Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

An Adaptive Fuzzy Neural Network Technique for Coronavirus-based Bio-nano Communication Systems

Author(s): Mohammed S. Alzaidi*, Ghalib H. Alshammri and K. S. Al Noufaey

Volume 19, Issue 1, 2023

Published on: 10 August, 2022

Page: [123 - 131] Pages: 9

DOI: 10.2174/1573413718666220511124559

Price: $65

Abstract

Background: At the end of December 2019, a case of pneumonia of unknown cause was reported in Wuhan, China. A new coronavirus was then identified as the leading cause of this controversial pneumonia, changing how people worldwide live. Although science has achieved significant advances in COVID-19 during the last two years, the world must do much more to prepare for the emergence and development of viruses that may spread rapidly.

Methods: This COVID-19 research project proposes a diagnosis component, an adaptive fuzzy neural network technique, serving as a virus-based bio-nano communication network system that can understand the behavior of the biological and nonbiological processes of COVID-19 virusbased disease diagnosis and detect the pandemic at the early stage. The proposed method also integrates multiple new communication technologies, allowing doctors to monitor and test patients remotely.

Results: As an outcome of this technique, the receiver biological nanomachines can adjust the 1/0-bit detection threshold according to the viruses previously encountered. This adjustment contributes to the resolution of the intersymbol interference issue caused by residual particles that arrive at the receiver owing to previous bit transmission and reception noise. Diffusionbased coronavirus nanonetwork systems are evaluated using MATLAB simulations that consider each detection strategy’s most crucial characteristics of the communication system environment. The proposed technique’s performance is evaluated in the presence of different noisy channel sources, which demonstrate a significant increase in uncoded bit error rate performance when compared to the previous threshold detection systems.

Conclusion: Thus, diffusion-based coronavirus nanonetwork systems can be the future tool to investigate the existence of a specific type of virus that spreads through lung cells in the respiratory system.

Keywords: Adaptive Fuzzy Neural Network; Bio-Nano Network; Diffusion-Based Virus; Virus Concentration; Artificial Intelligence; Noisy and Intersymbol Interference Channel

Graphical Abstract

[1]
Farsad, N.; Yilmaz, H.B.; Eckford, A.; Chae, C.; Guo, W. A comprehensive survey of recent advancements in molecular communication. IEEE Commun. Surv. Tutor., 2016, 18(3), 1887-1919.
[http://dx.doi.org/10.1109/COMST.2016.2527741]
[2]
Kuran, M.S.; Tugcu, T.; Edis, B.O. Calcium signaling: Overview and research directions of a molecular communication paradigm. IEEE Wirel. Commun., 2012, 19(5), 20-27.
[http://dx.doi.org/10.1109/MWC.2012.6339468]
[3]
Unluturk, B.D.; Balasubramaniam, S.; Akyildiz, I.F. The impact of social behavior on the attenuation and delay of bacterial nanonetworks. IEEE Trans. Nanobiosci., 2016, 15(8), 959-969.
[http://dx.doi.org/10.1109/TNB.2016.2627081] [PMID: 27849547]
[4]
Qiu, S.; Haselmayr, W.; Li, B.; Zhao, C.; Guo, W. Bacterial relay for energy-efficient molecular communications. IEEE Trans. Nanobiosci., 2017, 16(7), 555-562.
[http://dx.doi.org/10.1109/TNB.2017.2741669] [PMID: 28829314]
[5]
Liu, Q.; Lu, Z.; Yang, K. Modeling and dual threshold algorithm for diffusion-based molecular MIMO communications. IEEE Trans. Nanobiosci., 2021, 20(4), 416-425.
[http://dx.doi.org/10.1109/TNB.2021.3077297] [PMID: 33945482]
[6]
Yang, K. A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks. IEEE Trans. Mol. Biol. Multiscale. Commun., 2020, 6(2), 107-133.
[http://dx.doi.org/10.1109/TMBMC.2020.3017146]
[7]
Alshammri, G.H.; Ahmed, W.K.M.; Lawrence, V.B. Receiver techniques for diffusion-based molecular nano communications using an adaptive neuro-fuzzy-based multivariate polynomial approximation. IEEE Trans. Mol. Biol. Multiscale. Commun., 2018, 4(3), 140-159.
[http://dx.doi.org/10.1109/TMBMC.2019.2923907]
[8]
Pal, S.; Islam, N.; Misra, S. VIVID: In vivo end-to-end molecular communication model for covid-19. IEEE Transac Mol. Biol. Multi-Scale Commun., 2021, 7(3), 142-152.
[http://dx.doi.org/10.1109/TMBMC.2021.3071767]
[9]
Varshney, N.; Patel, A.; Deng, Y.; Haselmayr, W.; Varshney, P.K.; Nallanathan, A. Abnormality detection inside blood vessels with mobile nanomachines. IEEE TMBMC, 2018, 4(3), 189-194.
[http://dx.doi.org/10.1109/TMBMC.2019.2913399]
[10]
Rudsari, H.K.; Mokari, N.; Javan, M.R.; Jorswieck, E.A.; Orooji, M. Drug release management for dynamic TDMA-based molecular communication. IEEE TMBMC, 2019, 5(3), 233-246.
[http://dx.doi.org/10.1109/TMBMC.2020.2989637]
[11]
Felicetti, L.; Femminella, M.; Reali, G. A simulation tool for nanoscale biological networks. Nano Commun. Netw., 2012, 3, 2-18.
[12]
Khalid, M.; Amin, O.; Ahmed, S.; Alouini, M-S. System modeling of virus transmission and detection in molecular communication channels. IEEE ICC, 2018, 2018, 8422665.
[http://dx.doi.org/10.1109/ICC.2018.8422665]
[13]
Du, S.Q.; Yuan, W. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis. J. Med. Virol., 2020, 92(9), 1615-1628.
[http://dx.doi.org/10.1002/jmv.25866] [PMID: 32356908]
[14]
Zhang, Y.; Yu, L.; Tang, L.; Zhu, M.; Jin, Y.; Wang, Z.; Li, L. A promising anti-cytokine-storm targeted therapy for COVID-19: The artificial-liver blood-purification system. Engineering (Beijing), 2021, 7(1), 11-13.
[15]
Zhao, M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int. J. Antimicrob. Agents, 2020, 55(6), 105982.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105982] [PMID: 32305588]
[16]
Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac. J. Allergy Immunol., 2020, 38(1), 10-18.
[PMID: 32134278]
[17]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[18]
Moll, G.; Drzeniek, N.; Kamhieh-Milz, J.; Geissler, S.; Volk, H.D.; Reinke, P. MSC therapies for COVID-19: Importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Front. Immunol., 2020, 11, 1091.
[http://dx.doi.org/10.3389/fimmu.2020.01091] [PMID: 32574263]
[19]
Ivorra, B.; Ferrández, M.R.; Vela-Pérez, M.; Ramos, A.M. Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun. Nonlinear Sci. Numer. Simul., 2020, 88, 105303.
[http://dx.doi.org/10.1016/j.cnsns.2020.105303] [PMID: 32355435]
[20]
Khoshnaw, S.H.; Salih, R.H.; Sulaimany, S. Mathematical modelling for coronavirus disease (COVID-19) in predicting future behaviours and sensitivity analysis. Math. Model. Nat. Phenom., 2020, 15, 13.
[21]
Ali, A.; Alshammari, F.S.; Islam, S.; Khan, M.A.; Ullah, S. Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative. Results Phys., 2021, 20, 103669.
[http://dx.doi.org/10.1016/j.rinp.2020.103669] [PMID: 33520621]
[22]
Lu, Z.; Yu, Y.; Chen, Y.; Ren, G.; Xu, C.; Wang, S.; Yin, Z. A fractional-order SEIHDR model for COVID-19 with inter-city networked coupling effects. Nonlinear Dyn., 2020, 101(3), 1717-1730.
[http://dx.doi.org/10.1007/s11071-020-05848-4] [PMID: 32836817]
[23]
Zhao, S.; Chen, H. Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant. Biol., 2020, 8(1), 1-9.
[http://dx.doi.org/10.1007/s40484-020-0199-0] [PMID: 32219006]
[24]
Vargas, E.A.H.; Velasco-Hernandez, X. In-host modelling of covid-19 kinetics in humans medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.26.20044487]
[25]
Li, C.; Xu, J.; Liu, J.; Zhou, Y. The within-host viral kinetics of SARS-CoV-2 bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.29.965418]
[26]
Khalid, M.; Amin, O.; Ahmed, S.; Shihada, B.; Alouini, M-S. Communication through breath: Aerosol transmission. IEEE Commun. Mag., 2019, 57(2), 33-39.
[http://dx.doi.org/10.1109/MCOM.2018.1800530]
[27]
Khalid, M.; Amin, O.; Ahmed, S.; Shihada, B.; Alouini, M-S. Modeling of viral aerosol transmission and detection. IEEE Trans. Commun., 2020, 2020, 2994191.
[http://dx.doi.org/10.1109/TCOMM.2020.2994191]
[28]
Hofmann, W. Modelling inhaled particle deposition in the human lung—A review. J. Aerosol Sci., 2011, 42(10), 693-724.
[http://dx.doi.org/10.1016/j.jaerosci.2011.05.007]
[29]
Kolanjiyil, A.V.; Kleinstreuer, C. Computational analysis of aerosol-dynamics in a human whole-lung airway model. J. Aerosol Sci., 2017, 114, 301-316.
[http://dx.doi.org/10.1016/j.jaerosci.2017.10.001]
[30]
Bui, Vu Khac Hoang Prediction of aerosol deposition in the human respiratory tract via computational models: A review with recent updates. Atmosphere, 2020, 11(2), 137.
[http://dx.doi.org/10.3390/atmos11020137]
[31]
Islam, Mohammad.S. A review of respiratory anatomical development, air flow characterization and particle deposition. Int. J. Environ. Res. Public Health, 2020, 17(2), 380.
[http://dx.doi.org/10.3390/ijerph17020380]
[32]
Chen, C. Modeling person-to-person contaminant transport in enclosed environments., PhD diss., Purdue University 2015.
[33]
Kolanjiyil, A.V.; Kleinstreuer, C. Modeling airflow and particle deposition in a human acinar region. Comput. Math. Methods Med., 2019, 2019, 5952941.
[http://dx.doi.org/10.1155/2019/5952941] [PMID: 30755779]
[34]
Wang, N.; Er, M.J.; Han, M. Generalized single-hidden layer feedforward networks for regression problems. IEEE Trans. Neural Netw. Learn. Syst., 2015, 26(6), 1161-1176.
[http://dx.doi.org/10.1109/TNNLS.2014.2334366] [PMID: 25051564]
[35]
Brand-Saberi, B.E.M.; Schäfer, T. Trachea: Anatomy and physiology. Thorac. Surg. Clin., 2014, 24(1), 1-5.
[http://dx.doi.org/10.1016/j.thorsurg.2013.09.004] [PMID: 24295654]
[36]
Wang, N.; Er, M.J.; Han, M. Parsimonious extreme learning machine using recursive orthogonal least squares. IEEE Trans. Neural Netw. Learn. Syst., 2014, 25(10), 1828-1841.
[http://dx.doi.org/10.1109/TNNLS.2013.2296048] [PMID: 25291736]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy