Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

New Methodology for the Design of Nanostructured Integrated Circuits

Author(s): Vijay Kumar Sharma*

Volume 19, Issue 2, 2023

Published on: 22 July, 2022

Page: [240 - 257] Pages: 18

DOI: 10.2174/1573413718666220511203149

Price: $65

Abstract

Background: A metal oxide semiconductor field effect transistor (MOSFET) is widely used to make integrated circuits (ICs). MOSFET devices are reaching the practical limitations for further scaling in the nanoscale regime. It motivates the researchers to explore and develop new ways to advance the electronics industry. Quantum-dot cellular automata (QCA) is a potential way to replace the MOSFET devices in the nanoscale regime. QCA nanotechnology not only solves the issue of scalability but also degrades the leakage current. It has numerous benefits, such as a highly dense design, fast speed, and energy efficiency compared to complementary metal-oxide-semiconductor (CMOS) technology.

Objective: An extensive study of QCA nanotechnology is needed to quickly understand the field. Optimizing the QCA designs is the mandatory requirement to minimize the occupied cell area, latency and quantum cost. The preliminary knowledge of QCA nanotechnology boosts the idea of generating different logic functions. This review paper presents the methodology for making the fundamental logic gates using QCA nanotechnology. XOR gate is commonly used to implement popular circuits such as adders, subtractors, comparators, code converters, reversible gates etc. The various available QCA-based 2-input XOR gate designs are discussed and compared for the different performance metrics.

Methods: Columbic interaction causes logical operations, and data is transferred from one cell to another cell using cell-to-cell interaction. A specific arrangement of QCA cells produces a specific logic. QCA Designer tool using a Bi-stable simulation engine is used to design different digital circuits.

Results: This review paper deals with the design of the 2-input XOR gate. The considered performance metrics for the comparison purpose are cell count, occupied area, clock cycle, and quantum cost. Existing works on 2-input XOR gates show that a minimum of 8 QCA cells are needed for a 2-input XOR gate using QCA nanotechnology. A single clock cycle-based 2-input XOR gate requires at least 9 QCA cells. The quantum cost can be minimized by reducing the number of QCA cells and clock cycles.

Conclusion: This review paper helps the circuit designers to select the appropriate 2-input XOR gate for the design of complex circuits. Circuit designers can use the fundamental concepts detailed in the paper to implement any Boolean function and optimize it for the existing designs. A researcher had developed a 2-input XOR gate using only 8 QCA cells with 0.50 clock cycles. Therefore, designers can start from here to further optimize the 2-input XOR gate with a single clock cycle.

Keywords: Quantum-dot, Nanostructured, XOR, QCA Designer, Cell-to-cell interaction, MV.

[1]
Sharma, A.; Khan, M.S.; Srivastava, A.; Husain, M.; Khan, M.S. High-performance single-electron transistor based on metal–organic complex of thiophene: first principle study. IEEE Trans. Electron Dev., 2017, 64(11), 4628-4635.
[http://dx.doi.org/10.1109/TED.2017.2756106]
[2]
Awano, Y.; Sato, S.; Nihei, M.; Sakai, T.; Ohno, Y.; Mizutani, T. Carbon nanotubes for VLSI: interconnect and transistor applications. Proc. IEEE, 2010, 98(12), 2015-2031.
[http://dx.doi.org/10.1109/JPROC.2010.2068030]
[3]
Sharma, V.K. CNTFET Circuit-based wide fan-in domino logic for low power applications. J. Circuits Syst. Comput., 2021, 2021, 2250036.
[4]
Sugahara, S.; Nitta, J. Spin-transistor electronics: An overview and outlook. Proc. IEEE, 2010, 98(12), 2124-2154.
[http://dx.doi.org/10.1109/JPROC.2010.2064272]
[5]
Sharma, V.K. Optimal design for digital comparator using QCA nanotechnology with energy estimation. Int. J. Numer. Modell. Electron Networks Devices Fields., 2021, 34(2), e2822.
[http://dx.doi.org/10.1002/jnm.2822]
[6]
Seabaugh, A.C.; Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE, 2010, 98(12), 2095-2110.
[http://dx.doi.org/10.1109/JPROC.2010.2070470]
[7]
Zhang, Q.; Fang, T.; Xing, H.; Seabaugh, A.; Jena, D. Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett., 2008, 29(12), 1344-1346.
[http://dx.doi.org/10.1109/LED.2008.2005650]
[8]
Mushtaq, U.; Sharma, V.K. Performance analysis for reliable nanoscaled FinFET logic circuits. Analog Integr. Circuits Signal Process., 2021, 107(3), 671-682.
[http://dx.doi.org/10.1007/s10470-020-01765-z]
[9]
Kajal, Sharma VK. A Novel Low Power Technique for FinFET Domino OR Logic. J. Circuits Syst. Comput., 2021, 30(07), 2150117.
[http://dx.doi.org/10.1142/S0218126621501176]
[10]
Lent, C.S.; Tougaw, P.D.; Porod, W.; Bernstein, G.H. Quantum cellular automata. Nanotechnology, 1993, 4(1), 49.
[http://dx.doi.org/10.1088/0957-4484/4/1/004 ] [PMID: 21727566]
[11]
Riyaz, S.; Naz, S.F.; Sharma, V.K. Multioperative reversible gate design with implementation of 1‐bit full adder and subtractor along with energy dissipation analysis. Int. J. Circuit Theory Appl., 2021, 49(4), 990-1012.
[http://dx.doi.org/10.1002/cta.2886]
[12]
Jeon, J.C. Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations. J. Supercomput., 2020, 76(8), 6438-6452.
[http://dx.doi.org/10.1007/s11227-019-02962-y]
[13]
Gao, M.; Wang, J.; Fang, S.; Nan, J.; Daming, L. A new nano design for implementation of a digital comparator based on quantum-dot cellular automata. Int. J. Theor. Phys., 2021, 60(7), 2358-2367.
[http://dx.doi.org/10.1007/s10773-020-04499-w]
[14]
Senthilnathan, S.; Kumaravel, S. Power-efficient implementation of pseudo-random number generator using quantum dot cellular automata-based D Flip Flop. Comput. Electr. Eng., 2020, 85, 106658.
[http://dx.doi.org/10.1016/j.compeleceng.2020.106658]
[15]
Salimzadeh, F.; Heikalabad, S.R.; Gharehchopogh, F.S. Design of a reversible structure for memory in quantum‐dot cellular automata. Int. J. Circuit Theory Appl., 2020, 48(12), 2257-2265.
[http://dx.doi.org/10.1002/cta.2807]
[16]
Das, J.C.; De, D. Feynman gate based design of n-bit reversible inverter and its implementation on quantum-dot cellular automata. Nano Commun. Netw., 2020, 24, 100298.
[http://dx.doi.org/10.1016/j.nancom.2020.100298]
[17]
Bahar, A.N.; Wahid, K.A. Design and implementation of approximate DCT architecture in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. (VLSI). Syst., 2020, 28(12), 2530-2539.
[http://dx.doi.org/10.1109/TVLSI.2020.3013724]
[18]
Amirzadeh, Z.; Gholami, M. Analysis and design of the pseudo-random bit generator in the technology of quantum-dot cellular automata. Int. J. Theor. Phys., 2020, 59(1), 29-48.
[http://dx.doi.org/10.1007/s10773-019-04262-w]
[19]
Kandasamy, N.; Ahmad, F.; Ajitha, D.; Raj, B.; Telagam, N. Quantum dot cellular automata-based Scan flip-flop and boundary scan register. J. Inst. Electron. Telecommun. Eng., 2020, 2020, 1831411.
[http://dx.doi.org/10.1080/03772063.2020.1831411]
[20]
Bahar, A.N.; Wahid, K.A. Design of an efficient n× n butterfly switching network in quantum-dot cellular automata (QCA). IEEE Trans. NanoTechnol., 2020, 19, 147-155.
[http://dx.doi.org/10.1109/TNANO.2020.2969166]
[21]
Sadhu, A.; Das, K.; De, D.; Kanjilal, M.R. Area-Delay-Energy aware SRAM memory cell and M× N parallel read/write memory array design for quantum dot cellular automata. Microprocess. Microsyst., 2020, 72, 102944.
[http://dx.doi.org/10.1016/j.micpro.2019.102944]
[22]
Hani, A.; Gholamreza, A.; Mohammad, G. Phase-frequency detector in QCA nanotechnology using novel flip-flop with reset terminal. Int. Nano Lett., 2020, 10(2), 111-118.
[http://dx.doi.org/10.1007/s40089-020-00300-2]
[23]
Yang, B.; Afrooz, S. A new coplanar design of multiplier based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys., 2019, 58(10), 3364-3374.
[http://dx.doi.org/10.1007/s10773-019-04210-8]
[24]
Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Develop., 1961, 5(3), 183-191.
[http://dx.doi.org/10.1147/rd.53.0183]
[25]
Liu, M.; Lent, C.S. Bennett and Landauer clocking in quantum-dot cellular automata. 10th International Workshop on Computational Electronics, 2004 Oct 24-27West Lafayette, USA
[http://dx.doi.org/10.1109/IWCE.2004.1407356]
[26]
Vankamamidi, V.; Ottavi, M.; Lombardi, F. Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 2007, 27(1), 34-44.
[http://dx.doi.org/10.1109/TCAD.2007.907020]
[27]
Seyedi, S.; Darbandi, M.; Navimipour, N.J. Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik, 2019, 185, 827-837.
[http://dx.doi.org/10.1016/j.ijleo.2019.03.029]
[28]
Singh, R.; Sharma, D.K. Design of efficient multilayer RAM cell in QCA framework. Circuit World, 2020, 47(1), 31-41.
[http://dx.doi.org/10.1108/CW-10-2019-0138]
[29]
Devadoss, R.; Paul, K.; Balakrishnan, M. Coplanar QCA crossovers. Electron. Lett., 2009, 45(24), 1234-1235.
[http://dx.doi.org/10.1049/el.2009.2819]
[30]
Bajec, I.L.; Pečar, P. Two-layer synchronized ternary quantum-dot cellular automata wire crossings. Nanoscale Res. Lett., 2012, 7(1), 221.
[http://dx.doi.org/10.1186/1556-276X-7-221 ] [PMID: 22507371]
[31]
Sen, B.; Nag, A.; De, A.; Sikdar, B.K. Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci., 2015, 11, 233-244.
[http://dx.doi.org/10.1016/j.jocs.2015.09.010]
[32]
Srivastava, S.; Chitransh, K.; Sharma, V.K. Block Coding 3B/4B for Digital Communication using Quantum-dot Cellular Automata Technology. In: 3rd International Conference on Signal Processing and Communication (ICPSC); IEEE, 2021, pp. 335-339.
[33]
Hashemi, S.; Navi, K. New robust QCA D flip flop and memory structures. Microelectronics J., 2012, 43(12), 929-940.
[http://dx.doi.org/10.1016/j.mejo.2012.10.007]
[34]
Beigh, M.R.; Mustafa, M.; Ahmad, F. Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst., 2013, 4(2), 29850.
[http://dx.doi.org/10.4236/cs.2013.42020]
[35]
Zhang, Y.; Deng, F.; Cheng, X.; Xie, G. A coplanar XOR using NAND-NOR-inverter and five-input majority voter in quantum-dot cellular automata technology. Int. J. Theor. Phys., 2020, 59(2), 484-501.
[http://dx.doi.org/10.1007/s10773-019-04343-w]
[36]
Khademolhosseini, H.; Nemati, Y. A new design for two-input XOR gate in quantum-dot cellular automata. J. Adv. Comput. Res., 2019, 10(1), 89-96.
[37]
Hashemi, S.; Farazkish, R.; Navi, K. New quantum dot cellular automata cell arrangements. J. Comput. Theor. Nanosci., 2013, 10(4), 798-809.
[http://dx.doi.org/10.1166/jctn.2013.2773]
[38]
Safoev, N.; Jeon, J.C. A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng., 2020, 222, 111197.
[http://dx.doi.org/10.1016/j.mee.2019.111197]
[39]
Wang, L.; Xie, G. A novel XOR/XNOR structure for modular design of QCA circuits. IEEE Trans. Circuits Syst. II Express Briefs, 2020, 67(12), 3327-3331.
[http://dx.doi.org/10.1109/TCSII.2020.2989496]
[40]
Singh, G.; Sarin, R.K.; Raj, B. A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron., 2016, 15(2), 455-465.
[http://dx.doi.org/10.1007/s10825-016-0804-7]
[41]
Khakpour, M.; Gholami, M.; Naghizadeh, S. Parity generator and digital code converter in QCA nanotechnology. Int. Nano Lett., 2020, 10(1), 49-59.
[http://dx.doi.org/10.1007/s40089-019-00292-8]
[42]
Goswami, M.; Kumar, B.; Tibrewal, H.; Mazumdar, S. Efficient realization of digital logic circuit using QCA multiplexer. In: 2nd International Conference on Business and Information Management (ICBIM), 2014 Jan 9-11; IEEE: Durgapur, India, 2014, pp. 165-170.
[http://dx.doi.org/10.1109/ICBIM.2014.6970972]
[43]
Chen, H.; Lv, H.; Zhang, Z.; Cheng, X.; Xie, G. Design and analysis of a novel low-Power exclusive-OR gate based on Quantum-dot Cellular Automata. J. Circuits Syst. Comput., 2019, 28(08), 1950141.
[http://dx.doi.org/10.1142/S021812661950141X]
[44]
Mohammadi, H.; Navi, K. Energy-efficient single-layer QCA logical circuits based on a novel XOR gate. J. Circuits Syst. Comput., 2018, 27(14), 1850216.
[http://dx.doi.org/10.1142/S021812661850216X]
[45]
Majeed, A.H.; Zainal, M.S.; Alkaldy, E.; Nor, D.M. Single-bit comparator in quantum-dot cellular automata (QCA) technology using novel QCA-XNOR gates. J Electron Sci Technol., 2021, 19(3), 100078.
[http://dx.doi.org/10.1016/j.jnlest.2020.100078]
[46]
Sheikhfaal, S.; Angizi, S.; Sarmadi, S.; Moaiyeri, M.H.; Sayedsalehi, S. Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J., 2015, 46(6), 462-471.
[http://dx.doi.org/10.1016/j.mejo.2015.03.016]
[47]
Majeed, A.H.; Zainal, M.S.; Alkaldy, E.; Nor, D.M. Full adder circuit design with novel lower complexity XOR gate in QCA technology. Trans. Electr. Electron. Mater., 2020, 21(2), 198-207.
[http://dx.doi.org/10.1007/s42341-019-00166-y]
[48]
Abutaleb, M.M. Utilizing charge reconfigurations of quantum-dot cells in building blocks to design nanoelectronic adder circuits. Comput. Electr. Eng., 2020, 86, 106712.
[http://dx.doi.org/10.1016/j.compeleceng.2020.106712]
[49]
Safaiezadeh, B.; Mahdipour, E.; Haghparast, M.; Sayedsalehi, S.; Hosseinzadeh, M. Design and simulation of efficient combinational circuits based on a new XOR structure in QCA technology. Opt. Quantum Electron., 2021, 53(12), 1-6.
[http://dx.doi.org/10.1007/s11082-021-03294-z]
[50]
Poorhosseini, M.; Hejazi, A.R. A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput., 2018, 27(07), 1850115.
[http://dx.doi.org/10.1142/S0218126618501153]
[51]
Berarzadeh, M.; Mohammadyan, S.; Navi, K.; Bagherzadeh, N. A novel low power Exclusive-OR via cell level-based design function in quantum cellular automata. J. Comput. Electron., 2017, 16(3), 875-882.
[http://dx.doi.org/10.1007/s10825-017-0986-7]
[52]
Salimzadeh, F.; Heikalabad, S.R. A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology. Opt. Quantum Electron., 2021, 53(8), 1-9.
[http://dx.doi.org/10.1007/s11082-021-03127-z]
[53]
Shu, X.B.; Li, L.N.; Ren, M.M.; Mohammed, B.O. A new binary to gray code converter based on quantum-dot cellular automata nanotechnology. Photonic Netw. Commun., 2021, 41(1), 102-108.
[http://dx.doi.org/10.1007/s11107-020-00915-7]
[54]
Chabi, A.M.; Roohi, A.; Khademolhosseini, H.; Sheikhfaal, S.; Angizi, S.; Navi, K.; DeMara, R.F. Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst., 2017, 49, 127-138.
[http://dx.doi.org/10.1016/j.micpro.2016.09.015]
[55]
Bahar, A.N.; Waheed, S.; Hossain, N.; Asaduzzaman, M. A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex. Eng. J., 2018, 57(2), 729-738.
[http://dx.doi.org/10.1016/j.aej.2017.01.022]
[56]
Roshany, H.R.; Rezai, A. Novel efficient circuit design for multilayer QCA RCA. Int. J. Theor. Phys., 2019, 58(6), 1745-1757.
[http://dx.doi.org/10.1007/s10773-019-04069-9]
[57]
Balali, M.; Rezai, A.; Balali, H.; Rabiei, F.; Emadi, S. Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys., 2017, 7, 1389-1395.
[http://dx.doi.org/10.1016/j.rinp.2017.04.005]
[58]
Gassoumi, I.; Touil, L.; Ouni, B.; Mtibaa, A. An ultra-low power parity generator circuit based on QCA technology. J. Electr. Comput. Eng., 2019, 2019, 1675169.
[http://dx.doi.org/10.1155/2019/1675169]
[59]
Ahmadpour, S.S.; Mosleh, M.; Heikalabad, S.R. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys. B, 2018, 550, 383-392.
[http://dx.doi.org/10.1016/j.physb.2018.09.029]
[60]
Walus, K.; Dysart, T.J.; Jullien, G.A.; Budiman, R.A. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. NanoTechnol., 2004, 3(1), 26-31.
[http://dx.doi.org/10.1109/TNANO.2003.820815]
[61]
Graunke, C.R.; Wheeler, D.I.; Tougaw, D.; Will, J.D. Implementation of a crossbar network using quantum-dot cellular automata. IEEE Trans. NanoTechnol., 2005, 4(4), 435-440.
[http://dx.doi.org/10.1109/TNANO.2005.851278]
[62]
Sharma, V.K. Optimal design for 1: 2n demultiplexer using QCA nanotechnology with energy dissipation analysis. Int. J. Numer. Modell. Electron. Networks Devices Fields., 2021, 34(6), e2907.
[http://dx.doi.org/10.1002/jnm.2907]
[63]
Angizi, S.; Sarmadi, S.; Sayedsalehi, S.; Navi, K. Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J., 2015, 46(1), 43-51.
[http://dx.doi.org/10.1016/j.mejo.2014.10.003]
[64]
Zhang, X.; Elveny, M. A new fingerprint authentication coplanar scheme based on quantum-dot cellular automata. Optik, 2022, 251, 168463.
[http://dx.doi.org/10.1016/j.ijleo.2021.168463]
[65]
Rao, N.G.; Srikanth, P.C.; Sharan, P. A novel quantum dot cellular automata for 4-bit code converters. Optik, 2016, 127(10), 4246-4249.
[http://dx.doi.org/10.1016/j.ijleo.2015.12.119]
[66]
Seyedi, S.; Pourghebleh, B.; Jafari Navimipour, N. A new coplanar design of a 4‐bit ripple carry adder based on quantum‐dot cellular automata technology. IET Circuits Dev. Syst., 2022, 16(1), 64-70.
[http://dx.doi.org/10.1049/cds2.12083]
[67]
Kamrani, H.; Heikalabad, S.R. Design and implementation of multiplication algorithm in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput., 2021, 77(6), 5779-5805.
[http://dx.doi.org/10.1007/s11227-020-03478-6]
[68]
Rahmani, Y.; Heikalabad, S.R.; Mosleh, M. Design of a new multiplexer structure based on a new fault-tolerant majority gate in quantum-dot cellular automata. Opt. Quantum Electron., 2021, 53(9), 1-9.
[http://dx.doi.org/10.1007/s11082-021-03179-1]
[69]
Riyaz, S.; Sharma, V.K. Design of reversible Feynman and double Feynman gates in quantum-dot cellular automata nanotechnology. Circuit World, 2021. [Epub ahead of print].
[http://dx.doi.org/10.1108/CW-08-2020-0199]
[70]
Sharma, V.K.; Pattanaik, M.; Raj, B. PVT variations aware low leakage INDEP approach for nanoscale CMOS circuits. Microelectron. Reliab., 2014, 54(1), 90-99.
[http://dx.doi.org/10.1016/j.microrel.2013.09.018]
[71]
Srivastava, A.; Chandel, R. A novel co-planar five input majority gate design in quantum-dot cellular automata. IETE Tech. Rev., 2021, 20211914205
[http://dx.doi.org/10.1080/02564602.2021.1914205]
[72]
Torres-Torres, C.; Rebollo, N.R.; Castañeda, L.; Trejo-Valdez, M.; Torres-Marínez, R. Exclusive-OR encryption by photoconduction and two-photon absorption in carbon nanotubes. J. Nanosci. Nanotechnol., 2015, 15(2), 1647-1652.
[http://dx.doi.org/10.1166/jnn.2015.9608 ] [PMID: 26353707]
[73]
Khan, A.; Arya, R. Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata. J. Supercomput., 2021, 77, 1714-1738.
[http://dx.doi.org/10.1007/s11227-020-03320-z]
[74]
Kaity, A.; Singh, S. Optimized area efficient quantum dot cellular automata based reversible code converter circuits: Design and energy performance estimation. J. Supercomput., 2021, 77(10), 11160-11186.
[http://dx.doi.org/10.1007/s11227-021-03693-9]
[75]
Zhu, C.; Xie, G.; Zhang, Y. Design and implementation of programmable logic array using crossbar structure in quantum‐dot cellular automata. Int. J. Circuit Theory Appl., 2021, 49(11), 3669-3682.
[http://dx.doi.org/10.1002/cta.3125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy