Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Methanol and Sorbitol Affect the Molecular Dynamics of Arginine Deiminase: Insights for Improving its Stability

Author(s): Mahboubeh Zarei, Soudabeh Sabetian, Mohammad Reza Rahbar and Manica Negahdaripour*

Volume 19, Issue 5, 2022

Published on: 20 August, 2022

Page: [380 - 387] Pages: 8

DOI: 10.2174/1570164619666220513123509

Price: $65

Abstract

Background: The arginine deiminase enzyme of Mycoplasma arginini (MaADI) is a potential anti-cancer agent for treating arginine-auxotrophic cancers. Investigating the protein stability in the presence of osmolytes can help to increase protein stability under various stressed conditions.

Methods: In this study, the stability and dynamics of MaADI were investigated in pure water and solutions of 1 M sorbitol, 10% (v/v) methanol, and 50% (v/v) methanol using molecular dynamics simulation.

Results: Sorbitol was found to stabilize the protein, whereas high-concentrated methanol destabilized it. Sorbitol molecules interacted with the protein through hydrogen bonding and reduced the protein fluctuations. At 50% methanol, the flexibility of regions 4-8, 195-201, 314-324, and 332- 337 in the MaADI was increased, whereas residues 195-201 showed the highest variations.

Conclusion: Thus, these regions of MaADI, especially 195-201, are the most sensitive regions in the presence of denaturing agents and can be subjected to protein engineering to improve the stability of MaADI.

Keywords: Arginine deiminase, protein stability, sorbitol, methanol, molecular dynamics simulation, ADI.

