Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Bacillus Calmette Guerin Injection Improves Hindlimb Motor Function and Alleviates Inflammation through Upregulating Foxp3 Expression in Rats with Spinal Cord Injury

Author(s): Xingwei Pu, Lihang Wang, Chunshan Luo, Guodong Sun and Zhizhong Li*

Volume 20, Issue 7, 2023

Published on: 01 August, 2022

Page: [832 - 837] Pages: 6

DOI: 10.2174/1570180819666220512115738

Price: $65

Abstract

Background: Immune and inflammatory reactions are important factors leading to secondary spinal cord injury.

Aims: This study aimed to investigate the effect of BCG on behavior after acute spinal cord injury in rats and its related mechanisms.

Methods: Rats with spinal cord injury were generated according to modified Allen’s method. Rats were divided into the BCG group (rats with spinal cord injury intraperitoneally injecting with BCG), Model group (rats with spinal cord injury intraperitoneally injecting with normal saline), and Sham group (normal rats intraperitoneally injecting with normal saline). Basso, Beattie, and Bresnahan (BBB) scoring system was used for evaluating behavioral outcomes. Foxp3 expression in spinal cord tissues was evaluated using immunofluorescence analysis. HE staining was used for assessing the injury of spinal cord tissues.

Results: BBB scores of the Model group were remarkably lower compared to that of the Sham group (P<0.05). Foxp3 expression was significantly downregulated in the Model group compared with that of the Sham group (P<0.05). BBB scores of the BCG group were significantly higher compared to that of the Model group at 3, 5, 7, and 14 days post-treatment (P<0.05). In the BCG group, there were fewer inflammatory cells, smaller cavities, and a complete structural arrangement than in the Model group. BCG treatment significantly reduced the spinal cord injury score compared to that of the Model group (P<0.05). Post BCG treatment, Foxp3 expression was predominantly enhanced compared with that of the Model group (P<0.05).

Conclusion: BCG could affect inflammation after spinal cord injury through upregulating the expression of Foxp3 and further promote the recovery of hindlimb motor function in rats with spinal cord injury.

Keywords: Spinal cord injury, BCG vaccine, Foxp3, Treg cells, inflammation, hindlimb motor function.

Graphical Abstract

[1]
Fan, H.; Tang, H.B.; Chen, Z.; Wang, H.Q.; Zhang, L.; Jiang, Y.; Li, T.; Yang, C.F.; Wang, X.Y.; Li, X.; Wu, S.X.; Zhang, G.L. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J. Neuroinflammation, 2020, 17(1), 295.
[http://dx.doi.org/10.1186/s12974-020-01973-4] [PMID: 33036632]
[2]
Eggenhuizen, P.J.; Ng, B.H.; Ooi, J.D. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int. J. Mol. Sci., 2020, 21(19), 7015.
[http://dx.doi.org/10.3390/ijms21197015] [PMID: 32977677]
[3]
Kenison, J.E.; Jhaveri, A.; Li, Z.; Khadse, N.; Tjon, E.; Tezza, S.; Nowakowska, D.; Plasencia, A.; Stanton, V.P., Jr; Sherr, D.H.; Quintana, F.J. Tolerogenic nanoparticles suppress central nervous system inflammation. Proc. Natl. Acad. Sci. USA, 2020, 117(50), 32017-32028.
[http://dx.doi.org/10.1073/pnas.2016451117] [PMID: 33239445]
[4]
Zhao, S.; Jiang, Y.; Yang, X.; Guo, D.; Wang, Y.; Wang, J.; Wang, R.; Wang, C. Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model. J. Asthma, 2017, 54(5), 447-455.
[http://dx.doi.org/10.1080/02770903.2016.1223687] [PMID: 27589490]
[5]
Chen, X.; Zhou, B.; Li, M.; Deng, Q.; Wu, X.; Le, X.; Wu, C.; Larmonier, N.; Zhang, W.; Zhang, H.; Wang, H.; Katsanis, E. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin. Immunol., 2007, 123(1), 50-59.
[http://dx.doi.org/10.1016/j.clim.2006.11.009] [PMID: 17234458]
[6]
Johnson, B.D.; Jing, W.; Orentas, R.J. CD25+ regulatory T cell inhibition enhances vaccine-induced immunity to neuroblastoma. J. Immunother., 2007, 30(2), 203-214.
[http://dx.doi.org/10.1097/01.cji.0000211336.91513.dd] [PMID: 17471167]
[7]
Larsen, E.S.; Joensen, U.N.; Poulsen, A.M.; Goletti, D.; Johansen, I.S. Bacillus calmette-guérin immunotherapy for bladder cancer: A review of immunological aspects, clinical effects and BCG infections. APMIS, 2020, 128(2), 92-103.
[http://dx.doi.org/10.1111/apm.13011] [PMID: 31755155]
[8]
Arts, R.J.W.; Moorlag, S.J.C.F.M.; Novakovic, B.; Li, Y.; Wang, S.Y.; Oosting, M.; Kumar, V.; Xavier, R.J.; Wijmenga, C.; Joosten, L.A.B.; Reusken, C.B.E.M.; Benn, C.S.; Aaby, P.; Koopmans, M.P.; Stunnenberg, H.G.; van Crevel, R.; Netea, M.G. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe, 2018, 23(1), 89-100.e5.
[http://dx.doi.org/10.1016/j.chom.2017.12.010] [PMID: 29324233]
[9]
Okubo, Y.; Torrey, H.; Butterworth, J.; Zheng, H.; Faustman, D.L. Treg activation defect in type 1 diabetes: correction with TNFR2 agonism. Clin. Transl. Immunology, 2016, 5(1), e56.
[http://dx.doi.org/10.1038/cti.2015.43] [PMID: 26900470]
[10]
Sun, Y.; Liu, D.; Su, P.; Lin, F.; Tang, Q. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy. Neurosci. Lett., 2016, 618, 139-145.
[http://dx.doi.org/10.1016/j.neulet.2016.02.054] [PMID: 26949182]
[11]
Basso, D.M.; Beattie, M.S.; Bresnahan, J.C.; Anderson, D.K.; Faden, A.I.; Gruner, J.A.; Holford, T.R.; Hsu, C.Y.; Noble, L.J.; Nockels, R.; Perot, P.L.; Salzman, S.K.; Young, W. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J. Neurotrauma, 1996, 13(7), 343-359.
[http://dx.doi.org/10.1089/neu.1996.13.343] [PMID: 8863191]
[12]
Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M. Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol., 2011, 44(5), 725-738.
[http://dx.doi.org/10.1165/rcmb.2009-0210ST] [PMID: 21531958]
[13]
Li, J.A.; Zan, C.F.; Xia, P.; Zheng, C.J.; Qi, Z.P.; Li, C.X.; Liu, Z.G.; Hou, T.T.; Yang, X.Y. Key genes expressed in different stages of spinal cord ischemia/reperfusion injury. Neural Regen. Res., 2016, 11(11), 1824-1829.
[http://dx.doi.org/10.4103/1673-5374.194754] [PMID: 28123428]
[14]
Shechter, R.; Schwartz, M. CNS sterile injury: just another wound healing? Trends Mol. Med., 2013, 19(3), 135-143.
[http://dx.doi.org/10.1016/j.molmed.2012.11.007] [PMID: 23279948]
[15]
Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front. Neurol., 2019, 10, 282.
[http://dx.doi.org/10.3389/fneur.2019.00282] [PMID: 30967837]
[16]
Schwartz, M.; Kipnis, J. Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J. Neurol. Sci., 2005, 233(1-2), 163-166.
[http://dx.doi.org/10.1016/j.jns.2005.03.014] [PMID: 15949502]
[17]
Kigerl, K.A.; Gensel, J.C.; Ankeny, D.P.; Alexander, J.K.; Donnelly, D.J.; Popovich, P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci., 2009, 29(43), 13435-13444.
[http://dx.doi.org/10.1523/JNEUROSCI.3257-09.2009] [PMID: 19864556]
[18]
Bellver-Landete, V.; Bretheau, F.; Mailhot, B.; Vallières, N.; Lessard, M.; Janelle, M.E.; Vernoux, N.; Tremblay, M.È.; Fuehrmann, T.; Shoichet, M.S.; Lacroix, S. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun., 2019, 10(1), 518.
[http://dx.doi.org/10.1038/s41467-019-08446-0] [PMID: 30705270]
[19]
Schwartz, M.; Shechter, R. Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol., 2010, 6(7), 405-410.
[http://dx.doi.org/10.1038/nrneurol.2010.71] [PMID: 20531383]
[20]
Vignali, D.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532.
[http://dx.doi.org/10.1038/nri2343] [PMID: 18566595]
[21]
Henao-Tamayo, M.I.; Obregón-Henao, A.; Arnett, K.; Shanley, C.A.; Podell, B.; Orme, I.M.; Ordway, D.J. Effect of bacillus Calmette-Guérin vaccination on CD4+Foxp3+ T cells during acquired immune response to Mycobacterium tuberculosis infection. J. Leukoc. Biol., 2016, 99(4), 605-617.
[http://dx.doi.org/10.1189/jlb.4A0614-308RR] [PMID: 26590147]
[22]
Yamazaki-Nakashimada, M.A.; Unzueta, A.; Berenise Gámez-González, L.; González-Saldaña, N.; Sorensen, R.U. BCG: a vaccine with multiple faces. Hum. Vaccin. Immunother., 2020, 16(8), 1841-1850.
[http://dx.doi.org/10.1080/21645515.2019.1706930] [PMID: 31995448]
[23]
Fellah, F.; Djenidi, R.; Chebout, I. Protective Effect of Sphaerococcus coronopifolius crude extract in combination with bacillus calmette-guerin on ligature-induced depression in female wistar rats. Psychiatry Investig., 2020, 17(2), 130-139.
[http://dx.doi.org/10.30773/pi.2019.0234] [PMID: 32023676]
[24]
Itil, I.M.; Cirpan, T.; Akercan, F.; Gamaa, A.; Kazandi, M.; Kazandi, A.C.; Yildiz, P.S.; Askar, N. Effect of BCG vaccine on peritoneal endometriotic implants in a rat model of endometriosis. Aust. N. Z. J. Obstet. Gynaecol., 2006, 46(1), 38-41.
[http://dx.doi.org/10.1111/j.1479-828X.2006.00512.x] [PMID: 16441691]
[25]
Kanter, M.; Gul, A.; Meral, I.; Koc, A.; Ilhan, M.; Erdogan, E. Morphological quantitative changes in the number of lymphocytes, macrophages and plasma cells in the uterus and lymph nodes of rats exposed to the systemic administration of BCG. Tohoku J. Exp. Med., 2003, 199(4), 219-228.
[http://dx.doi.org/10.1620/tjem.199.219] [PMID: 12857062]
[26]
Agrawal, G.; Kerr, C.; Thakor, N.V.; All, A.H. Characterization of graded multicenter animal spinal cord injury study contusion spinal cord injury using somatosensory-evoked potentials. Spine, 2010, 35(11), 1122-1127.
[http://dx.doi.org/10.1097/BRS.0b013e3181be5fa7] [PMID: 20354478]

© 2024 Bentham Science Publishers | Privacy Policy