Abstract
Background: Previous studies suggest that different metabotropic glutamate (mGlu) receptor subtypes are potential drug targets for treating absence epilepsy. However, no information is available on mGlu3 receptors.
Objective: To examine whether (i) changes of mGlu3 receptor expression/signaling are found in the somatosensory cortex and thalamus of WAG/Rij rats developing spontaneous absence seizures; (ii) selective activation of mGlu3 receptors with LY2794193 affects the number and duration of spikewave discharges (SWDs) in WAG/Rij rats; and (iii) a genetic variant of GRM3 (encoding the mGlu3 receptor) is associated with absence epilepsy.
Methods: Animals: immunoblot analysis of mGlu3 receptors, GAT-1, GLAST, and GLT-1; realtime PCR analysis of mGlu3 mRNA levels; assessment of mGlu3 receptor signaling; EEG analysis of SWDs; assessment of depressive-like behavior.
Humans: search for GRM3 and GRM5 missense variants in 196 patients with absence epilepsy or other Idiopathic Generalized Epilepsy (IGE)/ Genetic Generalized Epilepsy (GGE) and 125,748 controls.
Results: mGlu3 protein levels and mGlu3-mediated inhibition of cAMP formation were reduced in the thalamus and somatosensory cortex of pre-symptomatic (25-27 days old) and symptomatic (6-7 months old) WAG/Rij rats compared to age-matched controls. Treatment with LY2794193 (1 or 10 mg/kg, i.p.) reduced absence seizures and depressive-like behavior in WAG/Rij rats. LY2794193 also enhanced GAT1, GLAST, and GLT-1 protein levels in the thalamus and somatosensory cortex. GRM3 and GRM5 gene variants did not differ between epileptic patients and controls.
Conclusion: We suggest that mGlu3 receptors modulate the activity of the cortico-thalamo-cortical circuit underlying SWDs and that selective mGlu3 receptor agonists are promising candidate drugs for absence epilepsy treatment.
Keywords: absence epilepsy, mGlu3 receptors, cortico-thalamo-cortical network, EEG, GABA, glutamate, human genetics
Graphical Abstract
[http://dx.doi.org/10.1038/nrn811] [PMID: 11988776]
[http://dx.doi.org/10.1111/epi.13670] [PMID: 28276060]
[http://dx.doi.org/10.1523/JNEUROSCI.22-04-01480.2002] [PMID: 11850474]
[http://dx.doi.org/10.1111/j.1528-1167.2005.00311.x] [PMID: 16302873]
[http://dx.doi.org/10.1177/0883073897012001081] [PMID: 9429128]
[http://dx.doi.org/10.1016/j.seizure.2009.09.007] [PMID: 19836978]
[http://dx.doi.org/10.5698/1535-7511-13.3.135] [PMID: 23840175]
[http://dx.doi.org/10.1111/j.1528-1167.2011.03082.x] [PMID: 21569017]
[http://dx.doi.org/10.1080/14728222.2019.1586885] [PMID: 30801204]
[http://dx.doi.org/10.1016/0304-3940(86)90586-0] [PMID: 3095713]
[http://dx.doi.org/10.2174/0929867320666131119152913] [PMID: 24251564]
[http://dx.doi.org/10.1016/j.neubiorev.2016.09.017] [PMID: 27687816]
[http://dx.doi.org/10.1136/adc.81.4.351] [PMID: 10490445]
[http://dx.doi.org/10.1056/NEJMoa0902014] [PMID: 20200383]
[http://dx.doi.org/10.1023/a:1026179013847] [PMID: 14574120]
[http://dx.doi.org/10.1111/j.1528-1167.2011.03112.x] [PMID: 21635238]
[http://dx.doi.org/10.1111/j.1460-9568.2007.05533.x] [PMID: 17561843]
[http://dx.doi.org/10.1016/0920-1211(95)00015-3] [PMID: 7588592]
[http://dx.doi.org/10.1016/j.neuropharm.2007.10.004] [PMID: 18022649]
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.007] [PMID: 21277877]
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.044] [PMID: 22705340]
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.005] [PMID: 24859611]
[http://dx.doi.org/10.1111/epi.13024] [PMID: 26040777]
[http://dx.doi.org/10.1016/j.neuropharm.2020.108240] [PMID: 32768418]
[http://dx.doi.org/10.1016/j.neuropharm.2005.05.019] [PMID: 16043198]
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.026] [PMID: 29079293]
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.013] [PMID: 30326237]
[http://dx.doi.org/10.1016/j.biopsych.2021.02.970] [PMID: 33965197]
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-09594.1998] [PMID: 9822720]
[http://dx.doi.org/10.1046/j.1460-9568.2000.00131.x] [PMID: 10947812]
[http://dx.doi.org/10.1186/s12974-020-02049-z] [PMID: 33407565]
[http://dx.doi.org/10.1021/acs.jmedchem.7b01481] [PMID: 29350927]
[http://dx.doi.org/10.1016/j.pnpbp.2010.11.010] [PMID: 21093520]
[http://dx.doi.org/10.1016/j.jneumeth.2018.05.020] [PMID: 29857008]
[http://dx.doi.org/10.1097/01.ypg.0000056682.82896.b0] [PMID: 12782962]
[http://dx.doi.org/10.1073/pnas.0405077101] [PMID: 15310849]
[http://dx.doi.org/10.1016/j.schres.2004.07.002] [PMID: 15567072]
[http://dx.doi.org/10.1186/1471-244X-5-23] [PMID: 15892884]
[http://dx.doi.org/10.1097/YPG.0b013e3281ac231e] [PMID: 18075480]
[http://dx.doi.org/10.1097/YPG.0b013e3282ef48d9] [PMID: 18197082]
[http://dx.doi.org/10.2174/1570159X13666150514232745] [PMID: 27296644]
[http://dx.doi.org/10.1038/tp.2017.172] [PMID: 28786982]
[http://dx.doi.org/10.1016/0920-1211(87)90005-2] [PMID: 3143552]
[http://dx.doi.org/10.1152/jn.00340.2006] [PMID: 17035363]
[PMID: 1479805]
[http://dx.doi.org/10.1111/epi.13898] [PMID: 28913875]
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[http://dx.doi.org/10.1016/j.bbr.2011.07.030] [PMID: 21807031]
[http://dx.doi.org/10.1007/s13311-017-0550-y] [PMID: 28653281]
[http://dx.doi.org/10.1111/epi.13629] [PMID: 27988935]
[http://dx.doi.org/10.1007/s13311-020-00893-8] [PMID: 32681356]
[http://dx.doi.org/10.1093/brain/awx236] [PMID: 29053855]
[http://dx.doi.org/10.1038/npp.2014.245] [PMID: 25241804]
[http://dx.doi.org/10.1124/mol.110.067207] [PMID: 20923853]
[http://dx.doi.org/10.1124/mol.106.031617] [PMID: 17293559]
[http://dx.doi.org/10.1046/j.1460-9568.2003.02657.x] [PMID: 12786977]
[http://dx.doi.org/10.1007/s11062-012-9252-6]
[http://dx.doi.org/10.1016/j.bbi.2014.06.016] [PMID: 24998197]
[http://dx.doi.org/10.3389/fnmol.2019.00045] [PMID: 30930744]
[http://dx.doi.org/10.1016/j.neuropharm.2008.11.003] [PMID: 19071141]
[http://dx.doi.org/10.1016/j.brainresbull.2015.02.004] [PMID: 25701797]
[http://dx.doi.org/10.1080/01616412.2021.1952510] [PMID: 34278977]
[http://dx.doi.org/10.1111/j.1528-1167.2005.43604.x] [PMID: 15857439]
[http://dx.doi.org/10.1111/j.1528-1167.2011.03119.x] [PMID: 21635244]