Graphical Abstract

[1]
Burg, M.B.; Ferraris, J.D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem., 2008, 283(12), 7309-7313.
[http://dx.doi.org/10.1074/jbc.R700042200] [PMID: 18256030]
[2]
Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: Evolution of osmolyte systems. Science, 1982, 217(4566), 1214-1222.
[http://dx.doi.org/10.1126/science.7112124] [PMID: 7112124]
[3]
Sharma, S.; Pathak, N.; Chattopadhyay, K. Osmolyte induced stabilization of protein molecules: A brief review. J. Proteins Proteom., 2013, 3(2), 1-12.
[4]
Record, M.T., Jr; Courtenay, E.S.; Cayley, D.S.; Guttman, H.J. Responses of E. coli to osmotic stress: Large changes in amounts of cyto-plasmic solutes and water. Trends Biochem. Sci., 1998, 23(4), 143-148.
[http://dx.doi.org/10.1016/S0968-0004(98)01196-7] [PMID: 9584618]
[5]
Bolen, D.W. Protein stabilization by naturally occurring osmolytes. In: Protein structure, stability, and folding; Springer, 2001; pp. 17-36.
[http://dx.doi.org/10.1385/1-59259-193-0:017]
[6]
Yancey, P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol., 2005, 208(Pt 15), 2819-2830.
[http://dx.doi.org/10.1242/jeb.01730] [PMID: 16043587]
[7]
Arakawa, T.; Tsumoto, K.; Kita, Y.; Chang, B.; Ejima, D. Biotechnology applications of amino acids in protein purification and formula-tions. Amino Acids, 2007, 33(4), 587-605.
[http://dx.doi.org/10.1007/s00726-007-0506-3] [PMID: 17357829]
[8]
Arakawa, T.; Kita, Y.; Carpenter, J.F. Protein-solvent interactions in pharmaceutical formulations. Pharm. Res., 1991, 8(3), 285-291.
[http://dx.doi.org/10.1023/A:1015825027737] [PMID: 2052513]
[9]
de Marco, A.; Vigh, L.; Diamant, S.; Goloubinoff, P. Native folding of aggregation-prone recombinant proteins in Escherichia coli by os-molytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones, 2005, 10(4), 329-339.
[http://dx.doi.org/10.1379/CSC-139R.1] [PMID: 16333986]
[10]
Rabbani, G.; Choi, I. Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. Int. J. Biol. Macromol., 2018, 109, 483-491.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.100] [PMID: 29274422]
[11]
Wlodarczyk, R.; Custodio, D.; Pessoa, A.; Monteiro de Souza, G. Influence and effect of osmolytes in biopharmaceutical formulations. Eur. J. Pharm. Biopharm., 2018, 131, 92-98.
[12]
Herskovits, T.T.; Gadegbeku, B.; Jaillet, H. On the structural stability and solvent denaturation of proteins. I. Denaturation by the alcohols and glycols. J. Biol. Chem., 1970, 245(10), 2588-2598.
[http://dx.doi.org/10.1016/S0021-9258(18)63111-4] [PMID: 5445802]
[13]
Buck, M. Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys., 1998, 31(3), 297-355.
[http://dx.doi.org/10.1017/S003358359800345X] [PMID: 10384688]
[14]
Zarei, M.; Rahbar, M.R.; Negahdaripour, M.; Morowvat, M.H.; Nezafat, N.; Ghasemi, Y. Cell penetrating peptide: Sequence-based compu-tational prediction for intercellular delivery of arginine deiminase. Curr. Proteomics, 2019, 16, 1-15.
[15]
Shao, Q.; Fan, Y.; Yang, L.; Gao, Qin From protein denaturant to protectant: Comparative molecular dynamics study of alcohol/protein interactions. J. Chem. Phys., 2012, 136(11), 03B605.
[16]
Horn, F. The breakdown of arginine to citrulline by Bacillus pyocyaneus. Hoppe Seylers Z. Physiol. Chem., 1933, 216(5-6), 244-247.
[http://dx.doi.org/10.1515/bchm2.1933.216.5-6.244]
[17]
Abou-Alfa, G.K.; Qin, S.; Ryoo, B.Y.; Lu, S.N.; Yen, C.J.; Feng, Y.H.; Lim, H.Y.; Izzo, F.; Colombo, M.; Sarker, D.; Bolondi, L.; Vaccaro, G.; Harris, W.P.; Chen, Z.; Hubner, R.A.; Meyer, T.; Sun, W.; Harding, J.J.; Hollywood, E.M.; Ma, J.; Wan, P.J.; Ly, M.; Bomalaski, J.; Johnston, A.; Lin, C.C.; Chao, Y.; Chen, L.T. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann. Oncol., 2018, 29(6), 1402-1408.
[http://dx.doi.org/10.1093/annonc/mdy101] [PMID: 29659672]
[18]
Shen, L.J.; Shen, W.C. Drug evaluation: ADI-PEG-20-a PEGylated arginine deiminase for arginine-auxotrophic cancers. Curr. Opin. Mol. Ther., 2006, 8(3), 240-248.
[PMID: 16774044]
[19]
Miraki-Moud, F.; Ghazaly, E.; Ariza-McNaughton, L.; Hodby, K.A.; Clear, A.; Anjos-Afonso, F.; Liapis, K.; Grantham, M.; Sohrabi, F.; Cavenagh, J.; Bomalaski, J.S.; Gribben, J.G.; Szlosarek, P.W.; Bonnet, D.; Taussig, D.C. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood, 2015, 125(26), 4060-4068.
[http://dx.doi.org/10.1182/blood-2014-10-608133] [PMID: 25896651]
[20]
Ott, P.A.; Carvajal, R.D.; Pandit-Taskar, N.; Jungbluth, A.A.; Hoffman, E.W.; Wu, B.W.; Bomalaski, J.S.; Venhaus, R.; Pan, L.; Old, L.J.; Pavlick, A.C.; Wolchok, J.D. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest. New Drugs, 2013, 31(2), 425-434.
[http://dx.doi.org/10.1007/s10637-012-9862-2] [PMID: 22864522]
[21]
Synakiewicz, A.; Stachowicz-Stencel, T.; Adamkiewicz-Drozynska, E. The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials. Expert Opin. Investig. Drugs, 2014, 23(11), 1517-1529.
[http://dx.doi.org/10.1517/13543784.2014.934808] [PMID: 24965808]
[22]
Szlosarek, P.W.; Steele, J.P.; Nolan, L.; Gilligan, D.; Taylor, P.; Spicer, J.; Lind, M.; Mitra, S.; Shamash, J.; Phillips, M.M.; Luong, P.; Payne, S.; Hillman, P.; Ellis, S.; Szyszko, T.; Dancey, G.; Butcher, L.; Beck, S.; Avril, N.E.; Thomson, J.; Johnston, A.; Tomsa, M.; Law-rence, C.; Schmid, P.; Crook, T.; Wu, B.W.; Bomalaski, J.S.; Lemoine, N.; Sheaff, M.T.; Rudd, R.M.; Fennell, D.; Hackshaw, A. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: A randomized clinical trial. JAMA Oncol., 2017, 3(1), 58-66.
[http://dx.doi.org/10.1001/jamaoncol.2016.3049] [PMID: 27584578]
[23]
Holtsberg, F.W.; Ensor, C.M.; Steiner, M.R.; Bomalaski, J.S.; Clark, M.A. Poly(Ethylene Glycol) (PEG) conjugated arginine deiminase: Effects of PEG formulations on its pharmacological properties. J. Control. Release, 2002, 80(1-3), 259-271.
[http://dx.doi.org/10.1016/S0168-3659(02)00042-1] [PMID: 11943403]
[24]
Long, Y.; Tsai, W.B.; Wangpaichitr, M.; Tsukamoto, T.; Savaraj, N.; Feun, L.G.; Kuo, M.T. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol. Cancer Ther., 2013, 12(11), 2581-2590.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0302] [PMID: 23979920]
[25]
Wu, F.L.; Yeh, T.H.; Chen, Y.L.; Chiu, Y.C.; Cheng, J.C.; Wei, M.F.; Shen, L.J. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Mol. Pharm., 2014, 11(8), 2777-2786.
[http://dx.doi.org/10.1021/mp5001372] [PMID: 24950134]
[26]
Yeh, T.H.; Chen, Y.R.; Chen, S.Y.; Shen, W.C.; Ann, D.K.; Zaro, J.L.; Shen, L.J. Selective intracellular delivery of recombinant Arginine Deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells. Mol. Pharm., 2016, 13(1), 262-271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00706] [PMID: 26642391]
[27]
Chang, K.Y.; Chiang, N.J.; Yen, C.J.; Wu, S.Y.; Chen, S.H.; Johnston, A.; Bomalaski, J.S.; Wu, B.W.; Chen, L.T. A phase Ib study of ADI-PEG 20 Plus Pembrolizumab in Advanced Solid Cancers; American Society of Clinical Oncology, 2018.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.2556]
[28]
Lowery, M.A.; Yu, K.H.; Kelsen, D.P.; Harding, J.J.; Bomalaski, J.S.; Glassman, D.C.; Covington, C.M.; Brenner, R.; Hollywood, E.; Bar-ba, A.; Johnston, A.; Liu, K.C.; Feng, X.; Capanu, M.; Abou-Alfa, G.K.; O’Reilly, E.M. A phase 1/1B trial of ADI-PEG 20 plus nab-paclitaxel and gemcitabine in patients with advanced pancreatic adenocarcinoma. Cancer, 2017, 123(23), 4556-4565.
[http://dx.doi.org/10.1002/cncr.30897] [PMID: 28832976]
[29]
Tomlinson, B.K.; Thomson, J.A.; Bomalaski, J.S.; Diaz, M.; Akande, T.; Mahaffey, N.; Li, T.; Dutia, M.P.; Kelly, K.; Gong, I.Y.; Semrad, T. Phase I trial of arginine deprivation therapy with ADI-PEG 20 plus docetaxel in patients with advanced malignant solid tumors. Clin. Cancer Res., 2015, 21(11), 2480-2486.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2610] [PMID: 25739672]
[30]
Song, W.; Sun, X.; Chen, X.; Liu, D.; Liu, L. Enzymatic production of l-citrulline by hydrolysis of the guanidinium group of l-arginine with recombinant arginine deiminase. J. Biotechnol., 2015, 208, 37-43.
[http://dx.doi.org/10.1016/j.jbiotec.2015.05.012] [PMID: 26022421]
[31]
Stasyuk, N.Y.; Gayda, G.Z.; Fayura, L.R.; Boretskyy, Y.R.; Gonchar, M.V.; Sibirny, A.A. Novel arginine deiminase-based method to as-say L-arginine in beverages. Food Chem., 2016, 201, 320-326.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.093] [PMID: 26868583]
[32]
Akashi, K.; Miyake, C.; Yokota, A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hy-droxyl radical scavenger. FEBS Lett., 2001, 508(3), 438-442.
[http://dx.doi.org/10.1016/S0014-5793(01)03123-4] [PMID: 11728468]
[33]
Wiesinger, H. Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog. Neurobiol., 2001, 64(4), 365-391.
[http://dx.doi.org/10.1016/S0301-0082(00)00056-3] [PMID: 11275358]
[34]
David, A.I.; Gaynor, J.J.; Zis, P.P.; Conanan, L.; Goldsmith, L.; Esquenazi, V.; Selvaggi, G.; Weppler, D.; Nishida, S.; Moon, J.; Ma-dariaga, J.R.; Ruiz, P.; Kato, T.; Levi, D.M.; Kleiner, G.; Tryphonopoulos, P.; Tzakis, A.G. An association of lower serum citrulline levels within 30 days of acute rejection in patients following small intestine transplantation. Transplant. Proc., 2006, 38(6), 1731-1732.
[http://dx.doi.org/10.1016/j.transproceed.2006.05.016] [PMID: 16908264]
[35]
Gondolesi, G.; Fishbein, T.; Chehade, M.; Tschernia, A.; Magid, M.; Kaufman, S.; Raymond, K.; Sansaricq, C.; LeLeiko, N. Serum citrul-line is a potential marker for rejection of intestinal allografts. Transplant. Proc., 2002, 34(3), 918-920.
[http://dx.doi.org/10.1016/S0041-1345(02)02669-6] [PMID: 12034238]
[36]
Takaku, H.; Matsumoto, M.; Misawa, S.; Miyazaki, K. Anti-tumor activity of arginine deiminase from Mycoplasma argini and its growth-inhibitory mechanism. Jpn. J. Cancer Res., 1995, 86(9), 840-846.
[http://dx.doi.org/10.1111/j.1349-7006.1995.tb03094.x] [PMID: 7591961]
[37]
Zarei, M.; Rahbar, M.R.; Morowvat, M.H.; Nezafat, N.; Negahdaripour, M.; Berenjian, A.; Ghasemi, Y. Arginine deiminase: Current un-derstanding and applications. Recent Pat. Biotechnol., 2019, 13(2), 124-136.
[http://dx.doi.org/10.2174/1872208313666181220121400] [PMID: 30569861]
[38]
Zarei, M.; Nezafat, N.; Rahbar, M.R.; Negahdaripour, M.; Sabetian, S.; Morowvat, M.H.; Ghasemi, Y. Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis. J. Biomol. Struct. Dyn., 2019, 37(2), 523-536.
[http://dx.doi.org/10.1080/07391102.2018.1431151] [PMID: 29363409]
[39]
Zarei, M.; Rahbar, M.R.; Nezafat, N.; Negahdaripour, M.; Morowvat, M.H.; Ghasemi, Y. Computational analysis of arginine deiminase sequences to provide a guideline for protein engineering. Curr. Proteomics, 2019, 16, 1-15.
[40]
Zarei, M.; Nezafat, N.; Morowvat, M.H.; Ektefaie, M.; Ghasemi, Y. In silico analysis of different signal peptides for secretory production of arginine deiminase in Escherichia coli. Recent Pat. Biotechnol., 2019, 13(3), 217-227.
[http://dx.doi.org/10.2174/1872208313666190101114602] [PMID: 30621572]
[41]
Zarei, M.; Nezafat, N.; Morowvat, M.H.; Dehshahri, A.; Ghoshoon, M.B.; Berenjian, A.; Ghasemi, Y. Medium optimization for recombi-nant soluble arginine deiminase expression in Escherichia coli using response surface methodology. Curr. Pharm. Biotechnol., 2017, 18(11), 935-941.
[http://dx.doi.org/10.2174/1389201019666180115144752] [PMID: 29336257]
[42]
Barrozo, A.; Borstnar, R.; Marloie, G.; Kamerlin, S.C.L. Computational protein engineering: Bridging the gap between rational design and laboratory evolution. Int. J. Mol. Sci., 2012, 13(10), 12428-12460.
[http://dx.doi.org/10.3390/ijms131012428] [PMID: 23202907]
[43]
Broom, A.; Jacobi, Z.; Trainor, K.; Meiering, E.M. Computational tools help improve protein stability but with a solubility tradeoff. J. Biol. Chem., 2017, 292(35), 14349-14361.
[http://dx.doi.org/10.1074/jbc.M117.784165] [PMID: 28710274]
[44]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[45]
Oostenbrink, C.; Villa, A.; Mark, A.E.; van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solva-tion: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676.
[http://dx.doi.org/10.1002/jcc.20090] [PMID: 15264259]
[46]
Das, K.; Butler, G.H.; Kwiatkowski, V.; Clark, A.D., Jr; Yadav, P.; Arnold, E. Crystal structures of arginine deiminase with covalent reac-tion intermediates; implications for catalytic mechanism. Structure, 2004, 12(4), 657-667.
[http://dx.doi.org/10.1016/j.str.2004.02.017] [PMID: 15062088]
[47]
Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037.
[http://dx.doi.org/10.1021/ct200196m] [PMID: 26598349]
[48]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[49]
Pazhang, M.; Mardi, N.; Mehrnejad, F.; Chaparzadeh, N. The combinatorial effects of osmolytes and alcohols on the stability of pyra-zinamidase: Methanol affects the enzyme stability through hydrophobic interactions and hydrogen bonds. Int. J. Biol. Macromol., 2018, 108, 1339-1347.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.039] [PMID: 29129628]
[50]
Kony, D.B.; Hünenberger, P.H.; van Gunsteren, W.F. Molecular dynamics simulations of the native and partially folded states of ubiqui-tin: Influence of methanol cosolvent, pH, and temperature on the protein structure and dynamics. Protein Sci., 2007, 16(6), 1101-1118.
[http://dx.doi.org/10.1110/ps.062323407] [PMID: 17525462]
[51]
Xie, G.; Timasheff, S.N. Mechanism of the stabilization of ribonuclease A by sorbitol: Preferential hydration is greater for the denatured then for the native protein. Protein Sci., 1997, 6(1), 211-221.
[http://dx.doi.org/10.1002/pro.5560060123] [PMID: 9007993]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy