Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Accounting Conformational Dynamics into Structural Modeling Reflected by Cryo-EM with Deep Learning

Author(s): Qiushi Ye, Yizhen Zhao, Xuhua Li, Yimin Zhao, Xinyue Fu, Shengli Zhang, Zhiwei Yang* and Lei Zhang

Volume 26, Issue 3, 2023

Published on: 17 August, 2022

Page: [449 - 458] Pages: 10

DOI: 10.2174/1386207325666220514143909

Price: $65

Abstract

With the continuous development of structural biology, the requirement for accurate threedimensional structures during functional modulation of biological macromolecules is increasing. Therefore, determining the dynamic structures of bio-macromolecular at high resolution has been a highpriority task. With the development of cryo-electron microscopy (cryo-EM) techniques, the flexible structures of biomacromolecules at the atomic resolution level grow rapidly. Nevertheless, it is difficult for cryo-EM to produce high-resolution dynamic structures without a great deal of manpower and time. Fortunately, deep learning, belonging to the domain of artificial intelligence, speeds up and simplifies this workflow for handling the high-throughput cryo-EM data. Here, we generalized and summarized some software packages and referred algorithms of deep learning with remarkable effects on cryo-EM data processing, including Warp, user-free preprocessing routines, TranSPHIRE, PARSED, Topaz, crYOLO, and self-supervised workflow, and pointed out the strategies to improve the resolution and efficiency of three-dimensional reconstruction. We hope it will shed some light on the bio-macromolecular dynamic structure modeling with the deep learning algorithms.

Keywords: Dynamic structures of biomacromolecules, Cryo-EM, Data preprocessing, Particle selection, Deep learning.

Next »
Graphical Abstract

[1]
Bai, X-C.; McMullan, G.; Scheres, S.H.W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci., 2015, 40(1), 49-57.
[http://dx.doi.org/10.1016/j.tibs.2014.10.005] [PMID: 25544475]
[2]
Afonine, P.V.; Poon, B.K.; Read, R.J.; Sobolev, O.V.; Terwilliger, T.C.; Urzhumtsev, A.; Adams, P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol., 2018, 74(Pt 6), 531-544.
[http://dx.doi.org/10.1107/S2059798318006551] [PMID: 29872004]
[3]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[4]
Frueh, D.P.; Goodrich, A.C.; Mishra, S.H.; Nichols, S.R. NMR methods for structural studies of large monomeric and multimeric proteins. Curr. Opin. Struct. Biol., 2013, 23(5), 734-739.
[http://dx.doi.org/10.1016/j.sbi.2013.06.016] [PMID: 23850141]
[5]
Loquet, A.; Habenstein, B.; Lange, A. Structural investigations of molecular machines by solid-state NMR. Acc. Chem. Res., 2013, 46(9), 2070-2079.
[http://dx.doi.org/10.1021/ar300320p] [PMID: 23496894]
[6]
Renault, M.; Cukkemane, A.; Baldus, M. Solid-state NMR spectroscopy on complex biomolecules. Angew. Chem. Int. Ed. Engl., 2010, 49(45), 8346-8357.
[http://dx.doi.org/10.1002/anie.201002823] [PMID: 20941715]
[7]
Petkova, A.T.; Ishii, Y.; Balbach, J.J.; Antzutkin, O.N.; Leapman, R.D.; Delaglio, F.; Tycko, R. A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 16742-16747.
[http://dx.doi.org/10.1073/pnas.262663499] [PMID: 12481027]
[8]
Weingarth, M.; Baldus, M. Introduction to biological solid-state NMR. Advances in Biological Solid-State NMR: Proteins and Membrane-Active Peptides, 2014, 3, 1-17.
[9]
Castellani, F.; van Rossum, B.; Diehl, A.; Schubert, M.; Rehbein, K.; Oschkinat, H. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature, 2002, 420(6911), 98-102.
[http://dx.doi.org/10.1038/nature01070] [PMID: 12422222]
[10]
Milne, J.L.S.; Borgnia, M.J.; Bartesaghi, A.; Tran, E.E.H.; Earl, L.A.; Schauder, D.M.; Lengyel, J.; Pierson, J.; Patwardhan, A.; Subramaniam, S. Cryo-electron microscopy-a primer for the nonmicroscopist. FEBS J., 2013, 280(1), 28-45.
[http://dx.doi.org/10.1111/febs.12078] [PMID: 23181775]
[11]
Lau, W.C.Y.; Rubinstein, J.L. Single Particle Electron Microscopy; Humana Press, 2013, pp. 401-426.
[12]
Frank, J. Single-particle reconstruction of biological macromolecules in electron microscopy-30 years. Q. Rev. Biophys., 2009, 42(3), 139-158.
[http://dx.doi.org/10.1017/S0033583509990059] [PMID: 20025794]
[13]
Koning, R.I.; Koster, A.J. Cryo-electron tomography in biolo-gy and medicine. Ann. Anat., 2009, 191(5), 427-445.
[http://dx.doi.org/10.1016/j.aanat.2009.04.003] [PMID: 19559584]
[14]
Milne, J.L.; Subramaniam, S. Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat. Rev. Microbiol., 2009, 7(9), 666-675.
[http://dx.doi.org/10.1038/nrmicro2183] [PMID: 19668224]
[15]
De Rosier, D.J.; Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature, 1968, 217(5124), 130-134.
[http://dx.doi.org/10.1038/217130a0] [PMID: 23610788]
[16]
Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryomicroscopy. Nature, 2013, 504(7478), 107-112.
[http://dx.doi.org/10.1038/nature12822] [PMID: 24305160]
[17]
Campbell, M.G.; Cheng, A.; Brilot, A.F.; Moeller, A.; Lyumkis, D.; Veesler, D.; Pan, J.; Harrison, S.C.; Potter, C.S.; Carragher, B.; Grigorieff, N. Movies of ice-embedded particles enhance resolution in electron cryomicroscopy. Structure, 2012, 20(11), 1823-1828.
[http://dx.doi.org/10.1016/j.str.2012.08.026] [PMID: 23022349]
[18]
Scheres, S.H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife, 2014, 3, e03665.
[http://dx.doi.org/10.7554/eLife.03665] [PMID: 25122622]
[19]
Tang, G.; Peng, L.; Baldwin, P.R.; Mann, D.S.; Jiang, W.; Rees, I.; Ludtke, S.J. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol., 2007, 157(1), 38-46.
[http://dx.doi.org/10.1016/j.jsb.2006.05.009] [PMID: 16859925]
[20]
Shaikh, T.R.; Gao, H.; Baxter, W.T.; Asturias, F.J.; Boisset, N.; Leith, A.; Frank, J. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc., 2008, 3(12), 1941-1974.
[http://dx.doi.org/10.1038/nprot.2008.156] [PMID: 19180078]
[21]
Scheres, S.H.W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol., 2012, 180(3), 519-530.
[http://dx.doi.org/10.1016/j.jsb.2012.09.006] [PMID: 23000701]
[22]
Punjani, A.; Rubinstein, J.L.; Fleet, D.J.; Brubaker, M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods, 2017, 14(3), 290-296.
[http://dx.doi.org/10.1038/nmeth.4169] [PMID: 28165473]
[23]
Nogales, E.; Scheres, S.H.W. Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Mol. Cell, 2015, 58(4), 677-689.
[http://dx.doi.org/10.1016/j.molcel.2015.02.019] [PMID: 26000851]
[24]
Jahagirdar, D.; Jha, V.; Basu, K.; Gomez-Blanco, J.; Vargas, J.; Ortega, J. Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. RNA, 2020, 26(12), 2017-2030.
[http://dx.doi.org/10.1261/rna.075846.120] [PMID: 32989043]
[25]
Leung, M.R.; Zeev-Ben-Mordehai, T. Cryo-electron microscopy of cholinesterases, present and future. J. Neurochem., 2021, 158(6), 1236-1243.
[http://dx.doi.org/10.1111/jnc.15245] [PMID: 33222205]
[26]
Zhang, L.; Song, J.; Cavigiolio, G.; Ishida, B.Y.; Zhang, S.; Kane, J.P.; Weisgraber, K.H.; Oda, M.N.; Rye, K.A.; Pownall, H.J.; Ren, G. Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J. Lipid Res., 2011, 52(1), 175-184.
[http://dx.doi.org/10.1194/jlr.D010959] [PMID: 20978167]
[27]
Zhang, L.; Ren, G. IPET and FETR: experimental approach for studying molecular structure dynamics by cryo-electron tomography of a single-molecule structure. PLoS One, 2012, 7(1), e30249.
[http://dx.doi.org/10.1371/journal.pone.0030249] [PMID: 22291925]
[28]
Zhang, X.; Zhang, L.; Tong, H.; Peng, B.; Rames, M.J.; Zhang, S.; Ren, G. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography. Sci. Rep., 2015, 5(1), 9803.
[http://dx.doi.org/10.1038/srep09803] [PMID: 25940394]
[29]
Cheng, Y.; Grigorieff, N.; Penczek, P.A.; Walz, T. A primer to single-particle cryo-electron microscopy. Cell, 2015, 161(3), 438-449.
[http://dx.doi.org/10.1016/j.cell.2015.03.050] [PMID: 25910204]
[30]
Alimadadi, A.; Aryal, S.; Manandhar, I.; Munroe, P.B.; Joe, B.; Cheng, X. Artificial intelligence and machine learning to fight COVID-19. Physiol. Genomics, 2020, 52(4), 200-202.
[http://dx.doi.org/10.1152/physiolgenomics.00029.2020] [PMID: 32216577]
[31]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[32]
Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw., 2015, 61, 85-117.
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[33]
Tegunov, D.; Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods, 2019, 16(11), 1146-1152.
[http://dx.doi.org/10.1038/s41592-019-0580-y] [PMID: 31591575]
[34]
Li, Y.; Cash, J.N.; Tesmer, J.J.G.; Cianfrocco, M.A. High-throughput Cryo-EM enabled by user-free preprocessing routines. Structure, 2020, 28(7), 858-869.e3.
[http://dx.doi.org/10.1016/j.str.2020.03.008] [PMID: 32294468]
[35]
Stabrin, M.; Schoenfeld, F.; Wagner, T.; Pospich, S.; Gatsogiannis, C.; Raunser, S. TranSPHIRE: Automated and feedback-optimized on-the-fly processing for cryo-EM. Nat. Commun., 2020, 11(1), 5716-5728.
[http://dx.doi.org/10.1038/s41467-020-19513-2] [PMID: 33177513]
[36]
Wagner, T.; Raunser, S. The evolution of SPHIREcrYOLO particle picking and its application in automated cryo-EM processing workflows. Commun. Biol., 2020, 3(1), 61.
[http://dx.doi.org/10.1038/s42003-020-0790-y] [PMID: 32047248]
[37]
Wagner, T.; Merino, F.; Stabrin, M.; Moriya, T.; Antoni, C.; Apelbaum, A.; Hagel, P.; Sitsel, O.; Raisch, T.; Prumbaum, D.; Quentin, D.; Roderer, D.; Tacke, S.; Siebolds, B.; Schubert, E.; Shaikh, T.R.; Lill, P.; Gatsogiannis, C.; Raunser, S. SPHIREcrYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol., 2019, 2(1), 218.
[http://dx.doi.org/10.1038/s42003-019-0437-z] [PMID: 31240256]
[38]
Yao, R.; Qian, J.; Huang, Q. Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules. Bioinformatics, 2020, 36(4), 1252-1259.
[PMID: 31584618]
[39]
Bepler, T.; Morin, A.; Rapp, M.; Brasch, J.; Shapiro, L.; No-ble, A.J.; Berger, B. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods, 2019, 16(11), 1153-1160.
[http://dx.doi.org/10.1038/s41592-019-0575-8] [PMID: 31591578]
[40]
McSweeney, D.M.; McSweeney, S.M.; Liu, Q. A self-supervised workflow for particle picking in cryo-EM. IUCrJ, 2020, 7(Pt 4), 719-727.
[http://dx.doi.org/10.1107/S2052252520007241] [PMID: 32695418]
[41]
McCallum, M.; Walls, A.C.; Sprouse, K.R.; Bowen, J.E.; Rosen, L.E.; Dang, H.V.; De Marco, A.; Franko, N.; Tilles, S.W.; Logue, J.; Miranda, M.C.; Ahlrichs, M.; Carter, L.; Snell, G.; Pizzuto, M.S.; Chu, H.Y.; Van Voorhis, W.C.; Corti, D.; Veesler, D. Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374(6575), 1621-1626.
[http://dx.doi.org/10.1126/science.abl8506] [PMID: 34751595]
[42]
Bunduc, C.M.; Bitter, W.; Houben, E.N.G. Structure and function of the mycobacterial type VII secretion systems. Annual Rev. Microbiol., 2020, 74, 315-335.
[43]
Bunduc, C.M.; Fahrenkamp, D.; Wald, J.; Ummels, R.; Bitter, W.; Houben, E.N.G.; Marlovits, T.C. Structure and dynamics of a mycobacterial type VII secretion system. Nature, 2021, 593(7859), 445-448.
[http://dx.doi.org/10.1038/s41586-021-03517-z] [PMID: 33981042]
[44]
Igaev, M.; Kutzner, C.; Bock, L.V.; Vaiana, A.C.; Grubmüller, H. Automated cryo-EM structure refinement using correlation-driven molecular dynamics. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.43542] [PMID: 30829573]
[45]
Rubinstein, J.L.; Brubaker, M.A. Alignment of cryo-EM movies of individual particles by optimization of image transla-tions. J. Struct. Biol., 2015, 192(2), 188-195.
[http://dx.doi.org/10.1016/j.jsb.2015.08.007] [PMID: 26296328]
[46]
Li, X.; Mooney, P.; Zheng, S.; Booth, C.R.; Braunfeld, M.B.; Gubbens, S.; Agard, D.A.; Cheng, Y. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods, 2013, 10(6), 584-590.
[http://dx.doi.org/10.1038/nmeth.2472] [PMID: 23644547]
[47]
Mindell, J.A.; Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol., 2003, 142(3), 334-347.
[http://dx.doi.org/10.1016/S1047-8477(03)00069-8] [PMID: 12781660]
[48]
Penczek, P.A. Image restoration in Cryo-Electron microscopy; Elsevier, 2010, pp. 35-72.
[49]
Huang, Z.; Baldwin, P.R.; Mullapudi, S.; Penczek, P.A. Auto-mated determination of parameters describing power spectra of micrograph images in electron microscopy. J. Struct. Biol., 2003, 144(1-2), 79-94.
[http://dx.doi.org/10.1016/j.jsb.2003.10.011] [PMID: 14643211]
[50]
Zivanov, J.; Nakane, T.; Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. lucrj, 2019, 6(1), 5-17.
[51]
Grant, T.; Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife, 2015, 4, e06980.
[http://dx.doi.org/10.7554/eLife.06980] [PMID: 26023829]
[52]
Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol., 2005, 152(1), 36-51.
[http://dx.doi.org/10.1016/j.jsb.2005.07.007] [PMID: 16182563]
[53]
Zheng, S.Q.; Palovcak, E.; Armache, J-P.; Verba, K.A.; Cheng, Y.; Agard, D.A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microsco-py. Nat. Methods, 2017, 14(4), 331-332.
[http://dx.doi.org/10.1038/nmeth.4193] [PMID: 28250466]
[54]
McLeod, R.A.; Kowal, J.; Ringler, P.; Stahlberg, H. Robust image alignment for cryogenic transmission electron microscopy. J. Struct. Biol., 2017, 197(3), 279-293.
[http://dx.doi.org/10.1016/j.jsb.2016.12.006] [PMID: 28038834]
[55]
Rohou, A.; Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol., 2015, 192(2), 216-221.
[http://dx.doi.org/10.1016/j.jsb.2015.08.008] [PMID: 26278980]
[56]
Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol., 2016, 193(1), 1-12.
[http://dx.doi.org/10.1016/j.jsb.2015.11.003] [PMID: 26592709]
[57]
Structural revolution? Nat. Ecol. Evol., 2021, 5(1), 1-1.
[http://dx.doi.org/10.1038/s41559-020-01381-0] [PMID: 33323994]
[58]
Chen, J.Z.; Grigorieff, N. SIGNATURE: a single-particle selection system for molecular electron microscopy. J. Struct. Biol., 2007, 157(1), 168-173.
[http://dx.doi.org/10.1016/j.jsb.2006.06.001] [PMID: 16870473]
[59]
Scheres, S.H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol., 2015, 189(2), 114-122.
[http://dx.doi.org/10.1016/j.jsb.2014.11.010] [PMID: 25486611]
[60]
Nicholson, W.V.; Glaeser, R.M. Review: automatic particle detection in electron microscopy. J. Struct. Biol., 2001, 133(2-3), 90-101.
[http://dx.doi.org/10.1006/jsbi.2001.4348] [PMID: 11472081]
[61]
Sorzano, C.O.; Recarte, E.; Alcorlo, M.; Bilbao-Castro, J.R.; San-Martín, C.; Marabini, R.; Carazo, J.M. Automatic particle selection from electron micrographs using machine learning techniques. J. Struct. Biol., 2009, 167(3), 252-260.
[http://dx.doi.org/10.1016/j.jsb.2009.06.011] [PMID: 19555764]
[62]
Zhao, J.; Brubaker, M.A.; Rubinstein, J.L. TMaCS: a hybrid template matching and classification system for partially-automated particle selection. J. Struct. Biol., 2013, 181(3), 234-242.
[http://dx.doi.org/10.1016/j.jsb.2012.12.010] [PMID: 23333657]
[63]
Sanchez-Garcia, R.; Segura, J.; Maluenda, D.; Carazo, J.M.; Sorzano, C.O.S. Deep Consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy. IUCrJ, 2018, 5(Pt 6), 854-865.
[http://dx.doi.org/10.1107/S2052252518014392] [PMID: 30443369]
[64]
Wang, F.; Gong, H.; Liu, G.; Li, M.; Yan, C.; Xia, T.; Li, X.; Zeng, J. DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM. J. Struct. Biol., 2016, 195(3), 325-336.
[http://dx.doi.org/10.1016/j.jsb.2016.07.006] [PMID: 27424268]
[65]
Zhu, Y.; Ouyang, Q.; Mao, Y. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy. BMC Bioinformatics, 2017, 18(1), 348.
[http://dx.doi.org/10.1186/s12859-017-1757-y] [PMID: 28732461]
[66]
Punjani, A.; Zhang, H.; Fleet, D.J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods, 2020, 17(12), 1214-1221.
[http://dx.doi.org/10.1038/s41592-020-00990-8] [PMID: 33257830]
[67]
Tan, Y.Z.; Baldwin, P.R.; Davis, J.H.; Williamson, J.R.; Potter, C.S.; Carragher, B.; Lyumkis, D. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods, 2017, 14(8), 793-796.
[http://dx.doi.org/10.1038/nmeth.4347] [PMID: 28671674]
[68]
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur, M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D.G.; Steiner, B.; Tucker, P.; Vasudevan, V.; Warden, P.; Wicke, M.; Yu, Y.; Zheng, X.; Assoc, U. TensorFlow: A system for large-scale machine learning. In: 12th Usenix Symposium on Operating Systems Design and Implementation, 2016, pp. 265-283.
[69]
Iudin, A.; Korir, P.K.; Salavert-Torres, J.; Kleywegt, G.J.; Patwardhan, A. EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods, 2016, 13(5), 387-388.
[http://dx.doi.org/10.1038/nmeth.3806] [PMID: 27067018]
[70]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[71]
Bartesaghi, A.; Merk, A.; Banerjee, S.; Matthies, D.; Wu, X.; Milne, J.L.S.; Subramaniam, S. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science, 2015, 348(6239), 1147-1151.
[http://dx.doi.org/10.1126/science.aab1576] [PMID: 25953817]
[72]
Zivanov, J.; Nakane, T.; Forsberg, B.O.; Kimanius, D.; Hagen, W.J.; Lindahl, E.; Scheres, S.H. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife, 2018, 7, e42166.
[http://dx.doi.org/10.7554/eLife.42166] [PMID: 30412051]
[73]
Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE, 1998, 86(11), 2278-2324.
[http://dx.doi.org/10.1109/5.726791]
[74]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770-778.
[http://dx.doi.org/10.1109/CVPR.2016.90]
[75]
Cash, J.N.; Urata, S.; Li, S.; Ravala, S.K.; Avramova, L.V.; Shost, M.D.; Gutkind, J.S.; Tesmer, J.J.G.; Cianfrocco, M.A. Cryo-electron microscopy structure and analysis of the P-Rex1-Gβγ signaling scaffold. Sci. Adv., 2019, 5(10), eaax8855.
[http://dx.doi.org/10.1126/sciadv.aax8855] [PMID: 31663027]
[76]
Deriche, R. Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. Comput. Vis., 1987, 1(2), 167-187.
[http://dx.doi.org/10.1007/BF00123164]
[77]
Ding, L.J.; Goshtasby, A. On the Canny edge detector. Pattern Recognit., 2001, 34(3), 721-725.
[http://dx.doi.org/10.1016/S0031-3203(00)00023-6]
[78]
Hou, X.D.; Zhang, L.Q. In Saliency detection: A spectral residual approach IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MNJun 17-222007, 2280-2288.
[http://dx.doi.org/10.1109/CVPR.2007.383267]
[79]
Campbell, M.G.; Veesler, D.; Cheng, A.; Potter, C.S.; Carragher, B. 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. eLife, 2015, 4, e06380.
[http://dx.doi.org/10.7554/eLife.06380] [PMID: 25760083]
[80]
Noble, A.J.; Wei, H.; Dandey, V.P.; Zhang, Z.; Tan, Y.Z.; Potter, C.S.; Carragher, B. Reducing effects of particle adsorption to the air-water interface in cryo-EM. Nat. Methods, 2018, 15(10), 793-795.
[http://dx.doi.org/10.1038/s41592-018-0139-3] [PMID: 30250056]
[81]
Maruthi, K.; Kopylov, M.; Carragher, B. Automating decision making in the Cryo-EM pre-processing pipeline. Structure, 2020, 28(7), 727-729.
[http://dx.doi.org/10.1016/j.str.2020.06.004] [PMID: 32640251]
[82]
Moriya, T.; Saur, M.; Stabrin, M.; Merino, F.; Voicu, H.; Huang, Z.; Penczek, P.A.; Raunser, S.; Gatsogiannis, C. High-resolution single particle analysis from electron cryomicroscopy images using SPHIRE. J. Vis. Exp., 2017, (123), e55448.
[http://dx.doi.org/10.3791/55448] [PMID: 28570515]
[83]
Long, J.; Shelhamer, E.; Darrell, T. In fully convolutional networks for semantic segmentation 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MAJun 07-12, 2015, pp. 3431-3440.
[http://dx.doi.org/10.1109/CVPR.2015.7298965]
[84]
Scheres, S.H.W.; Núñez-Ramírez, R.; Sorzano, C.O.S.; Carazo, J.M.; Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc., 2008, 3(6), 977-990.
[http://dx.doi.org/10.1038/nprot.2008.62] [PMID: 18536645]
[85]
Crocker, J.C.; Grier, D.G. Methods of digital video microsco-py for colloidal studies. J. Colloid Interface Sci., 1996, 179(1), 298-310.
[http://dx.doi.org/10.1006/jcis.1996.0217]
[86]
Bepler, T.; Kelley, K.; Noble, A.J.; Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun., 2020, 11(1), 5208.
[http://dx.doi.org/10.1038/s41467-020-18952-1] [PMID: 33060581]
[87]
Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2noise: Learning image restoration without clean data. 1803.041892018
[88]
Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 779-788.
[http://dx.doi.org/10.1109/CVPR.2016.91]
[89]
Vinayagam, D.; Mager, T.; Apelbaum, A.; Bothe, A.; Merino, F.; Hofnagel, O.; Gatsogiannis, C.; Raunser, S. Electron cryomicroscopy structure of the canonical TRPC4 ion channel. eLife, 2018, 7, e36615.
[http://dx.doi.org/10.7554/eLife.36615] [PMID: 29717981]
[90]
Zhu, Y.; Carragher, B.; Glaeser, R.M.; Fellmann, D.; Bajaj, C.; Bern, M.; Mouche, F.; de Haas, F.; Hall, R.J.; Kriegman, D.J.; Ludtke, S.J.; Mallick, S.P.; Penczek, P.A.; Roseman, A.M.; Sigworth, F.J.; Volkmann, N.; Potter, C.S. Automatic particle selection: Results of a comparative study. J. Struct. Biol., 2004, 145(1-2), 3-14.
[http://dx.doi.org/10.1016/j.jsb.2003.09.033] [PMID: 15065668]
[91]
Vorländer, M.K.; Khatter, H.; Wetzel, R.; Hagen, W.J.H.; Müller, C.W. Molecular mechanism of promoter opening by RNA polymerase III. Nature, 2018, 553(7688), 295-300.
[http://dx.doi.org/10.1038/nature25440] [PMID: 29345638]
[92]
Gatsogiannis, C.; Lang, A.E.; Meusch, D.; Pfaumann, V.; Hofnagel, O.; Benz, R.; Aktories, K.; Raunser, S. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature, 2013, 495(7442), 520-523.
[http://dx.doi.org/10.1038/nature11987] [PMID: 23515159]
[93]
Jin, P.; Bulkley, D.; Guo, Y.; Zhang, W.; Guo, Z.; Huynh, W.; Wu, S.; Meltzer, S.; Cheng, T.; Jan, L.Y.; Jan, Y-N.; Cheng, Y. Electron cryomicroscopy structure of the mechanotransduction channel NOMPC. Nature, 2017, 547(7661), 118-122.
[http://dx.doi.org/10.1038/nature22981] [PMID: 28658211]
[94]
Khoshouei, M.; Radjainia, M.; Phillips, A.J.; Gerrard, J.A.; Mitra, A.K.; Plitzko, J.M.; Baumeister, W.; Danev, R. Volta phase plate cryo-EM of the small protein complex Prx3. Nat. Commun., 2016, 7(1), 10534.
[http://dx.doi.org/10.1038/ncomms10534] [PMID: 26817416]
[95]
Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.; Jones, D.T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792), 706-710.
[http://dx.doi.org/10.1038/s41586-019-1923-7] [PMID: 31942072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy