Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Current Views on Oncolytic Adenoviruses for Cancer Therapy

Author(s): Sankha Bhattacharya*

Volume 18, Issue 4, 2022

Published on: 23 August, 2022

Page: [262 - 272] Pages: 11

DOI: 10.2174/1573394718666220511115638

Price: $65

Abstract

Oncolytic viruses replicate and spread in tumors at the same time, resulting in increased cytotoxicity and the reversal of tumor immune suppression. Among other viruses, recombinant adenoviruses replicated in tumor cells were clinically tested via intratumoral or systemic administration. Although oncolytic virus replication kills tumor cells on its own, it may also activate the immune system, which can aid in tumor control. Viruses can be modified to improve their selectivity and effectiveness. Adenovirus genomes can be easily designed to incorporate various tumor-targeting pathways and therapeutic transgenes to improve antitumor properties. Poor tumor targeting, intratumoral expansion, and virocentric immune responses are all linked to low efficacy. As a result, more effective oncolytic adenoviruses that can be used alone or in combination with chemotherapy or immunotherapy are needed. Oncolytic Adenovirus (OAds) has long been considered a potential biotherapeutic agent against various cancers due to its ability to replicate cancer cells while remaining dormant in healthy cells selectively. In recent years, several preclinical studies using genetic engineering technology have increased antitumor OAds in various cancers. Systemic OAds administration is hampered by poor targeting tropism to healthy tissues, low-level ad receptors on tumor cells, and pre-existing neutralizing antibodies. Various discoveries have been made to overcome these barriers, including stem cells, nanoparticles, polymer shielding, extracellular vesicles, hydrogels, and microparticles (MPs). These carriers may improve Oncolytic viruses’ therapeutic efficacy by improving transfection, circulatory survival, cellular interactions, specific targeting, and immune response. The structure and biology of adenoviruses, the different types of OAds, and the efficacy of different carriers in the systemic administration of OAds were all examined in this review.

Keywords: Adenovirus, heparan sulfate proteoglycans (HSPGs), oncolytic Adenovirus (OAds), microparticles (MPs), CD46, conserved region (CR2)

Graphical Abstract

[1]
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 2017; 168(4): 644-56.
[http://dx.doi.org/10.1016/j.cell.2017.01.002] [PMID: 28187286]
[2]
Patil T, Smith DE, Bunn PA, et al. The incidence of brain metastases in stage IV ROS1-rearranged non-small cell lung cancer and rate of central nervous system progression on crizotinib. J Thorac Oncol 2018; 13(11): 1717-26.
[http://dx.doi.org/10.1016/j.jtho.2018.07.001] [PMID: 29981925]
[3]
Liu S, Liu J, Xie Y, et al. MEScan: A powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations. Bioinformatics 2021; 37(9): 1189-97.
[http://dx.doi.org/10.1093/bioinformatics/btaa957] [PMID: 33165532]
[4]
Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 2012; 1822(5): 753-83.
[http://dx.doi.org/10.1016/j.bbadis.2011.11.002] [PMID: 22108204]
[5]
Diaz-Cano SJ. Tumor heterogeneity: Mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13(2): 1951-2011.
[http://dx.doi.org/10.3390/ijms13021951] [PMID: 22408433]
[6]
Aslankoohi N, Mondal D, Rizkalla AS, Mequanint K. Bone repair and regenerative biomaterials: Towards recapitulating the microenvironment. Polymers (Basel) 2019; 11(9): 1437.
[http://dx.doi.org/10.3390/polym11091437] [PMID: 31480693]
[7]
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36(3): 171-98.
[http://dx.doi.org/10.1007/s10585-019-09966-1] [PMID: 30972526]
[8]
Lin A, Sheltzer JM. Discovering and validating cancer genetic dependencies: Approaches and pitfalls. Nat Rev Genet 2020; 21(11): 671-82.
[http://dx.doi.org/10.1038/s41576-020-0247-7] [PMID: 32561862]
[9]
Meyer K, Kirchner M, Uyar B, et al. Mutations in disordered regions can cause disease by creating dileucine motifs. Cell 2018; 175(1): 239-53.
[http://dx.doi.org/10.1016/j.cell.2018.08.019] [PMID: 30197081]
[10]
Saei Ghare Naz M, Kariman N, Ebadi A, Ozgoli G, Ghasemi V, Rashidi Fakari F. Educational interventions for cervical cancer screening behavior of women: A systematic review. Asian Pac J Cancer Prev 2018; 19(4): 875-84.
[http://dx.doi.org/10.22034/APJCP.2018.19.4.875] [PMID: 29693331]
[11]
Harris CC. Structure and function of the p53 tumor suppressor gene: Clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88(20): 1442-55.
[http://dx.doi.org/10.1093/jnci/88.20.1442] [PMID: 8841019]
[12]
Jager L, Ehrhardt A. Emerging adenoviral vectors for stable correction of genetic disorders. Curr Gene Ther 2007; 7(4): 272-83.
[http://dx.doi.org/10.2174/156652307781369074] [PMID: 17969560]
[13]
Takahashi T, Suzuki T. Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011: 245090.
[http://dx.doi.org/10.1155/2011/245090] [PMID: 22191032]
[14]
Kim M, Zinn KR, Barnett BG, et al. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of prima-ry adenovirus receptors on tumour cells. Eur J Cancer 2002; 38(14): 1917-26.
[http://dx.doi.org/10.1016/S0959-8049(02)00131-4] [PMID: 12204675]
[15]
Ulasov IV, Borovjagin AV, Schroeder BA, Baryshnikov AY. Oncolytic adenoviruses: A thorny path to glioma cure. Genes Dis 2014; 1(2): 214-26.
[http://dx.doi.org/10.1016/j.gendis.2014.09.009] [PMID: 25685829]
[16]
Nestić D, Uil TG, Ma J, et al. αvβ3 integrin is required for efficient infection of epithelial cells with human adenovirus type 26. J Virol 2018; 93(1): e01474-18.
[http://dx.doi.org/10.1128/JVI.01474-18] [PMID: 30333171]
[17]
Pesonen S, Kangasniemi L, Hemminki A. Oncolytic adenoviruses for the treatment of human cancer: Focus on translational and clinical data. Mol Pharm 2011; 8(1): 12-28.
[http://dx.doi.org/10.1021/mp100219n] [PMID: 21126047]
[18]
Delwar Z, Zhang K, Rennie PS, Jia W. Oncolytic virotherapy for urological cancers. Nat Rev Urol 2016; 13(6): 334-52.
[http://dx.doi.org/10.1038/nrurol.2016.84] [PMID: 27215429]
[19]
Kuhn I, Harden P, Bauzon M, et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008; 3(6): e2409.
[http://dx.doi.org/10.1371/journal.pone.0002409] [PMID: 18560559]
[20]
Kaján GL, Doszpoly A, Tarján ZL, Vidovszky MZ, Papp T. Virus-host coevolution with a focus on animal and human DNA viruses. J Mol Evol 2020; 88(1): 41-56.
[http://dx.doi.org/10.1007/s00239-019-09913-4] [PMID: 31599342]
[21]
Wang H, Yoshimatsu K, Ebihara H, et al. Genetic diversity of hantaviruses isolated in China and characterization of novel hantaviruses isolated from Niviventer confucianus and Rattus rattus. Virology 2000; 278(2): 332-45.
[http://dx.doi.org/10.1006/viro.2000.0630] [PMID: 11118357]
[22]
Li S, Du L, Xia J, et al. Antigenic and pathogenic characteristics of QX-type avian infectious bronchitis virus strains isolated in southwestern China. Viruses 2019; 11(12): 1154.
[http://dx.doi.org/10.3390/v11121154] [PMID: 31847269]
[23]
Sun W, Shi Q, Zhang H, et al. Advances in the techniques and methodologies of cancer gene therapy. Discov Med 2019; 27(146): 45-55.
[PMID: 30721651]
[24]
Guion L. Defining the Late Stages of Human Papillomavirus Entry: Microtubule Trafficking and Role of Promyelocytic Leukemia Nuclear Bodies. Louisiana State University Health Sciences Center-Shreveport 2019.
[25]
Guimet D. The adenovirus L4-22K protein serves as the master regulator to coordinate late gene expression and viral DNA Packaging. Stony Brook, NY: The Graduate School, Stony Brook University 2014.
[26]
Cotmore SF, Tattersall P. Encapsidation of minute virus of mice DNA: Aspects of the translocation mechanism revealed by the structure of partially packaged genomes. Virology 2005; 336(1): 100-12.
[http://dx.doi.org/10.1016/j.virol.2005.03.007] [PMID: 15866075]
[27]
Georgi F, Greber UF. The Adenovirus Death Protein - a small membrane protein controls cell lysis and disease. FEBS Lett 2020; 594(12): 1861-78.
[http://dx.doi.org/10.1002/1873-3468.13848] [PMID: 32472693]
[28]
Abdullah G. The detection of meningococcal disease through identification of antimicrobial peptides using an in silico model creation University of the Western Cap 2019. Available form: http://etd.uwc.ac.za/xmlui/handle/11394/7079
[29]
Fong TT, Lipp EK. Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 2005; 69(2): 357-71.
[http://dx.doi.org/10.1128/MMBR.69.2.357-371.2005] [PMID: 15944460]
[30]
Zhou YC, Zhang YN, Yang X, Wang SB, Hu PY. Delivery systems for enhancing oncolytic adenoviruses efficacy. Int J Pharm 2020; 591: 119971.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119971] [PMID: 33059014]
[31]
Nakamura T, Sato K, Hamada H. Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J Virol 2003; 77(4): 2512-21.
[http://dx.doi.org/10.1128/JVI.77.4.2512-2521.2003] [PMID: 12551989]
[32]
Hensen LCM, Hoeben RC, Bots STF. Adenovirus receptor expression in cancer and its multifaceted role in oncolytic adenovirus therapy. Int J Mol Sci 2020; 21(18): 6828.
[http://dx.doi.org/10.3390/ijms21186828] [PMID: 32957644]
[33]
Aguirre-Hernández C, Maya-Pineda H, Millán JS, Man YKS, Lu YJ, Halldén G. Sensitisation to mitoxantrone-induced apoptosis by the on-colytic adenovirus Ad∆∆ through Bcl-2-dependent attenuation of autophagy. Oncogenesis 2018; 7(1): 6.
[http://dx.doi.org/10.1038/s41389-017-0020-8] [PMID: 29362360]
[34]
Cattaneo R, Miest T, Shashkova EV, Barry MA. Reprogrammed viruses as cancer therapeutics: Targeted, armed and shielded. Nat Rev Microbiol 2008; 6(7): 529-40.
[http://dx.doi.org/10.1038/nrmicro1927] [PMID: 18552863]
[35]
Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19(1): 2-12.
[http://dx.doi.org/10.1038/sj.onc.1203251] [PMID: 10644974]
[36]
Everts B, van der Poel HG. Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther 2005; 12(2): 141-61.
[http://dx.doi.org/10.1038/sj.cgt.7700771] [PMID: 15472714]
[37]
Sakurai F, Nishimae F, Takayama K, Mizuguchi H. Optimization of an E1A gene expression cassette in an oncolytic adenovirus for efficient tumor cell killing activity. Anticancer Res 2021; 41(2): 773-82.
[http://dx.doi.org/10.21873/anticanres.14829] [PMID: 33517282]
[38]
Magalhaes I, Yogev O, Mattsson J, Schurich A. The metabolic profile of tumor and virally infected cells shapes their microenvironment counteracting T cell immunity. Front Immunol 2019; 10: 2309.
[http://dx.doi.org/10.3389/fimmu.2019.02309] [PMID: 31636636]
[39]
Stacey AR, Norris PJ, Qin L, et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 2009; 83(8): 3719-33.
[http://dx.doi.org/10.1128/JVI.01844-08] [PMID: 19176632]
[40]
Chiocca EA, Abbed KM, Tatter S, et al. A phase I open-label, doseescalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004; 10(5): 958-66.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.021] [PMID: 15509513]
[41]
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506: 33-43.
[http://dx.doi.org/10.1016/j.cca.2020.03.001] [PMID: 32142718]
[42]
Stepanenko AA, Chekhonin VP. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257: 40-51.
[http://dx.doi.org/10.1016/j.virusres.2018.08.012] [PMID: 30125593]
[43]
Li Y, Chen Y, Dilley J, et al. Carcinoembryonic antigen-producing cell-specific oncolytic adenovirus, OV798, for colorectal cancer therapy. Mol Cancer Ther 2003; 2(10): 1003-9.
[PMID: 14578465]
[44]
Hársi CM, Rolim DP, Gomes SA, et al. Adenovirus genome types isolated from stools of children with gastroenteritis in São Paulo, Brazil. J Med Virol 1995; 45(2): 127-34.
[http://dx.doi.org/10.1002/jmv.1890450203] [PMID: 7775929]
[45]
Marchini A, Scott EM, Rommelaere J. Overcoming barriers in oncolytic virotherapy with HDAC inhibitors and immune checkpoint blockade. Viruses 2016; 8(1): 9.
[http://dx.doi.org/10.3390/v8010009] [PMID: 26751469]
[46]
Wei MQ, Ren R, Good D, Anné J. Clostridial spores as live ‘Trojan horse’ vectors for cancer gene therapy: Comparison with viral delivery systems. Genet Vaccines Ther 2008; 6: 8.
[http://dx.doi.org/10.1186/1479-0556-6-8] [PMID: 18279524]
[47]
Wong CM. Improving adenovirus efficacy with p14 fusion associated small transmembrane protein expression for cancer treatment. Phd Theses Ottawa, University of Ottawa 2015.
[48]
Kwon OJ, Kang E, Choi JW, Kim SW, Yun CO. Therapeutic targeting of chitosan-PEG-folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy. J Control Release 2013; 169(3): 257-65.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.030] [PMID: 23562633]
[49]
Plaks V, Kong N, Werb Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16(3): 225-38.
[http://dx.doi.org/10.1016/j.stem.2015.02.015] [PMID: 25748930]
[50]
Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol 2017; 8: 1.
[http://dx.doi.org/10.3389/fphar.2017.00001] [PMID: 28149278]
[51]
Yang X, Wang H, Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget 2017; 8(6): 10675-91.
[http://dx.doi.org/10.18632/oncotarget.12893] [PMID: 27793013]
[52]
Matsumoto A, Asuka M, Takahashi Y, Takakura Y. Antitumor immunity by small extracellular vesicles collected from activated dendritic cells through effective induction of cellular and humoral immune responses. Biomaterials 2020; 252: 120112.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120112] [PMID: 32422494]
[53]
Ranganath SH, Kee I, Krantz WB, Chow PK, Wang CH. Hydrogel matrix entrapping PLGA-paclitaxel microspheres: Drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy. Pharm Res 2009; 26(9): 2101-14.
[http://dx.doi.org/10.1007/s11095-009-9922-2] [PMID: 19543956]
[54]
García-Castro J, Alemany R, Cascalló M, et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: An exploratory study. Cancer Gene Ther 2010; 17(7): 476-83.
[http://dx.doi.org/10.1038/cgt.2010.4] [PMID: 20168350]
[55]
Xiao W, Dong W, Zhang C, et al. Effects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells. Eur J Med Res 2013; 18(1): 61.
[http://dx.doi.org/10.1186/2047-783X-18-61] [PMID: 24359553]
[56]
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting can-cer-associated fibroblasts. Cancer Discov 2019; 9(8): 1102-23.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0094] [PMID: 31197017]
[57]
Styczyński J, Tridello G, Xhaard A, et al. Use of letermovir in off-label indications: Infectious diseases working party of European society of blood and marrow transplantation retrospective study. Bone Marrow Transplant 2021; 56(5): 1171-9.
[http://dx.doi.org/10.1038/s41409-020-01166-w] [PMID: 33288863]
[58]
Ahmed A, Thompson J, Emiliusen L, et al. A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization. Nat Biotechnol 2003; 21(7): 771-7.
[http://dx.doi.org/10.1038/nbt835] [PMID: 12794639]
[59]
Tan K, Zhu H, Zhang J, et al. CD73 Expression on mesenchymal stem cells dictates the reparative properties via its anti-inflammatory activity. Stem Cells Int 2019; 2019: 8717694.
[http://dx.doi.org/10.1155/2019/8717694] [PMID: 31249602]
[60]
Tyler MA, Ulasov IV, Sonabend AM, et al. Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther 2009; 16(2): 262-78.
[http://dx.doi.org/10.1038/gt.2008.165] [PMID: 19078993]
[61]
Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ. MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 2018; 38(7): 1125-48.
[http://dx.doi.org/10.1177/0271678X18773871] [PMID: 29708005]
[62]
Mooney R, Majid AA, Batalla-Covello J, et al. Enhanced delivery of oncolytic adenovirus by neural stem cells for treatment of metastatic ovarian cancer. Mol Ther Oncolytics 2018; 12: 79-92. [Erratum in: Mol Ther Oncolytics 2020 Jun 11; 17: 508.
[PMID: 30719498] [PMCID: PMC6350263] [http://dx.doi.org/10.1016/j.omto.2018.12.003] [PMID: 30719498]
[63]
Gutova M, Flores L, Adhikarla V, et al. Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma. Front Oncol 2019; 9: 68.
[http://dx.doi.org/10.3389/fonc.2019.00068] [PMID: 30838174]
[64]
Ahmed N, Brawley V, Hegde M, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: A phase 1 doseescalation trial. JAMA Oncol 2017; 3(8): 1094-101.
[http://dx.doi.org/10.1001/jamaoncol.2017.0184] [PMID: 28426845]
[65]
Kim J, Hall RR, Lesniak MS, Ahmed AU. Stem cell-based cell carrier for targeted oncolytic virotherapy: Translational opportunity and open questions. Viruses 2015; 7(12): 6200-17.
[http://dx.doi.org/10.3390/v7122921] [PMID: 26633462]
[66]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[67]
Li Y, Ogris M, Wagner E, Pelisek J, Rüffer M. Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: Preparation and in vitro evaluation. Int J Pharm 2003; 259(1-2): 93-101.
[http://dx.doi.org/10.1016/S0378-5173(03)00211-4] [PMID: 12787639]
[68]
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2020; 207: 107456.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107456] [PMID: 31863820]
[69]
Kok MR, Voutetakis A, Yamano S, et al. Immune responses following salivary gland administration of recombinant adeno-associated virus serotype 2 vectors. J Gene Med 2005; 7(4): 432-41.
[http://dx.doi.org/10.1002/jgm.678] [PMID: 15515118]
[70]
Liu Y, Sun J, Cao W, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 2011; 421(1): 160-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.006] [PMID: 21945183]
[71]
das Neves J, Nunes R, Machado A, Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev 2015; 92: 53-70.
[http://dx.doi.org/10.1016/j.addr.2014.12.004] [PMID: 25550217]
[72]
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98: 733-45.
[http://dx.doi.org/10.1016/j.biopha.2017.12.090] [PMID: 29306211]
[73]
Lundstrom K. RNA viruses as tools in gene therapy and vaccine development. Genes (Basel) 2019; 10(3): 189.
[http://dx.doi.org/10.3390/genes10030189] [PMID: 30832256]
[74]
Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017; 3(1): 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[75]
Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 2010; 16(4): 371-83.
[http://dx.doi.org/10.1089/ten.teb.2009.0639] [PMID: 20121414]
[76]
O’Shea CC, Johnson L, Bagus B, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6(6): 611-23.
[http://dx.doi.org/10.1016/j.ccr.2004.11.012] [PMID: 15607965]
[77]
Wang J, Chang Y, Luo H, et al. Designing immunogenic nanotherapeutics for photothermal-triggered immunotherapy involving reprogramming immunosuppression and activating systemic antitumor responses. Biomaterials 2020; 255: 120153.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120153] [PMID: 32540757]
[78]
Obregon C, Rothen-Rutishauser B, Gerber P, Gehr P, Nicod LP. Active uptake of dendritic cell-derived exovesicles by epithelial cells induces the release of inflammatory mediators through a TNF-alpha-mediated pathway. Am J Pathol 2009; 175(2): 696-705.
[http://dx.doi.org/10.2353/ajpath.2009.080716] [PMID: 19628765]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy