.doi.org/10.1007/s11999-009-0966-8] [PMID: 19597900]
[52]
Malawer MM, Bickels J, Meller I, et al. Cryosurgery in the treatment of giant cell tumor. A long-term followup study. Clin Orthop Relat Res 1999; (359): 176-88.
[http://dx.doi.org/10.1097/00003086-199902000-00019] [PMID: 10078141]
[53]
Zhang Q, Zhao H, Maheshwari AV. Isolated cardiac metastasis from a histologically “benign” giant-cell tumor of the distal end of the femur: A case report. J Bone Joint Surg Am 2010; 92(16): 2725-31.
[http://dx.doi.org/10.2106/JBJS.J.00042] [PMID: 21084583]
[54]
Capanna R, Fabbri N, Bettelli G. Curettage of giant cell tumor of bone. The effect of surgical technique and adjuvants on local recurrence rate. Chir Organi Mov 1990; 75(1)(Suppl.): 206.
[PMID: 2249534]
[55]
Robinson D, Segal M, Nevo Z. Giant cell tumor of bone. The role of fibroblast growth factor 3 positive mesenchymal stem cells in its pathogenesis. Pathobiology 2002-2003; 70(6): 333-42.
[http://dx.doi.org/10.1159/000071273] [PMID: 12865629]
[56]
Wülling M, Delling G, Kaiser E. The origin of the neoplastic stromal cell in giant cell tumor of bone. Hum Pathol 2003; 34(10): 983-93.
[PMID: 14608531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy