Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Ethnomedicinal Plant Stephania hernandifolia and its Active Fraction 2- Chloroethyl Linoleate Inhibits HSV-2 Infection by Blocking Viral Immediate Early and Early Transcription

Author(s): Joy Mondal, Chiranjit Patra, Ananya Das Mahapatra, Keshab Chandra Mandal and Debprasad Chattopadhyay*

Volume 17, Issue 4, 2022

Published on: 30 June, 2022

Page: [222 - 232] Pages: 11

DOI: 10.2174/1574885517666220512165130

Price: $65

Abstract

Aims: The aim of this study is validation of antiviral activity of Stephania hernandifolia against HSV-2.

Background: Ethnomedicinal plant Stephania hernandifolia, traditionally used for the management of skin, digestive and nerve ailments demonstrated significant anti-HSV-1 activity; similar to Stephania cepharantha having neuroinflammatory and anti-HSV activities.

Objectives: Thus, the present study aimed to validate the potential of the most active fraction-2 (F-2) of S. hernandifolia against HSV-2 in vitro, along with the underlying mode or mechanism of action.

Methods: The standardized F-2 was characterized by GC-MS, 1H-NMR, Mass and FTIR spectroscopy. Cytotoxicity (CC50) and antiviral activity (EC50) were evaluated by MTT and Plaque reduction assay. To determine the mode of action, we have used time-of-addition, virus inactivation, and entry (attachment and penetration) assays, followed by semiquantitative PCR. Furthermore, the protein expression levels of immediate early (IE) and early (E) gene products of drug-treated virions were measured by Western blot.

Results: The results showed that HSV-2G and ICMR/VU-2012/20, the clinical isolate of HSV-2, were inhibited by F-2 at EC50 of 20.0 and 20.43 μg/ml respectively, with Selectivity Index (SI) of 12. Timeof- addition assay showed that F-2 significantly inhibited HSV-2 infection in Vero cells at 4-8 h posttreatment. The infectivity of the virion was lost within 1h of exposure to F-2 (EC50 and EC99). Furthermore, semi-Q-PCR and Western blot studies demonstrated significant downregulation of IE and E gene products. The characterization revealed that 2-chloroethyl linoleate is the lead compound in the F-2 fraction.

Conclusion: Thus, our results showed that the bioactive fraction F-2 inhibits both IE and E transcription of HSV-2.

Keywords: Ethnomedicine, Stephania hernandifolia, herpes simplex virus type 2, antiviral activity, GC-MS, mass spectra, NMR, FTIR.

[1]
Whitley RJ, Gnann JW. Antiviral therapy. In: Roizman B, Whitley RJ, Lopez C, Eds. The Human Herpesviruses. New York: Raven Press. 1993; pp. 329-48.
[2]
Du T, Zhou G, Roizman B. Modulation of reactivation of latent herpes simplex virus 1 in ganglionic organ cultures by p300/CBP and STAT3. Proc Natl Acad Sci USA 2013; 110(28): E2621-8.
[http://dx.doi.org/10.1073/pnas.1309906110] [PMID: 23788661]
[3]
Bansode Y, Chattopadhyay D, Saha B. Innate immune response in herpes simplex virus-1 infected astrocytes: Brief report. Arch Virol 2019; 164(5): 1433-9.
[http://dx.doi.org/10.1007/s00705-019-04197-x] [PMID: 30868265]
[4]
Bansode YD, Chattopadhyay D, Saha B. Transcriptomic analysis of interferon response in toll-like receptor 2 ligand-treated and herpes simplex virus 1-infected neurons and astrocytes. Viral Immunol 2021; 34(4): 256-66.
[http://dx.doi.org/10.1089/vim.2020.0238] [PMID: 33351727]
[5]
Elion GB. Mechanism of action and selectivity of acyclovir. Am J Med 1982; 73(1A): 7-13.
[http://dx.doi.org/10.1016/0002-9343(82)90055-9] [PMID: 6285736]
[6]
Miserocchi E, Modorati G, Galli L, Rama P. Efficacy of valacyclovir vs acyclovir for the prevention of recurrent herpes simplex virus eye disease: A pilot study. Am J Ophthalmol 2007; 144(4): 547-51.
[http://dx.doi.org/10.1016/j.ajo.2007.06.001] [PMID: 17692271]
[7]
Narayana K. A purine nucleoside analogue-acyclovir [9-(2-hydroxyethoxymethyl)-9h-guanine] reversibly impairs testicular functions in mouse. J Toxicol Sci 2008; 33(1): 61-70.
[http://dx.doi.org/10.2131/jts.33.61] [PMID: 18303185]
[8]
Sawyer MH, Webb DE, Balow JE, Straus SE. Acyclovir-induced renal failure. Clinical course and histology. Am J Med 1988; 84(6): 1067-71.
[http://dx.doi.org/10.1016/0002-9343(88)90313-0] [PMID: 3376977]
[9]
Swetter SM, Hill EL, Kern ER, et al. Chronic vulvar ulceration in an immunocompetent woman due to acyclovir-resistant, thymidine kinase-deficient herpes simplex virus. J Infect Dis 1998; 177(3): 543-50.
[http://dx.doi.org/10.1086/514229] [PMID: 9498430]
[10]
Posavad CM, Koelle DM, Shaughnessy MF, Corey L. Severe genital herpes infections in HIV-infected individuals with impaired herpes simplex virus-specific CD8+ cytotoxic T lymphocyte responses. Proc Natl Acad Sci USA 1997; 94(19): 10289-94.
[http://dx.doi.org/10.1073/pnas.94.19.10289] [PMID: 9294203]
[11]
Deshaprabhu SB. The wealth of India, raw material 1994 10.
[12]
Mosihuzzaman M, Nahar N, Ali L, et al. Hypoglycemic effects of three plants from eastern Himalayan belt. Diabetes Res 1994; 26(3): 127-38.
[PMID: 7621619]
[13]
Sharma U, Sahu R, Roy A, Golwala D. In-vivo antidiabetic and antioxidant potential of Stephania hernandifolia in streptozotocin-induced-diabetic rats. J Young Pharm 2010; 2(3): 255-60.
[http://dx.doi.org/10.4103/0975-1483.66803] [PMID: 21042481]
[14]
Suhitha S, Devi SK, Gunasekaran K, Pakyntein HC, Bhattacharjee A, Velmurugan D. Phytochemical analyses and activity of herbal medicinal plants of North- East India for anti-diabetic, anti-cancer and anti-tuberculosis and their docking studies. Curr Top Med Chem 2015; 15(1): 21-36.
[http://dx.doi.org/10.2174/1568026615666150112104344] [PMID: 25579573]
[15]
Paul D, De D, Ali KM, Chatterjee K, Nandi DK, Ghosh D. Comparative study on the spermicidal activity of organic solvent fractions from hydroethanolic extracts of Achyranthes aspera and Stephania hernandifolia in human and rat sperm. Contraception 2010; 81(4): 355-61.
[http://dx.doi.org/10.1016/j.contraception.2009.09.001] [PMID: 20227555]
[16]
Paul D, Bera S, Jana D, Maiti R, Ghosh D. In vitro determination of the contraceptive spermicidal activity of a composite extract of Achyranthes aspera and Stephania hernandifolia on human semen. Contraception 2006; 73(3): 284-8.
[http://dx.doi.org/10.1016/j.contraception.2005.07.014] [PMID: 16472572]
[17]
Mukherjee S, Banerjee R, Upadhyay SN, et al. Reproductive effects of ethnomedicinal formulation of tape-vine leaves in female rats. Biol Pharm Bull 2006; 29(9): 1916-22.
[http://dx.doi.org/10.1248/bpb.29.1916] [PMID: 16946509]
[18]
Jana D, Maiti R, Ghosh D. Effect of Stephania hernandifolia leaf extract on testicular activity in rats. Asian J Androl 2003; 5(2): 125-9.
[PMID: 12778324]
[19]
Ghosh D, Jana D, Debnath JM. Effects of leaf extract of Stephania hernandifolia on testicular gametogenesis and androgenesis in albino rats: a dose-dependent response study. Contraception 2002; 65(5): 379-84.
[http://dx.doi.org/10.1016/S0010-7824(02)00282-2] [PMID: 12057793]
[20]
Xiao J, Hao T, Chen G, et al. Natural neuroprotective alkaloids from Stephania japonica (Thunb.) Miers. Bioorg Chem 2019; 91: 103175.
[http://dx.doi.org/10.1016/j.bioorg.2019.103175] [PMID: 31398598]
[21]
Zhang N, Tang LJ, Deng LL, et al. Hernsubanine E, a new hasubanan alkaloid from Stephania hernandifolia. Zhongguo Zhongyao Zazhi 2014; 39(6): 1020-3.
[PMID: 24956843]
[22]
Tang LJ, Guan HY, Zhang YH, He L, Yang XS, Hao XJ. Study on the alkaloids in Stephania hernandifolia Zhong Yao Cai 2010; 33(12): 1881-3.
[PMID: 21548365]
[23]
Maitra S, Seal T, Mallik S, et al. Some pharmacological studies with Cycleanine, a diphenyl-bisbenzyl isoquinoline alkaloid from Stephania hernandifolia. Orient Pharm Exp Med 2003; 3(3): 123-8.
[http://dx.doi.org/10.3742/OPEM.2003.3.3.123]
[24]
Ray AB, Chattopadhyay S, Tripathi RM, Gambhir SS, Das PK. Isolation and pharmacological action of epistephanine, an alkaloid of Stephania hernandifolia. Planta Med 1979; 35(2): 167-73.
[http://dx.doi.org/10.1055/s-0028-1097199] [PMID: 419184]
[25]
Kupchan SM, Suffness MI, White DN, McPhail AT, Sim GA. The isolation and structural elucidation of 4-demethylhasubanonine, a new alkaloid from Stephania hernandifolia. J Org Chem 1968; 33(12): 4529-32.
[http://dx.doi.org/10.1021/jo01276a052] [PMID: 5743784]
[26]
Kupchan SM, Asbun WL, Thyagarajan BS. Menispermaceae alkaloids. III. Alkaloids of Stephania hernandifolia. J Pharm Sci 1961; 50(10): 819-22.
[http://dx.doi.org/10.1002/jps.2600501003] [PMID: 14460650]
[27]
Semwal DK, Badoni R, Semwal R, Kothiyal SK, Singh GJ, Rawat U. The genus Stephania (Menispermaceae): Chemical and pharmacological perspectives. J Ethnopharmacol 2010; 132(2): 369-83.
[http://dx.doi.org/10.1016/j.jep.2010.08.047] [PMID: 20801207]
[28]
Barefoot A. Doctor’s Manual, (prepared by the revolutionary Health Committee of Hunan Province) 1978.
[29]
Mondal J, Das Mahapatra A, Mandal KC, Chattopadhyay D. An extract of Stephania hernandifolia, an ethnomedicinal plant, inhibits herpes simplex virus 1 entry. Arch Virol 2021; 166(8): 2187-98.
[http://dx.doi.org/10.1007/s00705-021-05093-z] [PMID: 34041610]
[30]
Kumar S, Kumar V, Chandrashekhar MS. Cytotoxic activity of isolated fractions from methanolic extract of Asystasia dalzelliana leaves by brine shrimp lethality bioassay. Int J Pharm Pharm Sci 2011; 3(3): 133-4.
[31]
Saravana Prabha P, Krishna Chaithanya K, Zenebe H, Nagaraju B, Gopalakrishnan VK. Isolation and identification of bioactive compound from Ipomoea obscura (L.) ker gawl. J Pharm Res 2017; 11(1): 10-4.
[32]
Das Mahapatra A, Patra C, Mondal J, Sinha C, Chandra Sadhukhan P, Chattopadhyay D. Silver nanoparticles derived from Albizia lebbeck bark extract demonstrate killing of multidrug‐resistant bacteria by damaging cellular architecture with antioxidant activity. ChemistrySelect 2020; 5(15): 4770-7.
[http://dx.doi.org/10.1002/slct.202001074]
[33]
Goswami D, Mahapatra AD, Banerjee S, et al. Boswellia serrata oleo-gum-resin and β-boswellic acid inhibits HSV-1 infection in vitro through modulation of NF-кB and p38 MAP kinase signaling. Phytomedicine 2018; 51: 94-103.
[http://dx.doi.org/10.1016/j.phymed.2018.10.016] [PMID: 30466633]
[34]
Halder A, Das S, Ojha D, Chattopadhyay D, Mukherjee A. Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Mater Sci Eng C 2018; 89: 413-21.
[http://dx.doi.org/10.1016/j.msec.2018.04.005] [PMID: 29752114]
[35]
Lin LT, Chen TY, Chung CY, et al. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol 2011; 85(9): 4386-98.
[http://dx.doi.org/10.1128/JVI.01492-10] [PMID: 21307190]
[36]
Bag P, Ojha D, Mukherjee H, et al. A dihydro-pyrido-indole potently inhibits HSV-1 infection by interfering the viral immediate early transcriptional events. Antiviral Res 2014; 105: 126-34.
[http://dx.doi.org/10.1016/j.antiviral.2014.02.007] [PMID: 24576908]
[37]
Karampuri S, Ojha D, Bag P, et al. Anti-HSV activity and mode of action study of α-pyrone carboxamides. RSC Advances 2014; 4(33): 17354-63.
[http://dx.doi.org/10.1039/C4RA01303D]
[38]
Kanekiyo K, Hayashi K, Takenaka H, Lee JB, Hayashi T. Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol Pharm Bull 2007; 30(8): 1573-5.
[http://dx.doi.org/10.1248/bpb.30.1573] [PMID: 17666824]
[39]
Chiang LC, Chiang W, Liu MC, Lin CC. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 2003; 52(2): 194-8.
[http://dx.doi.org/10.1093/jac/dkg291] [PMID: 12837746]
[40]
Bag P, Ojha D, Mukherjee H, et al. An indole alkaloid from a tribal folklore inhibits immediate early event in HSV-2 infected cells with therapeutic efficacy in vaginally infected mice. PLoS One 2013; 8(10): e77937.
[http://dx.doi.org/10.1371/journal.pone.0077937] [PMID: 24167591]
[41]
Ojha D, Das R, Sobia P, et al. Pedilanthus tithymaloides inhibits HSV infection by modulating NF-κB signaling. PLoS One 2015; 10(9): e0139338.
[http://dx.doi.org/10.1371/journal.pone.0139338] [PMID: 26405764]
[42]
Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci USA 2005; 102(44): 16055-9.
[http://dx.doi.org/10.1073/pnas.0505850102] [PMID: 16247011]
[43]
Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 1974; 14(1): 8-19.
[http://dx.doi.org/10.1128/jvi.14.1.8-19.1974] [PMID: 4365321]
[44]
Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis: Sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc Natl Acad Sci USA 1975; 72(4): 1276-80.
[http://dx.doi.org/10.1073/pnas.72.4.1276] [PMID: 165503]
[45]
Roizman B, Knipe DM. Herpes Simplex Viruses and their replication. In: Howley PM, Knipe DM, Eds. Virology. 4th ed. Philadelphia, Pa.: Lippincott-Raven. 2001; pp. 2399-459.
[46]
Boehmer PE, Lehman IR. Herpes simplex virus DNA replication. Annu Rev Biochem 1997; 66(1): 347-84.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.347] [PMID: 9242911]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy