Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Green Synthesis: A Land of Complex Nanostructures

Author(s): Pablo Luis Santo-Orihuela*, Martín Federico Desimone and Paolo Nicolás Catalano*

Volume 24, Issue 1, 2023

Published on: 06 October, 2022

Page: [3 - 22] Pages: 20

DOI: 10.2174/1389201023666220512094533

Price: $65

Abstract

The green synthesis of nanomaterials is nowadays gaining great attention owing to several beneficial aspects in terms of the low toxicity of reagents and by-products, low damage to the health and the environment, sustainability of energy savings and rational use of natural resources. The intrinsic complexity offered by the biological sources (plants, microorganisms, animal products) and the conditions applied in the synthetic procedures forms various nanomaterials with different sizes, morphologies and surface properties that strongly determine their functionality and applications. A deep understanding of the role of biological components, the mechanism of nanostructure formation and growth, and the effects of green synthesis conditions is of paramount importance to achieving the desired nanomaterial for the required application. In this context, this review aims to provide an overview of the structural and functional complexity of nanomaterials achieved by using green synthesis procedures, with a special focus on the role of biological sources and parameters in controlling the complexity and benefit of nanomaterial applications.

Keywords: green synthesis, nanoparticles, anisotropic structures, nanomaterials, biogenic synthesis, fractal structures.

Graphical Abstract

[1]
Mebert, A.M.; Aimé, C.; Alvarez, G.S.; Shi, Y.; Flor, S.A.; Lucangioli, S.E.; Desimone, M.F.; Coradin, T. Silica core shell particles for the dual delivery of gentamicin and rifamycin antibiotics. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(18), 3135-3144.
[http://dx.doi.org/10.1039/C6TB00281A] [PMID: 32263051]
[2]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[3]
Baudou, F.G.; Fusco, L.; Giorgi, E.; Diaz, E.; Municoy, S.; Desimone, M.F.; Leiva, L.; De Marzi, M.C. Physicochemical and biological characterization of nanovenoms, a new tool formed by silica nanoparticles and Crotalus durissus terrificus venom. Colloids Surf. B Biointerfaces, 2020, 193, 111128.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111128] [PMID: 32450505]
[4]
Liu, Z.; Fontana, F.; Python, A.; Hirvonen, J.T.; Santos, H.A. Microfluidics for production of particles: Mechanism, methodology, and applications. Small, 2020, 16(9), e1904673.
[http://dx.doi.org/10.1002/smll.201904673] [PMID: 31702878]
[5]
Nyoka, M.; Choonara, Y.E.; Kumar, P.; Kondiah, P.P.D.; Pillay, V. Synthesis of cerium oxide nanoparticles using various methods: Impli-cations for biomedical applications. Nanomaterials, 2020, 10(2), E242.
[http://dx.doi.org/10.3390/nano10020242] [PMID: 32013189]
[6]
Desimone, M.F. Fate and effects of nanomaterials. Curr. Pharm. Des., 2019, 25(37), 3903-3904.
[http://dx.doi.org/10.2174/138161282537191217101204]
[7]
Delgado González, D.C.; Di Donato, A.; Catalano, P.N.; Bellino, G.M. Silver nanoparticle based arrays into mesoporous thin films struc-tures for photoelectronic circuits. Curr. Nanosci., 2019, 15(3), 304-308.
[http://dx.doi.org/10.2174/1573413714666180716153501]
[8]
Scodeller, P.; Catalano, P.N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G.J.A.A. Hyaluronan degrading silica nanoparticles for skin cancer therapy. Nanoscale, 2013, 5(20), 9690-9698.
[http://dx.doi.org/10.1039/c3nr02787b] [PMID: 23969526]
[9]
Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[10]
Palierse, E.; Hélary, C.; Krafft, J.M.; Génois, I.; Masse, S.; Laurent, G.; Echazu, M.I.A.; Selmane, M.; Casale, S.; Valentin, L.; Miche, A.; Chan, B.C.L.L.; Lau, C.B.S.S.; Ip, M.; Desimone, M.F.; Coradin, T.; Jolivalt, C. Baicalein modified hydroxyapatite nanoparticles and coat-ings with antibacterial and antioxidant properties. Mater. Sci. Eng. C, 2021, 118, 111537.
[http://dx.doi.org/10.1016/j.msec.2020.111537]
[11]
Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater., 2019, 94, 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[12]
Chaudhary, R.G.; Desimone, M.F. Synthesis, characterization, and applications of green synthesized nanomaterials. Curr. Pharm. Biotechnol., 2021, 22(6), 722-723.
[http://dx.doi.org/10.2174/138920102206210521165455] [PMID: 34112069]
[13]
Chopra, P.K.P.G.; Lambat, T.L.; Mahmood, S.H.; Chaudhary, R.G.; Banerjee, S. Sulfamic acid as versatile green catalyst used for synthetic organic chemistry: A comprehensive update. ChemistrySelect, 2021, 6(27), 6867-6889.
[http://dx.doi.org/10.1002/slct.202101635]
[14]
Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci., 2019, 6(11), 191378.
[http://dx.doi.org/10.1098/rsos.191378] [PMID: 31827868]
[15]
Kumar, H.; Bhardwaj, K.; Kuča, K.; Kalia, A.; Nepovimova, E.; Verma, R.; Kumar, D. Flower based green synthesis of metallic nanoparti-cles: Applications beyond fragrance. Nanomaterials, 2020, 10(4), E766.
[http://dx.doi.org/10.3390/nano10040766] [PMID: 32316212]
[16]
Mondal, A.; Umekar, M.S.; Bhusari, G.S.; Chouke, P.B.; Lambat, T.; Mondal, S.; Chaudhary, R.G.; Mahmood, S.H. Biogenic synthesis of metal/metal oxide nanostructured materials. Curr. Pharm. Biotechnol., 2021, 22(13), 1782-1793.
[http://dx.doi.org/10.2174/1389201022666210111122911] [PMID: 33430726]
[17]
Chauhan, C.C.; Gupta, T.; Meena, S.S.; Desimone, M.F.; Das, A.; Sandhu, C.S.; Jotania, K.R.; Jotania, R.B. Tailoring magnetic and dielec-tric properties of SrFe12O19/NiFe2O4 ferrite nanocomposites synthesized in presence of Calotropis gigantea (Crown) flower extract. J. Alloys Compd., 2022, 900, 163415.
[http://dx.doi.org/10.1016/j.jallcom.2021.163415]
[18]
Zhang, D.; Ma, X.L.; Gu, Y.; Huang, H.; Zhang, G.W. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem., 2020, 8, 799.
[http://dx.doi.org/10.3389/fchem.2020.00799] [PMID: 33195027]
[19]
Galdopórpora, J.M.; Ibar, A.; Tuttolomondo, M.V.; Desimone, M.F. Dual effect core shell polyphenol coated silver nanoparticles for tis-sue engineering. Nano-Structures & Nano-Objects, 2021, 26, 100716.
[http://dx.doi.org/10.1016/j.nanoso.2021.100716]
[20]
Kagdi, A.R.; Pullar, R.C.; Meena, S.S.; Jotania, R.B.; Mujasam Batoo, K. Studies of structural, magnetic and dielectric properties of X-type barium zinc hexaferrite Ba2Zn2Fe28O46 powder prepared by combustion treatment method using ginger root extract as a green reducing agent. J. Alloys Compd., 2020, 842, 155120.
[http://dx.doi.org/10.1016/j.jallcom.2020.155120]
[21]
Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Anuf, A.; Rajesh, K.; Kyzas, G.Z. Green synthesis and charac-terization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct., 2020, 1211, 128107.
[http://dx.doi.org/10.1016/j.molstruc.2020.128107]
[22]
Mohammadi, L.; Pal, K.; Bilal, M.; Rahdar, A.; Fytianos, G.; Kyzas, G.Z. Green nanoparticles to treat patients with malaria disease: An overview. J. Mol. Struct., 2021, 1229, 129857.
[http://dx.doi.org/10.1016/j.molstruc.2020.129857]
[23]
Sivasankarapillai, V.S.; Pillai, A.M.; Rahdar, A.; Sobha, A.P.; Das, S.S.; Mitropoulos, A.C.; Mokarrar, M.H.; Kyzas, G.Z. On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: Possible strategies and first challenges. Nanomaterials, 2020, 10(5), E852.
[http://dx.doi.org/10.3390/nano10050852] [PMID: 32354113]
[24]
Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules, 2021, 26(4), 844.
[http://dx.doi.org/10.3390/molecules26040844] [PMID: 33562781]
[25]
Graily, M.F.; Maadani, M.; Ghorbanpour, M.; Bhargava, P.; Varma, A.; Choudhary, D. A Biogenic synthesis of gold nanoparticles and their potential application in agriculture. In: Biogenic Nano Particles and their Use in Agro ecosystems; Eds.; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-2985-6_11]
[26]
Mondal, R.; Yilmaz, M.D.; Mandal, A.K.; Kharisov, B.; Kharissova, O. Chapter 13 - Green synthesis of carbon nanoparticles: Characterization and their biocidal properties. In: Handbook of Greener Synthesis of Nanomaterials and Compounds, Eds.; Elsevier, 2021, pp. 277-306.
[http://dx.doi.org/10.1016/B978-0-12-822446-5.00013-7]
[27]
Adorinni, S.; Cringoli, M.C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Green approaches to carbon nanostructure based biomaterials. Appl. Sci., 2021, 11(6), 2490.
[http://dx.doi.org/10.3390/app11062490]
[28]
Umekar, M.S.; Bhusari, G.S.; Potbhare, A.K.; Mondal, A.; Kapgate, B.P.; Desimone, M.F.; Chaudhary, R.G. Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Curr. Pharm. Biotechnol., 2021, 22(13), 1759-1781.
[http://dx.doi.org/10.2174/1389201022666201231115826] [PMID: 33390112]
[29]
Zhao, Q.; Lin, Y.; Han, N.; Li, X.; Geng, H.; Wang, X.; Cui, Y.; Wang, S. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv., 2017, 24(sup1), 94-107.
[http://dx.doi.org/10.1080/10717544.2017.1399300] [PMID: 29124979]
[30]
Sainio, S.; Leppänen, E.; Mynttinen, E.; Palomäki, T.; Wester, N.; Etula, J.; Isoaho, N.; Peltola, E.; Koehne, J.; Meyyappan, M.; Koskinen, J.; Laurila, T. Integrating carbon nanomaterials with metals for bio sensing applications. Mol. Neurobiol., 2020, 57(1), 179-190.
[http://dx.doi.org/10.1007/s12035-019-01767-7] [PMID: 31520316]
[31]
Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Peng, Q.; Ruttkay-Nedecky, B.; Milnerowicz, H.; Kizek, R. Carbon nanomaterials for target-ed cancer therapy drugs: A critical review. Chem. Rec., 2019, 19(2-3), 502-522.
[http://dx.doi.org/10.1002/tcr.201800038] [PMID: 30156367]
[32]
Augustine, S.; Singh, J.; Srivastava, M.; Sharma, M.; Das, A.; Malhotra, B.D. Recent advances in carbon based nanosystems for cancer theranostics. Biomater. Sci., 2017, 5(5), 901-952.
[http://dx.doi.org/10.1039/C7BM00008A] [PMID: 28401206]
[33]
Trukhanov, S.V.; Zubar, T.I.; Turchenko, V.A.; Trukhanov, A.V.; Kmječ, T.; Kohout, J.; Matzui, L.; Yakovenko, O.; Vinnik, D.A.; Starikov, A.Y.; Zhivulin, V.E.; Sombra, A.S.B.; Zhou, D.; Jotania, R.B.; Singh, C.; Trukhanov, A.V. Exploration of crystal structure, mag-netic and dielectric properties of titanium barium hexaferrites. Mater. Sci. Eng. B, 2021, 272, 115345.
[http://dx.doi.org/10.1016/j.mseb.2021.115345]
[34]
Nandotaria, R.A.; Jotania, R.B.; Sandhu, C.S.; Hashim, M.; Meena, S.S.; Bhatt, P.; Shirsath, S.E. Magnetic interactions and dielectric dis-persion in Mg substituted M type Sr-Cu hexaferrite nanoparticles prepared using one step solvent free synthesis technique. Ceram. Int., 2018, 44(4), 4426-4435.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.043]
[35]
De Marzi, M.C.; Saraceno, M.; Mitarotonda, R.; Todone, M.; Fernandez, M.; Malchiodi, E.L.; Desimone, M.F. Evidence of size dependent effect of silica micro and nano particles on basal and specialized monocyte functions. Ther. Deliv., 2017, 8(12), 1035-1049.
[http://dx.doi.org/10.4155/tde-2017-0053] [PMID: 29125067]
[36]
Mitarotonda, R.; Saraceno, M.; Todone, M.; Giorgi, E.; Malchiodi, E.L.; Desimone, M.F.; De Marzi, M.C. Surface chemistry modification of silica nanoparticles alters the activation of monocytes. Ther. Deliv., 2021, 12(6), 443-459.
[http://dx.doi.org/10.4155/tde-2021-0006] [PMID: 33902308]
[37]
Ale, A.; Gutierrez, M.F.; Rossi, A.S.; Bacchetta, C.; Desimone, M.F.; Cazenave, J. Ecotoxicity of silica nanoparticles in aquatic organisms: An updated review. Environ. Toxicol. Pharmacol., 2021, 87, 103689.
[http://dx.doi.org/10.1016/j.etap.2021.103689] [PMID: 34144182]
[38]
Catalano, P.N.; Chaudhary, R.G.; Desimone, M.F.; Santo-Orihuela, P.L. A survey on analytical methods for the characterization of green synthesized nanomaterials. Curr. Pharm. Biotechnol., 2021, 22(6), 823-847.
[http://dx.doi.org/10.2174/1389201022666210104122349] [PMID: 33397235]
[39]
Jing, X.; Huang, J.; Wu, L.; Sun, D.; Li, Q. Biosynthesis of flat silver nanoflowers: From flos Magnoliae officinalis extract to simulation solution. J. Nanopart. Res., 2014, 16(3), 2327.
[http://dx.doi.org/10.1007/s11051-014-2327-0]
[40]
Wu, L.; Wu, W.; Jing, X.; Huang, J.; Sun, D.; Odoom-Wubah, T.; Liu, H.; Wang, H.; Li, Q. Trisodium citrate assisted biosynthesis of silver nanoflowers by canarium album foliar broths as a platform for SERS detection. Ind. Eng. Chem. Res., 2013, 52(14), 5085-5094.
[http://dx.doi.org/10.1021/ie303518z]
[41]
Pourjavadi, A.; Soleyman, R. Novel silver nano wedges for killing microorganisms. Mater. Res. Bull., 2011, 46(11), 1860-1865.
[http://dx.doi.org/10.1016/j.materresbull.2011.07.040]
[42]
Molina, G.A.; Esparza, R.; López-Miranda, J.L.; Hernández, A.R.; España, B.L.; Elizalde, E.A.; Estevez, M. Green synthesis of Ag nanoflowers using Kalanchoe Daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf. B Biointerfaces, 2019, 180, 141-149.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.044] [PMID: 31039515]
[43]
Kajani, A.A.; Bordbar, A.K.; Zarkesh Esfahani, S.H.; Khosropour, A.R.; Razmjou, A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using taxus baccata extract. RSC Advances, 2014, 4(106), 61394-61403.
[http://dx.doi.org/10.1039/C4RA08758E]
[44]
Singh, S.; Bharti, A.; Meena, V.K. Green synthesis of multi shaped silver nanoparticles: Optical, morphological and antibacterial proper-ties. J. Mater. Sci. Mater. Electron., 2015, 26(6), 3638-3648.
[http://dx.doi.org/10.1007/s10854-015-2881-y]
[45]
AL-Thabaiti. S.A.; Khan, Z.; Hussain, S. Biogenic silver nanosols: Flavonol based green synthesis, and effects of stabilizers on their mor-phology. J. Mol. Liq., 2015, 212, 316-324.
[http://dx.doi.org/10.1016/j.molliq.2015.08.057]
[46]
Hosseinidoust, Z.; Basnet, M.; van de Ven, T.G.M.; Tufenkji, N. One pot green synthesis of anisotropic silver nanoparticles. Environ. Sci. Nano, 2016, 3(6), 1259-1264.
[http://dx.doi.org/10.1039/C6EN00112B]
[47]
Roy, E.; Patra, S.; Saha, S.; Kumar, D.; Madhuri, R.; Sharma, P.K. Shape effect on the fabrication of imprinted nanoparticles: Comparison between spherical, Rod, Hexagonal, and flower shaped nanoparticles. Chem. Eng. J., 2017, 321, 195-206.
[http://dx.doi.org/10.1016/j.cej.2017.03.050]
[48]
Anandan, M.; Poorani, G.; Boomi, P.; Varunkumar, K.; Anand, K.; Chuturgoon, A.A.; Saravanan, M.; Gurumallesh Prabu, H. Green syn-thesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activi-ties. Process Biochem., 2019, 80, 80-88.
[http://dx.doi.org/10.1016/j.procbio.2019.02.014]
[49]
Wang, H.; Xing, W.; Chen, J.; Liu, G.; Xu, G. Green synthesis of dendritic silver nanostructure and its application in conductive ink. J. Mater. Sci. Mater. Electron., 2017, 28(8), 6152-6158.
[http://dx.doi.org/10.1007/s10854-016-6293-4]
[50]
Carbone, K.; Paliotta, M.; Micheli, L.; Mazzuca, C.; Cacciotti, I.; Nocente, F.; Ciampa, A.; Dell’Abate, M.T. A completely green approach to the synthesis of dendritic silver nanostructures starting from white grape pomace as a potential nanofactory. Arab. J. Chem., 2019, 12(5), 597-609.
[http://dx.doi.org/10.1016/j.arabjc.2018.08.001]
[51]
Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Park, J.H.; Cho, S.G.; Lee, K.J.; Kim, J-H. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J. Ind. Eng. Chem., 2013, 19(5), 1600-1605.
[http://dx.doi.org/10.1016/j.jiec.2013.01.029]
[52]
Priyadarshini, S.; Gopinath, V.; Meera Priyadharsshini, N. MubarakAli, D.; Velusamy, P. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces, 2013, 102, 232-237.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.018] [PMID: 23018021]
[53]
Singh, P.; Kim, Y.J.; Singh, H.; Mathiyalagan, R.; Wang, C.; Yang, D.C. Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J. Nanomater., 2015, 2015, 234741.
[http://dx.doi.org/10.1155/2015/234741]
[54]
Nhung, T.T.; Lee, S.W. Green synthesis of asymmetrically textured silver meso-flowers (AgMFs) as highly sensitive SERS substrates. ACS Appl. Mater. Interfaces, 2014, 6(23), 21335-21345.
[http://dx.doi.org/10.1021/am506297n] [PMID: 25369521]
[55]
Senthilkumar, N.; Nandhakumar, E.; Priya, P.; Soni, D.; Vimalan, M.; Vetha Potheher, I. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti arthritic, anti oxidant and in vitro cytotoxicity activities. New J. Chem., 2017, 41(18), 10347-10356.
[http://dx.doi.org/10.1039/C7NJ02664A]
[56]
Singh, K.; Singh, J.; Rawat, M. Green synthesis of zinc oxide nanoparticles using Punica granatum leaf extract and its application towards photocatalytic degradation of coomassie brilliant blue R-250 dye. SN Appl. Sci., 2019, 1(6), 624.
[http://dx.doi.org/10.1007/s42452-019-0610-5]
[57]
Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 341-352.
[http://dx.doi.org/10.1080/21691401.2018.1557671] [PMID: 30691311]
[58]
Khalafi, T.; Buazar, F.; Ghanemi, K. Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Sci. Rep., 2019, 9(1), 6866.
[http://dx.doi.org/10.1038/s41598-019-43368-3] [PMID: 31053730]
[59]
Okpara, E.C.; Fayemi, O.E.; Sherif, E.M.; Junaedi, H.; Ebenso, E.E. Green wastes mediated zinc oxide nanoparticles: Synthesis, character-ization and electrochemical studies. Materials, 2020, 13(19), E4241.
[http://dx.doi.org/10.3390/ma13194241] [PMID: 32977619]
[60]
Jayachandran, A. T R, A.; Nair, A.S. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem. Biophys. Rep., 2021, 26, 100995.
[http://dx.doi.org/10.1016/j.bbrep.2021.100995] [PMID: 33898767]
[61]
Hussain, A.; Oves, M.; Alajmi, M.F.; Hussain, I.; Amir, S.; Ahmed, J.; Rehman, M.T.; El-Seedi, H.R.; Ali, I. Biogenesis of ZnO nanoparti-cles using Pandanus odorifer leaf extract: Anticancer and antimicrobial activities. RSC Advances, 2019, 9(27), 15357-15369.
[http://dx.doi.org/10.1039/C9RA01659G] [PMID: 35514831]
[62]
Rahaiee, S.; Ranjbar, M.; Azizi, H.; Govahi, M.; Zare, M. Green synthesis, characterization, and biological activities of saffron leaf extract mediated zinc oxide nanoparticles: A sustainable approach to reuse an agricultural waste. Appl. Organomet. Chem., 2020, 34(8), e5705.
[http://dx.doi.org/10.1002/aoc.5705]
[63]
Soliman, M.M.A.; Alegria, E.C.B.A.; Ribeiro, A.P.C.; Alves, M.M.; Saraiva, M.S.; Fátima Montemor, M.; Pombeiro, A.J.L. Green synthe-sis of zinc oxide particles with apple-derived compounds and their application as catalysts in the transesterification of methyl benzoates. Dalton Trans., 2020, 49(19), 6488-6494.
[http://dx.doi.org/10.1039/D0DT01069C] [PMID: 32364212]
[64]
Gupta, M.; Tomar, R.S.; Kaushik, S.; Mishra, R.K.; Sharma, D. Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front. Microbiol., 2018, 9, 2030.
[http://dx.doi.org/10.3389/fmicb.2018.02030] [PMID: 30233518]
[65]
Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti bacterial activity and anti diabetic activity. RSC Advances, 2015, 5(7), 4993-5003.
[http://dx.doi.org/10.1039/C4RA12784F]
[66]
Doan Thi, T.U.; Nguyen, T.T.; Thi, Y.D.; Ta Thi, K.H.; Phan, B.T.; Pham, K.N. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Advances, 2020, 10(40), 23899-23907.
[http://dx.doi.org/10.1039/D0RA04926C] [PMID: 35517333]
[67]
Zare, M.; Namratha, K.; Alghamdi, S.; Mohammad, Y.H.E.; Hezam, A.; Zare, M.; Drmosh, Q.A.; Byrappa, K.; Chandrashekar, B.N.; Ra-makrishna, S.; Zhang, X. Novel green biomimetic approach for synthesis of ZnO-Ag nanocomposite; antimicrobial activity against food borne pathogen, biocompatibility and solar photocatalysis. Sci. Rep., 2019, 9(1), 8303.
[http://dx.doi.org/10.1038/s41598-019-44309-w] [PMID: 31165752]
[68]
Suresh, S.; Ilakiya, R.; Kalaiyan, G.; Thambidurai, S.; Kannan, P.; Prabu, K.M.; Suresh, N.; Jothilakshmi, R.; Karthick Kumar, S.; Kan-dasamy, M. Green synthesis of copper oxide nanostructures using Cynodon dactylon and Cyperus rotundus grass extracts for antibacterial applications. Ceram. Int., 2020, 46(8)(8, Part B), 12525-12537.
[http://dx.doi.org/10.1016/j.ceramint.2020.02.015]
[69]
Kalaiyan, G.; Prabu, K.M.; Suresh, S.; Suresh, N. Green synthesis of CuO nanostructures with bactericidal activities using Simarouba glauca leaf extract. Chem. Phys. Lett., 2020, 761, 138062.
[http://dx.doi.org/10.1016/j.cplett.2020.138062]
[70]
Reddy, K.R. Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct., 2017, 1150, 553-557.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.005]
[71]
Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B, 2019, 191, 143-149.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.026] [PMID: 30639996]
[72]
Kalaiyan, G.; Suresh, S.; Thambidurai, S.; Prabu, K.M.; Kumar, S.K.; Pugazhenthiran, N.; Kandasamy, M. Green synthesis of hierarchical copper oxide microleaf bundles using Hibiscus cannabinus leaf extract for antibacterial application. J. Mol. Struct., 2020, 1217, 128379.
[http://dx.doi.org/10.1016/j.molstruc.2020.128379]
[73]
Benhammada, A.; Trache, D. Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior. J. Therm. Anal. Calorim., 2021, 147, 1-16.
[http://dx.doi.org/10.1007/s10973-020-10469-5]
[74]
Navada, K.M.; Nagaraja, G.K.; D’Souza, J.N.; Kouser, S.; Ranjitha, R.; Manasa, D.J. Phyto assisted synthesis and characterization of Sco-paria dulsis L. leaf extract mediated porous nano CuO photocatalysts and its anticancer behavior. Appl. Nanosci., 2020, 10(11), 4221-4240.
[http://dx.doi.org/10.1007/s13204-020-01536-2]
[75]
Manasa, D.J.; Chandrashekar, K.R.; Madhu Kumar, D.J.; Niranjana, M.; Navada, K.M. Mussaenda frondosa L. mediated facile green syn-thesis of copper oxide nanoparticles – characterization, photocatalytic and their biological investigations. Arab. J. Chem., 2021, 14(6), 103184.
[http://dx.doi.org/10.1016/j.arabjc.2021.103184]
[76]
Wang, C.; Li, Q.; Wang, F.; Xia, G.; Liu, R.; Li, D.; Li, N.; Spendelow, J.S.; Wu, G. Morphology dependent performance of CuO anodes via facile and controllable synthesis for lithium ion batteries. ACS Appl. Mater. Interfaces, 2014, 6(2), 1243-1250.
[http://dx.doi.org/10.1021/am405061c] [PMID: 24377276]
[77]
Gunalan, S.; Sivaraj, R.; Venckatesh, R. Aloe barbadensis Miller mediated green synthesis of mono disperse copper oxide nanoparticles: Optical properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 97, 1140-1144.
[http://dx.doi.org/10.1016/j.saa.2012.07.096] [PMID: 22940049]
[78]
Chowdhury, R.; Khan, A.; Rashid, M.H. Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Advances, 2020, 10(24), 14374-14385.
[http://dx.doi.org/10.1039/D0RA01479F] [PMID: 35498484]
[79]
Menon, S. S, R.; S, V.K. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour. Technol., 2017, 3(4), 516-527.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[80]
Pourali, P.; Badiee, S.H.; Manafi, S.; Noorani, T.; Rezaei, A.; Yahyaei, B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect as-says. Electron. J. Biotechnol., 2017, 29, 86-93.
[http://dx.doi.org/10.1016/j.ejbt.2017.07.005]
[81]
Al Saqr, A.; Khafagy, E-S.; Alalaiwe, A.; Aldawsari, M.F.; Alshahrani, S.M.; Anwer, M.K.; Khan, S.; Lila, A.S.A.; Arab, H.H.; Hegazy, W.A.H. Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity. Nanomaterials, 2021, 11(3), 808.
[http://dx.doi.org/10.3390/nano11030808] [PMID: 33809859]
[82]
Kim, B.; Song, W.C.; Park, S.Y.; Park, G. Green synthesis of silver and gold nanoparticles via Sargassum serratifolium extract for catalytic reduction of organic dyes. Catalysts, 2021, 11(3), 347.
[http://dx.doi.org/10.3390/catal11030347]
[83]
Perveen, K.; Husain, F.M.; Qais, F.A.; Khan, A.; Razak, S.; Afsar, T.; Alam, P.; Almajwal, A.M.; Abulmeaty, M.M.A. Microwave assisted rapid green synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules, 2021, 11(2), 197.
[http://dx.doi.org/10.3390/biom11020197] [PMID: 33573343]
[84]
Philip, D. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 73(4), 650-653.
[http://dx.doi.org/10.1016/j.saa.2009.03.007] [PMID: 19376740]
[85]
Aljabali, A.A.A.; Akkam, Y.; Al Zoubi, M.S.; Al-Batayneh, K.M.; Al-Trad, B.; Abo Alrob, O.; Alkilany, A.M.; Benamara, M.; Evans, D.J. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials, 2018, 8(3), E174.
[http://dx.doi.org/10.3390/nano8030174] [PMID: 29562669]
[86]
Bhuiyan, M.S.H.; Miah, M.Y.; Paul, S.C.; Das Aka, T.; Saha, O.; Rahaman, M.M.; Sharif, M.J.I.; Habiba, O.; Ashaduzzaman, M. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 2020, 6(8), e04603.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04603] [PMID: 32775754]
[87]
Saif, S.; Tahir, A.; Asim, T.; Chen, Y.; Adil, S.F. Polymeric nanocomposites of Iron oxide Nanoparticles (IONPs) synthesized using Ter-minalia chebula leaf extract for enhanced adsorption of Arsenic(V) from water. Colloids Interface, 2019, 3(1), 17.
[http://dx.doi.org/10.3390/colloids3010017]
[88]
Mahdavi, M.; Namvar, F.; Ahmad, M.B.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparti-cles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18(5), 5954-5964.
[http://dx.doi.org/10.3390/molecules18055954] [PMID: 23698048]
[89]
Sundar, S.; Venkatachalam, G.; Kwon, S.J. Sol-gel mediated greener synthesis of γ-Fe2O3 nanostructures for the selective and sensitive determination of uric acid and dopamine. Catalysts, 2018, 8(11), 512.
[http://dx.doi.org/10.3390/catal8110512]
[90]
Solanki, N.; Jotania, R. B.; Khomane, R. B.; Kulkarni, B. D. Effect of different temperature on structural, magnetic and dielectric properties of strontium hexaferrite powder synthesised using Aloe vera plant extracts. Advanced Science Letters, , 869-875.,
[91]
Chaudhari, H.N.; Dhruv, P.N.; Singh, C.; Meena, S.S.; Kavita, S.; Jotania, R.B. Effect of heating temperature on structural, magnetic, and dielectric properties of magnesium ferrites prepared in the presence of Solanum lycopersicum fruit extract. J. Mater. Sci. Mater. Electron., 2020, 31(21), 18445-18463.
[http://dx.doi.org/10.1007/s10854-020-04389-1]
[92]
Suresh, J.; Ragunath, L.; Hong, S.I. Biosynthesis of mixed nanocrystalline Zn–Mg–Cu oxide nanocomposites and their antimicrobial be-havior. Adv. Nat. Sci. Nanosci. Nanotechnol., 2019, 10(4), 45014.
[http://dx.doi.org/10.1088/2043-6254/ab52f5]
[93]
Abbas, S.; Uzair, B.; Sajjad, S.; Leghari, S.A.K.; Noor, S.; Niazi, M.B.K.; Farooq, I.; Iqbal, H. Dual functional green facile CuO/MgO nanosheets composite as an efficient antimicrobial agent and photocatalyst. Arab. J. Sci. Eng., 2021, 47, 5895-5909.
[http://dx.doi.org/10.1007/s13369-021-05741-1]
[94]
Swati; Verma, R.; Chauhan, A.; Shandilya, M.; Li, X.; Kumar, R.; Kulshrestha, S. Antimicrobial potential of Ag-Doped ZnO nanostruc-ture synthesized by the green method using Moringa oleifera extract. J. Environ. Chem. Eng., 2020, 8(3), 103730.
[http://dx.doi.org/10.1016/j.jece.2020.103730]
[95]
Bose, R.; Roychoudhury, P.; Pal, R. In-situ green synthesis of fluorescent silica silver conjugate nanodendrites using nanoporous frustules of diatoms: An unprecedented approach. Bioprocess Biosyst. Eng., 2021, 44(6), 1263-1273.
[http://dx.doi.org/10.1007/s00449-021-02536-4] [PMID: 33620558]
[96]
Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Applica-tion as excellent bio imaging agents. Chem. Commun. (Camb.), 2012, 48(70), 8835-8837.
[http://dx.doi.org/10.1039/c2cc33796g] [PMID: 22836910]
[97]
Wani, T.U.; Mohi-Ud-Din, R.; Wani, T.A.; Mir, R.H.; Itoo, A.M.; Sheikh, F.A.; Khan, N.A.; Pottoo, F.H. Green synthesis, spectroscopic characterization and biomedical applications of carbon nanotubes. Curr. Pharm. Biotechnol., 2021, 22(6), 793-807.
[http://dx.doi.org/10.2174/1389201021999201110205615] [PMID: 33176640]
[98]
Tripathi, N.; Pavelyev, V.; Islam, S.S. Synthesis of carbon nanotubes using green plant extract as catalyst: Unconventional concept and its realization. Appl. Nanosci., 2017, 7(8), 557-566.
[http://dx.doi.org/10.1007/s13204-017-0598-3]
[99]
Kartick, B.; Srivastava, S.K. Green synthesis of graphene. J. Nanosci. Nanotechnol., 2013, 13(6), 4320-4324.
[http://dx.doi.org/10.1166/jnn.2013.7461] [PMID: 23862494]
[100]
Jha, P.K.; Khongnakorn, W.; Chawenjkigwanich, C.; Chowdhury, M.S.; Techato, K. Eco-friendly reduced graphene oxide nanofilter prepa-ration and application for iron removal. Separations, 2021, 8(5), 68.
[http://dx.doi.org/10.3390/separations8050068]
[101]
Umar, M.F.; Ahmad, F.; Saeed, H.; Usmani, S.A.; Owais, M.; Rafatullah, M. Bio-mediated synthesis of reduced graphene oxide nanoparti-cles from Chenopodium album: Their antimicrobial and anticancer activities. Nanomaterials, 2020, 10(6), E1096.
[http://dx.doi.org/10.3390/nano10061096] [PMID: 32492878]
[102]
Ahmed, G.H.G.; Laíño, R.B.; Calzón, J.A.G.; García, M.E.D. Facile synthesis of water-soluble carbon nano onions under alkaline condi-tions. Beilstein J. Nanotechnol., 2016, 7, 758-766.
[http://dx.doi.org/10.3762/bjnano.7.67] [PMID: 27335764]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy