Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Trends of Receptor Tyrosine Kinase Researches Based on Bibliometric Analysis

Author(s): Ying Li, Hui Fang, Ju Wang, Yue-Hua Wan and Guo-Wu Rao*

Volume 20, Issue 3, 2023

Published on: 16 August, 2022

Page: [250 - 259] Pages: 10

DOI: 10.2174/1570193X19666220510115438

Price: $65

Abstract

Malignant tumor is one of the diseases threatening human life and health. Traditional antitumor therapy has some limitations in clinical application, so the development of targeted antitumor drugs has become one of the important research directions in cancer medicine. Since the first tyrosine kinase inhibitor was approved in 2001, this research field has attracted global attention. In this survey, the Web of Science database was adopted to make a bibliometric analysis of the global scientific production of receptor tyrosine kinases in recent 20 years. A total of 14378 documents related to the subject were retrieved and analyzed according to six main aspects: area, journal, country, institution, authors, and keywords. The results showed United States as currently in a leading position in this field and to establish the largest cooperation network with other countries. Harvard University has made the greatest contribution to the field of receptor tyrosine kinases, including the number of publications, the average number of citations per paper, and the h-index. Besides, PLOS One ranked first among the top 15 academic journals in the number of publications related to receptor tyrosine kinases during the survey period. Our research comprehensively evaluates the research status and cooperation network of receptor tyrosine kinases, hoping to help researchers in guiding their projects or finding potential collaborators.

Keywords: Malignant tumors, receptor tyrosine kinase, bibliometrics, Web of Science.

[1]
Da Costa, R.; De Almeida, S.; Chevarin, M.; Hadj-Rabia, S.; Leclerc-Mercier, S.; Thauvin-Robinet, C.; Garrido, C.; Faivre, L.; Vabres, P.; Duplomb, L.; Jego, G. Neutralization of HSF1 in cells from PIK3CA-related overgrowth spectrum patients blocks abnormal proliferation. Biochem. Biophys. Res. Commun., 2020, 530(3), 520-526.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.146 ] [PMID: 32620236]
[2]
Taylor, C.; Correa, C.; Duane, F.K.; Aznar, M.C.; Anderson, S.J.; Bergh, J.; Dodwell, D.; Ewertz, M.; Gray, R.; Jagsi, R.; Pierce, L.; Pritchard, K.I.; Swain, S.; Wang, Z.; Wang, Y.; Whelan, T.; Peto, R.; McGale, P. Early Breast Cancer Trialists’ Collaborative Group. Estimating the risks of breast cancer radiotherapy: Evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J. Clin. Oncol., 2017, 35(15), 1641-1649.
[http://dx.doi.org/10.1200/JCO.2016.72.0722 ] [PMID: 28319436]
[3]
Madapa, S.; Tusi, Z.; Mishra, A.; Srivastava, K.; Pandey, S.K.; Tripathi, R.; Puri, S.K.; Batra, S. Search for new pharmacophores for antimalarial activity. Part II: Synthesis and antimalarial activity of new 6-ureido-4-anilinoquinazolines. Bioorg. Med. Chem., 2009, 17(1), 222-234.
[http://dx.doi.org/10.1016/j.bmc.2008.11.005 ] [PMID: 19041250]
[4]
Bodnar, R.J. Epidermal growth factor and epidermal growth factor receptor: The yin and yang in the treatment of cutaneous wounds and cancer. Adv. Wound Care (New Rochelle), 2013, 2(1), 24-29.
[http://dx.doi.org/10.1089/wound.2011.0326 ] [PMID: 24527320]
[5]
Henriksen, L.; Grandal, M.V.; Knudsen, S.L.; van Deurs, B.; Grøvdal, L.M. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS One, 2013, 8(3), e58148
[http://dx.doi.org/10.1371/journal.pone.0058148 ] [PMID: 23472148]
[6]
Riese, D.J., II; Bermingham, Y.; van Raaij, T.M.; Buckley, S.; Plowman, G.D.; Stern, D.F. Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene, 1996, 12(2), 345-353.
[http://dx.doi.org/10.1016/0014-5793(95)01500-0 ] [PMID: 8570211]
[7]
Strachan, L.; Murison, J.G.; Prestidge, R.L.; Sleeman, M.A.; Watson, J.D.; Kumble, K.D. Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily. J. Biol. Chem., 2001, 276(21), 18265-18271.
[http://dx.doi.org/10.1074/jbc.M006935200 ] [PMID: 11278323]
[8]
McGowan, P.M.; Mullooly, M.; Caiazza, F.; Sukor, S.; Madden, S.F.; Maguire, A.A.; Pierce, A.; McDermott, E.W.; Crown, J.; O’Donovan, N.; Duffy, M.J. ADAM-17: A novel therapeutic target for triple negative breast cancer. Ann. Oncol., 2013, 24(2), 362-369.
[http://dx.doi.org/10.1093/annonc/mds279 ] [PMID: 22967992]
[9]
Traxler, P.; Bold, G.; Buchdunger, E.; Caravatti, G.; Furet, P.; Manley, P.; O’Reilly, T.; Wood, J.; Zimmermann, J. Tyrosine kinase inhibitors: From rational design to clinical trials. Med. Res. Rev., 2001, 21(6), 499-512.
[http://dx.doi.org/10.1002/med.1022 ] [PMID: 11607931]
[10]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8 ] [PMID: 11057895]
[11]
Hussain, A.; Yu, L.; Faryal, R.; Mohammad, D.K.; Mohamed, A.J.; Smith, C.I.E. TEC family kinases in health and disease--loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. FEBS J., 2011, 278(12), 2001-2010.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08134.x ] [PMID: 21518255]
[12]
Hussain, A.; Mohammad, D.K.; Gustafsson, M.O.; Uslu, M.; Hamasy, A.; Nore, B.F.; Mohamed, A.J.; Smith, C.I.E. Signaling of the ITK (interleukin 2-inducible T cell kinase)-SYK (spleen tyrosine kinase) fusion kinase is dependent on adapter SLP-76 and on the adapter function of the kinases SYK and ZAP70. J. Biol. Chem., 2013, 288(10), 7338-7350.
[http://dx.doi.org/10.1074/jbc.M112.374967 ] [PMID: 23293025]
[13]
Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer, 2018, 17(1), 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4 ] [PMID: 29455648]
[14]
Gotink, K.J.; Verheul, H.M.W. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis, 2010, 13(1), 1-14.
[http://dx.doi.org/10.1007/s10456-009-9160-6 ] [PMID: 20012482]
[15]
Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer, 2018, 17(1), 36.
[http://dx.doi.org/10.1186/s12943-018-0801-5 ] [PMID: 29455664]
[16]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011 ] [PMID: 20602996]
[17]
Arteaga, C.L. Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia. Semin. Oncol., 2002, 29(5)(Suppl. 14), 3-9.
[http://dx.doi.org/10.1016/S0093-7754(02)70085-7 ] [PMID: 12422308]
[18]
Wu, S.; Fu, L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol. Cancer, 2018, 17(1), 25.
[http://dx.doi.org/10.1186/s12943-018-0775-3 ] [PMID: 29455646]
[19]
Leich, E.; Schreder, M.; Pischimarov, J.; Stühmer, T.; Steinbrunn, T.; Rudelius, M.; Brünnert, D.; Chatterjee, M.; Langer, C.; Keppler, S.; Heredia-Guerrero, S.C.; Einsele, H.; Knop, S.; Bargou, R.C.; Rosenwald, A. Novel molecular subgroups within the context of receptor tyrosine kinase and adhesion signalling in multiple myeloma. Blood Cancer J., 2021, 11(3), 51.
[http://dx.doi.org/10.1038/s41408-021-00442-2 ] [PMID: 33664224]
[20]
Huang, Y.; Zhou, M.; Deng, Q.; Zhang, J.; Zhou, P.; Shang, X. Bibliometric analysis for the literature of traditional Chinese medicine in PubMed. Scientometrics, 2015, 105(1), 557-566.
[http://dx.doi.org/10.1007/s11192-015-1686-3]
[21]
Hernandez-Garcia, Y.I.; Chamizo, J.A.; Kleiche-Dray, M.; Russell, J.M. The scientific impact of mexican steroid research 1935–1965: A bibliometric and historiographic analysis. J. Assoc. Inf. Sci. Technol., 2016, 67(5), 1245-1256.
[http://dx.doi.org/10.1002/asi.23493]
[22]
Chen, H.; Wan, Y.; Jiang, S.; Cheng, Y. Alzheimer’s disease research in the future: Bibliometric analysis of cholinesterase inhibitors from 1993 to 2012. Scientometrics, 2014, 98(3), 1865-1877.
[http://dx.doi.org/10.1007/s11192-013-1132-3]
[23]
Heradio, R.; de la Torre, L.; Galan, D.; Cabrerizo, F.J.; Herrera-Viedma, E.; Dormido, S. Virtual and remote labs in education: A bibliometric analysis. Comput. Educ., 2016, 98, 14-38.
[http://dx.doi.org/10.1016/j.compedu.2016.03.010]
[24]
Chen, H-Q.; Wang, X.; He, L.; Chen, P.; Wan, Y.; Yang, L.; Jiang, S. Chinese energy and fuels research priorities and trend: A bibliometric analysis. Renew. Sustain. Energy Rev., 2016, 58, 966-975.
[http://dx.doi.org/10.1016/j.rser.2015.12.239]
[25]
Ramos-Rodríguez, A-R.; Ruíz-Navarro, J. Changes in the intellectual structure of strategic management research: A bibliometric study of the Strategic Management Journal, 1980–2000. Strateg. Manage. J., 2004, 25(10), 981-1004.
[http://dx.doi.org/10.1002/smj.397]
[26]
Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P.; Bachrach, D.G. Scholarly influence in the field of management: A bibliometric analysis of the determinants of university and author impact in the management literature in the past quarter century. J. Manage., 2008, 34(4), 641-720.
[http://dx.doi.org/10.1177/0149206308319533]
[27]
Newby, G.B.; Greenberg, J.; Jones, P. Open source software development and Lotka’s Law: Bibliometric patterns in programming. J. Am. Soc. Inf. Sci. Technol., 2003, 54(2), 169-178.
[http://dx.doi.org/10.1002/asi.10177]
[28]
Franceschet, M. A comparison of bibliometric indicators for computer science scholars and journals on Web of Science and Google Scholar. Scientometrics, 2010, 83(1), 243-258.
[http://dx.doi.org/10.1007/s11192-009-0021-2]
[29]
Franceschet, M. The skewness of computer science. Inf. Process. Manage., 2011, 47(1), 117-124.
[http://dx.doi.org/10.1016/j.ipm.2010.03.003]
[30]
Bao, G.; Fang, H.; Chen, L.; Wan, Y.; Xu, F.; Yang, Q.; Zhang, L. Soft robotics: Academic insights and perspectives through bibliometric analysis. Soft Robot., 2018, 5(3), 229-241.
[http://dx.doi.org/10.1089/soro.2017.0135 ] [PMID: 29782219]
[31]
Cundy, T.P.; Harley, S.J.D.; Marcus, H.J.; Hughes-Hallett, A.; Khurana, S. Global trends in paediatric robot-assisted urological surgery: A bibliometric and Progressive Scholarly Acceptance analysis. J. Robot. Surg., 2018, 12(1), 109-115.
[http://dx.doi.org/10.1007/s11701-017-0703-3 ] [PMID: 28455800]
[32]
Esteban-Villarrubia, J.; Soto-Castillo, J.J.; Pozas, J.; San Román-Gil, M.; Orejana-Martín, I.; Torres-Jiménez, J.; Carrato, A.; Alonso-Gordoa, T.; Molina-Cerrillo, J. Tyrosine kinase receptors in oncology. Int. J. Mol. Sci., 2020, 21(22), 8529.
[http://dx.doi.org/10.3390/ijms21228529 ] [PMID: 33198314]
[33]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol. Res., 2020, 152, 104609
[http://dx.doi.org/10.1016/j.phrs.2019.104609 ] [PMID: 31862477]
[34]
Carles, F.; Bourg, S.; Meyer, C.; Bonnet, P. PKIDB: A Curated, annotated and updated database of protein kinase inhibitors in clinical trials. Molecules, 2018, 23(4), 908.
[http://dx.doi.org/10.3390/molecules23040908 ] [PMID: 29662024]
[35]
Bournez, C.; Carles, F.; Peyrat, G.; Aci-Sèche, S.; Bourg, S.; Meyer, C.; Bonnet, P. Comparative assessment of protein kinase inhibitors in public databases and in PKIDB. Molecules, 2020, 25(14), 3226.
[http://dx.doi.org/10.3390/molecules25143226 ] [PMID: 32679723]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy