Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Applications and Future Outlooks of Hollow Nanomaterials for Wastewater Treatment

Author(s): Nurul Natasha Mohammad Jafri, Juhana Jaafar*, Nor Azureen Mohamad Nor, Nur Hashimah Alias, Farhana Aziz, Wan Norharyati Wan Salleh, Norhaniza Yusof, Mohd Hafiz Dzarfan Othman, Mukhlis A. Rahman, Ahmad Fauzi Ismail and Roshanida A. Rahman

Volume 15, Issue 1, 2023

Published on: 24 June, 2022

Page: [4 - 15] Pages: 12

DOI: 10.2174/1876402914666220509105355

Price: $65

Abstract

Hollow nanomaterials, which emerged from nanotechnology, earned a lot of interest due to their unique morphology and extensive surface area. This technology has been widely utilized in water treatment branches such as photocatalysis, membrane technology, and the sorption process. There are several types of hollow nanomaterials, all of which have the potential to treat contaminated water, including pollutants, namely heavy metals and organic compounds. Here, we provide a review of the benefits and downsides of hollow nanomaterials advancement as well as new progress in those fields. The challenges of using hollow nanomaterials, as well as their prospects, are also discussed.

Keywords: Nanotechnology, hollow nanomaterials, wastewater treatment, photocatalyst, membrane, sorbents.

Graphical Abstract

[1]
Afroz, R.; Rahman, A. Health impact of river water pollution in Malaysia. Int. J. Advances Appl. Sci., 2017, 4(5), 78-85.
[http://dx.doi.org/10.21833/ijaas.2017.05.014]
[2]
Singh, J.; Yadav, P.; Pal, A.K.; Mishra, V. Water pollutants: Origin and status. In: Sensors in Water Pollutants Monitoring: Role of Material; Springer, 2020; pp. 5-20.
[http://dx.doi.org/10.1007/978-981-15-0671-0_2]
[3]
Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals (Basel), 2019, 9(8), 487.
[http://dx.doi.org/10.3390/min9080487]
[4]
Liew, W.L.; Kassim, M.A.; Muda, K.; Loh, S.K.; Affam, A.C. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. J. Environ. Manage., 2015, 149, 222-235.
[http://dx.doi.org/10.1016/j.jenvman.2014.10.016] [PMID: 25463585]
[5]
Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep., 2016, 2(3), 157-167.
[http://dx.doi.org/10.1007/s40726-016-0035-3]
[6]
Buaisha, M.; Balku, S.; Özalp-Yaman, S. Heavy metal removal investigation in conventional activated sludge systems. Civ. Eng. J., 2020, 6(3), 470-477.
[http://dx.doi.org/10.28991/cej-2020-03091484]
[7]
Mohapatra, R.K. Recent advances on engineering materials: Micro to nano scale. Micro Nanosyst., 2020, 12(2), 80-80.
[http://dx.doi.org/10.2174/187640291202200618115118]
[8]
Homaeigohar, S.; Davoudpour, Y.; Habibi, Y.; Elbahri, M. The electrospun ceramic hollow nanofibers. Nanomaterials (Basel), 2017, 7(11), 383-383.
[http://dx.doi.org/10.3390/nano7110383] [PMID: 29120403]
[9]
Tan, D.; Lee, W.; Kim, Y.E.; Ko, Y.N.; Jeon, Y.E.; Hong, J.; Jeong, S.K.; Park, K.T. SnO2/ZnO composite hollow nanofiber electrocatalyst for efficient CO2 reduction to formate. ACS Sustain. Chem. & Eng., 2020, acssuschemeng.0c03481.
[http://dx.doi.org/10.1021/acssuschemeng.0c03481]
[10]
Ji, F.; Li, J.; Qin, Z.; Yang, B.; Zhang, E.; Dong, D.; Wang, J.; Wen, Y.; Tian, L.; Yao, F. Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydr. Polym., 2017, 177, 86-96.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.107] [PMID: 28962799]
[11]
Rehman, S.; Tang, T.; Ali, Z.; Huang, X.; Hou, Y. Integrated design of MnO2@ carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small, 2017, 13(20), 1700087.
[http://dx.doi.org/10.1002/smll.201700087] [PMID: 28371370]
[12]
Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater., 2019, 31(8), e1806312.
[http://dx.doi.org/10.1002/adma.201806312] [PMID: 30589127]
[13]
He, T.; Chen, S.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W.; Wang, X. Zirconium–porphyrin-based metal–organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem. Int. Ed. Engl., 2018, 57(13), 3493-3498.
[http://dx.doi.org/10.1002/anie.201800817] [PMID: 29380509]
[14]
Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H.-M.; Wang, L. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater., 2019, 31(38), e1801369.
[http://dx.doi.org/10.1002/adma.201801369] [PMID: 30125390]
[15]
Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M.N. Role of nanomaterials in the treatment of wastewater: A review. Water, 2020, 12(2), 495.
[http://dx.doi.org/10.3390/w12020495]
[16]
Vysokomornaya, O.; Kurilenko, E.; Shcherbinina, A. Major contaminants in industrial and domestic wastewater. MATEC Web Conf., 2015, 23, p. 01041.
[17]
Tursi, A.; Chatzisymeon, E.; Chidichimo, F.; Beneduci, A.; Chidichimo, G. Removal of endocrine disrupting chemicals from water: Adsorption of bisphenol-a by biobased hydrophobic functionalized cellulose. Int. J. Environ. Res. Public Health, 2018, 15(11), E2419.
[http://dx.doi.org/10.3390/ijerph15112419] [PMID: 30384467]
[18]
Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-based engineered composites for sorptive decontamination of water: A review. Chem. Eng. J., 2019, 372, 536-550.
[http://dx.doi.org/10.1016/j.cej.2019.04.097]
[19]
Feng, L.; Yang, G.; Zhu, L.; Xu, X.; Gao, F.; Mu, J.; Xu, Y. Enhancement removal of endocrine-disrupting pesticides and nitrogen removal in a biofilm reactor coupling of biodegradable Phragmites communis and elastic filler for polluted source water treatment. Bioresour. Technol., 2015, 187, 331-337.
[http://dx.doi.org/10.1016/j.biortech.2015.03.095] [PMID: 25863211]
[20]
Zhang, C.; Fei, W.; Wang, H.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. J. Hazard. Mater., 2020, 399, 123109.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123109] [PMID: 32937722]
[21]
Zhu, M.; Tang, J.; Wei, W.; Li, S. Recent progress in the syntheses and applications of multishelled hollow nanostructures. Mater. Chem. Front., 2020, 4(4), 1105-1149.
[http://dx.doi.org/10.1039/C9QM00700H]
[22]
Molinari, R.; Lavorato, C.; Argurio, P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal. Today, 2017, 281, 144-164.
[http://dx.doi.org/10.1016/j.cattod.2016.06.047]
[23]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[24]
He, H.-Y. Photocatalytic and Fenton-like photocatalytic activity of C-doped ZnO nanoparticles in the degradation of malachite green in a water. Micro Nanosyst., 2014, 6(2), 103-108.
[http://dx.doi.org/10.2174/1876402906666140912005237]
[25]
Shahrodin, N.S.M.; Jaafar, J.; Rahmat, A.R.; Yusof, N.; Dzarfan Othman, M.H.; Rahman, M.A. Superparamagnetic Iron Oxide as Photocatalyst and Adsorbent in Wastewater Treatment–A Review. Micro Nanosyst., 2020, 12(1), 4-22.
[http://dx.doi.org/10.2174/1876402911666190716155658]
[26]
Salim, N.E.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Qtaishat, M.; Matsuura, T.; Aziz, F.; Salleh, W.N.W. Preparation and characterization of hydrophilic surface modifier macromolecule modified poly (ether sulfone) photocatalytic membrane for phenol removal. Chem. Eng. J., 2018, 335, 236-247.
[http://dx.doi.org/10.1016/j.cej.2017.10.147]
[27]
Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc., 2015, 19(5), 462-464.
[http://dx.doi.org/10.1016/j.jscs.2015.04.003]
[28]
Abdellah, M.H.; Nosier, S.A.; El-Shazly, A.H.; Mubarak, A.A. Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alex. Eng. J., 2018, 57(4), 3727-3735.
[http://dx.doi.org/10.1016/j.aej.2018.07.018]
[29]
Reza, K.M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci., 2017, 7(4), 1569-1578.
[http://dx.doi.org/10.1007/s13201-015-0367-y]
[30]
Zhang, R.; Ma, Y.; Lan, W.; Sameen, D.E.; Ahmed, S.; Dai, J.; Qin, W.; Li, S.; Liu, Y. Enhanced photocatalytic degradation of organic dyes by ultrasonic-assisted electrospray TiO2/graphene oxide on polyacrylonitrile/β-cyclodextrin nanofibrous membranes. Ultrason. Sonochem., 2021, 70, 105343.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105343] [PMID: 32977274]
[31]
Miguel, N.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide. Int. J. Photoenergy, 2012, 2012, 371714.
[http://dx.doi.org/10.1155/2012/371714]
[32]
Veerakumar, P.; Sangili, A.; Saranya, K.; Pandikumar, A.; Lin, KC. Palladium and silver nanoparticles embedded on zinc oxide nanostars for photocatalytic degradation of pesticides and herbicides. Chem. Eng. J., 2021, 410, 128434.
[http://dx.doi.org/10.1016/j.cej.2021.128434]
[33]
Bechambi, O.; Jlaiel, L.; Najjar, W.; Sayadi, S. Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: Evolution of kinetics, toxicity and photodegradation mechanism. Mater. Chem. Phys., 2016, 173, 95-105.
[http://dx.doi.org/10.1016/j.matchemphys.2016.01.044]
[34]
Chenzhong, J.; Yanxin, W.; Caixiang, Z.; Qiaoyan, Q.; Shuqiong, K.; Salomon Kouakou, Y. Photocatalytic degradation of Bisphenol- A in aqueous suspensions of titanium dioxide. Environ. Eng. Sci., 2012, 29(7)
[35]
Garg, A.; Singhania, T.; Singh, A.; Sharma, S.; Rani, S.; Neogy, A.; Yadav, S.R.; Sangal, V.K.; Garg, N. Photocatalytic degradation of Bisphenol-A using N, co codoped TiO2 catalyst under solar light. Sci. Rep., 2019, 9(1), 765.
[http://dx.doi.org/10.1038/s41598-018-38358-w] [PMID: 30679732]
[36]
He, H.-Y.; Tian, T.-C. Photodegradtion of methyl orange in the water on undoped and Fe-doped TiO2 nanotubes. Micro Nanosyst., 2015, 7(1), 36-42.
[http://dx.doi.org/10.2174/1876402907666150501005357]
[37]
Mohammad Jafri, N.N.; Jaafar, J.; Alias, N.H.; Samitsu, S.; Aziz, F.; Wan Salleh, W.N.; Mohd Yusop, M.Z.; Othman, M.H.D.; Rahman, M.A.; Ismail, A.F.; Matsuura, T.; Isloor, A.M. Synthesis and characterization of titanium dioxide hollow nanofiber for photocatalytic degradation of methylene blue dye. Membranes (Basel), 2021, 11(8), 581.
[http://dx.doi.org/10.3390/membranes11080581] [PMID: 34436344]
[38]
Lenzi, G.; Fávero, C.; Colpini, L.; Bernabe, H.; Baesso, M.; Specchia, S.; Santos, O. Photocatalytic reduction of Hg (II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods. Desalination, 2011, 270(1-3), 241-247.
[http://dx.doi.org/10.1016/j.desal.2010.11.051]
[39]
Wang, H.; Zhou, S.; Xiao, L.; Wang, Y.; Liu, Y.; Wu, Z. Titania nanotubes—a unique photocatalyst and adsorbent for elemental mercury removal. Catal. Today, 2011, 175(1), 202-208.
[http://dx.doi.org/10.1016/j.cattod.2011.03.006]
[40]
Mkhalid, I.A.; Abdulsalam, A.A. Photocatalytic reduction of Hg using core-shell Fe/CeO2 hollow sphere nanocomposites. Ceram. Int., 2015, 41(4), 5614-5620.
[http://dx.doi.org/10.1016/j.ceramint.2014.12.143]
[41]
Jung, J-Y.; Lee, D.; Lee, Y-S. CNT-embedded hollow TiO2 nanofibers with high adsorption and photocatalytic activity under UV irradiation. J. Alloys Compd., 2015, 622, 651-656.
[http://dx.doi.org/10.1016/j.jallcom.2014.09.068]
[42]
Park, H.M.; Jee, K.Y.; Lee, Y.T. Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks. J. Membr. Sci., 2017, 541, 510-518.
[http://dx.doi.org/10.1016/j.memsci.2017.07.034]
[43]
Koulivand, H.; Shahbazi, A.; Vatanpour, V. Fabrication and characterization of a high-flux and anti-fouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles. Chem. Eng. Res. Des., 2019, 145, 64-75.
[http://dx.doi.org/10.1016/j.cherd.2019.03.003]
[44]
Yang, S.; Zou, Q.; Wang, T.; Zhang, L. Effects of GO and MOF@ GO on the permeation and anti-fouling properties of cellulose acetate ultrafiltration membrane. J. Membr. Sci., 2019, 569, 48-59.
[http://dx.doi.org/10.1016/j.memsci.2018.09.068]
[45]
Kim, J.W.; Chang, J.-H. Syntheses of colorless and transparent polyimide membranes for microfiltration. Polymers (Basel), 2020, 12(7), 1610.
[http://dx.doi.org/10.3390/polym12071610] [PMID: 32698338]
[46]
Bandehali, S.; Moghadassi, A.; Parvizian, F.; Shen, J.; Hosseini, S.M. Glycidyl POSS-functionalized ZnO nanoparticles incorporated polyether-imide based nanofiltration membranes for heavy metal ions removal from water. Korean J. Chem. Eng., 2020, 37(2), 263-273.
[http://dx.doi.org/10.1007/s11814-019-0441-5]
[47]
Zsirai, T.; Al-Jaml, A.; Qiblawey, H.; Al-Marri, M.; Ahmed, A.; Bach, S.; Watson, S.; Judd, S. Ceramic membrane filtration of produced water: Impact of membrane module. Separ. Purif. Tech., 2016, 165, 214-221.
[http://dx.doi.org/10.1016/j.seppur.2016.04.001]
[48]
Zhu, B.; Myat, D.T.; Shin, J.-W.; Na, Y.-H.; Moon, I.-S.; Connor, G.; Maeda, S.; Morris, G.; Gray, S.; Duke, M. Application of robust MFI-type zeolite membrane for desalination of saline wastewater. J. Membr. Sci., 2015, 475, 167-174.
[http://dx.doi.org/10.1016/j.memsci.2014.09.058]
[49]
He, Z.; Lyu, Z.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-based membranes for water and wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp., 2019, 578, 123513.
[http://dx.doi.org/10.1016/j.colsurfa.2019.05.074]
[50]
Jhaveri, J.H.; Murthy, Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 2016, 379, 137-154.
[http://dx.doi.org/10.1016/j.desal.2015.11.009]
[51]
Xu, Y.; Yu, Y.; Yang, Y.; Sun, T.; Dong, S.; Yang, H.; Liu, Y.; Fan, X.; Song, C. Improved separation performance of carbon nanotube hollow fiber membrane by peroxydisulfate activation. Separ. Purif. Tech., 2021, 276, 119328.
[http://dx.doi.org/10.1016/j.seppur.2021.119328]
[52]
Chen, H.; Zhou, Y.; Su, X.; Cao, S.; Liu, Y.; Gao, D.; An, L. Experimental study of water recovery from flue gas using hollow micro–nano porous ceramic composite membranes. J. Ind. Eng. Chem., 2018, 57, 349-355.
[http://dx.doi.org/10.1016/j.jiec.2017.08.042]
[53]
Feng, C.; Gao, X.; Tang, Y.; Zhang, Y. Comparative life cycle environmental assessment of flue gas desulphurization technologies in China. J. Clean. Prod., 2014, 68, 81-92.
[http://dx.doi.org/10.1016/j.jclepro.2013.10.023]
[54]
Sadegh, H.; and Ali, G.A. Potential applications of nanomaterials in wastewater treatment: nanoadsorbents performance. In Research anthology on synthesis, characterization, and applications of nanomaterials., 2018, 1230-1240. IGI Global.
[55]
Zaid, O.; El-Said, W.; Yousif, A.; Galhoum, A.; Elshehy, E.; Ibrahim, I.; Guibal, E. Synthesis of Microporous Nano-Composite (Hollow Spheres) for Fast Detection and Removal of As(V) from Contaminated Water. Chem. Eng. J., 2020, 390, 124439.
[http://dx.doi.org/10.1016/j.cej.2020.124439]
[56]
Najafi, M.; Yousefi, Y.; Rafati, A.A. Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Separ. Purif. Tech., 2012, 85, 193-205.
[http://dx.doi.org/10.1016/j.seppur.2011.10.011]
[57]
Najafi, M.; Rostamian, R.; Rafati, A. Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent. Chem. Eng. J., 2011, 168(1), 426-432.
[http://dx.doi.org/10.1016/j.cej.2010.12.064]
[58]
Wang, F.; Zhang, Y.; Fang, Q.; Li, Z.; Lai, Y.; Yang, H. Prepared PANI@nano hollow carbon sphere adsorbents with lappaceum shell like structure for high efficiency removal of hexavalent chromium. Chemosphere, 2021, 263, 128109.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128109] [PMID: 33297102]
[59]
Yang, N.; Luo, Z.-X.; Chen, S.-C.; Wu, G.; Wang, Y.-Z. Superhydrophobic magnetic hollow carbon microspheres with hierarchical micro/nanostructure for ultrafast and highly-efficient multitasking oil-water separation. Carbon, 2021, 174, 70-78.
[http://dx.doi.org/10.1016/j.carbon.2020.11.078]
[60]
Liu, H.; Han, C.; Shao, C.; Yang, S.; Li, X.; Li, B.; Li, X.; Ma, J.; Liu, Y. ZnO/ZnFe2O4 Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. ACS Appl. Nano Mater., 2019, 2(8), 4879-4890.
[http://dx.doi.org/10.1021/acsanm.9b00838]
[61]
Wang, L.; Mazare, A.; Hwang, I.; So, S.; Nguyen, N.T.; Schmuki, P. Synthesis of free-standing Ta3N{nanotube membranes and flow-through visible light photocatalytic applications. Chem. Commun. (Camb.), 2017, 53.
[62]
Ramanan, S.N.; Shahkaramipour, N.; Tran, T.; Zhu, L.; Venna, S.R.; Lim, C.-K.; Singh, A.; Prasad, P.N.; Lin, H. Self-cleaning membranes for water purification by co-deposition of photo-mobile 4,4′-azodianiline and bio-adhesive polydopamine. J. Membr. Sci., 2018, 554, 164-174.
[http://dx.doi.org/10.1016/j.memsci.2018.02.068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy