Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Structural Insights into the Role of Pseudouridimycin Binding in Disruption of Bacterial RNA Polymerase Bridge Helix Conformational Arrangement

Author(s): Ali H. Rabbad, Clement Agoni and Mahmoud E. Soliman*

Volume 24, Issue 4, 2023

Published on: 03 September, 2022

Page: [562 - 569] Pages: 8

DOI: 10.2174/1389201023666220511211433

Price: $65

Abstract

Background: The bridge helix (BH) is a crucial region in bacterial RNA polymerase (RNAP) catalysis. It plays an essential role in the nucleotide addition cycle (NAC) by performing many modulated rearrangements and conformational changes. Any changes in the bridge helix conformational arrangements could perturb the NAC.

Objective: Pseudouridimycin (PUM) was recently reported as a new RNAP inhibitor. However, the crucial role of the bridge helix in the inhibitory activity of PUM remains unclear, hence the aim of this study.

Methods: The PUM interaction and the structural dynamics of bacterial Bridge Helix upon PUM binding were investigated using various dynamic analysis approaches.

Results: Besides establishing the importance of the bridge helix residues in the binding of PUM, the findings of this study revealed that the adjacent binding of PUM induces a stabilized and structurally rigid bridge helix characterized by a reduction of individual residue flexibility, which could interfere with its role in the NAC. In addition, a hydrophobic structural rearrangement of the bridge helix is observed, evidenced by the burial and folding of residues into the hydrophobic core and a switch in the secondary structure of some regions of the bridge helix from the turn and bend to the alpha helix. The observed conformational disruption of the bridge helix upon binding of PUM also accounts for the reported inhibitory prowess and broad-spectrum activity as widely reported.

Conclusion We believe findings from this study will further complement current drug discovery knowledge on disrupting bacterial RNAP machinery.

Keywords: Pseudouridimycin, bacterial RNA polymerase, bridge helix, RNAP inhibitors, molecular dynamics simulations, catalysis.

Graphical Abstract

[1]
Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586), 336-343.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[2]
Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial resistance. JAMA, 2016, 316(11), 1193-1204.
[http://dx.doi.org/10.1001/jama.2016.11764] [PMID: 27654605]
[3]
Bai, H.; Zhou, Y.; Hou, Z.; Xue, X.; Meng, J.; Luo, X. Targeting bacterial RNA polymerase: Promises for future antisense antibiotics development. Infect. Disord. Drug Targets, 2011, 11(2), 175-187.
[http://dx.doi.org/10.2174/187152611795589708] [PMID: 21470098]
[4]
Ma, C.; Yang, X.; Lewis, P.J. Bacterial transcription as a target for antibacterial drug development. Microbiol. Mol. Biol. Rev., 2016, 80(1), 139-160.
[http://dx.doi.org/10.1128/MMBR.00055-15] [PMID: 26764017]
[5]
Cramer, P.; Bushnell, D.A.; Kornberg, R.D. Structural basis of transcription: RNA polymerase ii at 2.8 Ångstrom resolution. Science, 2001, 292(5523), 1863-1876.
[http://dx.doi.org/10.1126/science.1059493]
[6]
Artsimovitch, I.; Vassylyev, D.G. Is it easy to stop RNA polymerase? Cell Cycle, 2006, 5(4), 399-404.
[http://dx.doi.org/10.4161/cc.5.4.2466] [PMID: 16479153]
[7]
Murakami, K.S. Structural biology of bacterial RNA polymerase. Biomolecules, 2015, 5(2), 848-864.
[http://dx.doi.org/10.3390/biom5020848] [PMID: 25970587]
[8]
Chopra, I. Bacterial RNA polymerase: A promising target for the discovery of new antimicrobial agents. Curr. Opin. Investig. Drugs, 2007, 8(8), 600-607.
[PMID: 17668362]
[9]
Ebright, R.H. RNA polymerase: Structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol., 2000, 304(5), 687-698.
[http://dx.doi.org/10.1006/jmbi.2000.4309] [PMID: 11124018]
[10]
Srivastava, A.; Talaue, M.; Liu, S.; Degen, D.; Ebright, R.Y.; Sineva, E.; Chakraborty, A.; Druzhinin, S.Y.; Chatterjee, S.; Mukhopadhyay, J.; Ebright, Y.W.; Zozula, A.; Shen, J.; Sengupta, S.; Niedfeldt, R.R.; Xin, C.; Kaneko, T.; Irschik, H.; Jansen, R.; Donadio, S.; Connell, N.; Ebright, R.H. New target for inhibition of bacterial RNA polymerase: ‘Switch region’. Curr. Opin. Microbiol., 2011, 14(5), 532-543.
[http://dx.doi.org/10.1016/j.mib.2011.07.030] [PMID: 21862392]
[11]
Lee, J.; Borukhov, S.; Bacterial, R.N.A. Polymerase-DNA interaction-the driving force of gene expression and the target for drug action. Front. Mol. Biosci., 2016, 3(11), 73.
[http://dx.doi.org/10.3389/fmolb.2016.00073] [PMID: 27882317]
[12]
Nudler, E. RNA polymerase active center: The molecular engine of transcription. Annu. Rev. Biochem., 2009, 78(1), 335-361.
[http://dx.doi.org/10.1146/annurev.biochem.76.052705.164655] [PMID: 19489723]
[13]
Tan, L.; Wiesler, S.; Trzaska, D.; Carney, H.C.; Weinzierl, R.O.J. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J. Biol., 2008, 7(10), 40.
[http://dx.doi.org/10.1186/jbiol98] [PMID: 19055851]
[14]
Jovanovic, M.; Burrows, P.C.; Bose, D. Cámara, B.; Wiesler, S.; Zhang, X.; Wigneshweraraj, S.; Weinzierl, R.O.J.; Buck, M. Activity map of the Escherichia coli RNA polymerase bridge helix. J. Biol. Chem., 2011, 286(16), 14469-14479.
[http://dx.doi.org/10.1074/jbc.M110.212902] [PMID: 21357417]
[15]
Villain-Guillot, P.; Bastide, L.; Gualtieri, M.; Leonetti, J.P. Progress in targeting bacterial transcription. Drug Discov. Today, 2007, 12(5-6), 200-208.
[http://dx.doi.org/10.1016/j.drudis.2007.01.005] [PMID: 17331884]
[16]
Bae, B.; Nayak, D.; Ray, A.; Mustaev, A.; Landick, R.; Darst, S.A. CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc. Natl. Acad. Sci. USA, 2015, 112(31), E4178-E4187.
[http://dx.doi.org/10.1073/pnas.1502368112] [PMID: 26195788]
[17]
O’Malley, P.A. Pseudouridimycin: Light in the darkness of antimicrobial resistance. Clin. Nurse Spec., 2018, 32(3), 114-115.
[http://dx.doi.org/10.1097/NUR.0000000000000367] [PMID: 29621104]
[18]
Chellat, M.F.; Riedl, R. Pseudouridimycin: The first nucleoside analogue that selectively inhibits bacterial RNA polymerase. Angew. Chem. Int. Ed. Engl., 2017, 56(43), 13184-13186.
[http://dx.doi.org/10.1002/anie.201708133] [PMID: 28895263]
[19]
Trautman, E.P.; Crawford, J.M. A new nucleoside antibiotic chokes bacterial RNA polymerase. Biochemistry, 2017, 56(37), 4923-4924.
[http://dx.doi.org/10.1021/acs.biochem.7b00680] [PMID: 28885002]
[20]
Maffioli, S.I.; Zhang, Y.; Degen, D.; Carzaniga, T.; Del Gatto, G.; Serina, S.; Monciardini, P.; Mazzetti, C.; Guglierame, P.; Candiani, G.; Chiriac, A.I.; Facchetti, G.; Kaltofen, P.; Sahl, H.G. Dehò, G.; Donadio, S.; Ebright, R.H. Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell, 2017, 169(7), 1240-1248.e23.
[http://dx.doi.org/10.1016/j.cell.2017.05.042] [PMID: 28622509]
[21]
Rabbad, A.H.; Agoni, C.; Olotu, F.A.; Soliman, M.E. Microbes, not humans: Exploring the molecular basis of pseudouridimycin selectivity towards bacterial and not human RNA polymerase. Biotechnol. Lett., 2019, 41(1), 115-128.
[http://dx.doi.org/10.1007/s10529-018-2617-1] [PMID: 30377869]
[22]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[23]
Machaba, K.E.; Cele, F.N.; Mhlongo, N.N.; Soliman, M.E.S. Sliding clamp of DNA polymerase III as a drug target for TB therapy: Comprehensive conformational and binding analysis from molecular dynamic simulations. Cell Biochem. Biophys., 2016, 74(4), 473-481.
[http://dx.doi.org/10.1007/s12013-016-0764-3] [PMID: 27651172]
[24]
El Rashedy, A.A.; Appiah-Kubi, P.; Soliman, M.E.S. A synergistic combination against chronic myeloid leukemia: An intra-molecular mechanism of communication in BCR–ABL1 resistance. Protein J., 2019, 38(2), 142-150.
[http://dx.doi.org/10.1007/s10930-019-09820-z]
[25]
Agoni, C.; Ramharack, P.; Soliman, M.E.S. Allosteric inhibition induces an open WPD-Loop: A new avenue towards glioblastoma therapy. RSC Advances, 2018, 8(70), 40187-40197.
[http://dx.doi.org/10.1039/C8RA08427K]
[26]
Munsamy, G.; Agoni, C.; Soliman, M.E.S. A dual target of Plasmepsin IX and X: Unveiling the atomistic superiority of a core chemical scaffold in malaria therapy. J. Cell. Biochem., 2018, 120(5), 7876-7887.
[http://dx.doi.org/10.1002/jcb.28062] [PMID: 30430636]
[27]
Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552.
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[28]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy