[1]
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell 2018; 173(7): 1581-92.
[http://dx.doi.org/10.1016/j.cell.2018.05.015] [PMID: 29887378]
[http://dx.doi.org/10.1016/j.cell.2018.05.015] [PMID: 29887378]
[2]
McBee MP, Awan OA, Colucci AT, et al. Deep learning in radiology. Acad Radiol 2018; 25(11): 1472-80.
[http://dx.doi.org/10.1016/j.acra.2018.02.018] [PMID: 29606338]
[http://dx.doi.org/10.1016/j.acra.2018.02.018] [PMID: 29606338]
[3]
Sakellaropoulos T, Vougas K, Narang S, et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep 2019; 29(11): 3367-3373.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.11.017] [PMID: 31825821]
[http://dx.doi.org/10.1016/j.celrep.2019.11.017] [PMID: 31825821]
[4]
de Jong M, Essers J, van Weerden WM. Imaging preclinical tumour models: Improving translational power. Nat Rev Cancer 2014; 14(7): 481-93.
[http://dx.doi.org/10.1038/nrc3751] [PMID: 24943811]
[http://dx.doi.org/10.1038/nrc3751] [PMID: 24943811]
[5]
Ding MQ, Chen L, Cooper GF, Young JD, Lu X. Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol Cancer Res 2018; 16(2): 269-78.
[6]
Issaa NT, Stahiasb V, Schurerb S, Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol 2019; 1-11.
[7]
Xu Y, Hosny A, Zeleznik R, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 2019; 25(11): 3266-75.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2495] [PMID: 31010833]
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2495] [PMID: 31010833]