Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Cellular and Molecular Aspects of Managing Familial Hypercholesterolemia: Recent and Emerging Therapeutic Approaches

Author(s): Forough Taheri, Eskandar Taghizadeh, Fatemeh Baniamerian, Daryoush Rostami, Ahmad Rozeian, Seyed Mohammad Gheibi hayat, Tannaz Jamialahmadi, Željko Reiner and Amirhossein Sahebkar*

Volume 22, Issue 10, 2022

Published on: 28 June, 2022

Page: [1018 - 1028] Pages: 11

DOI: 10.2174/1871530322666220509040844

Price: $65

Abstract

Familial hypercholesterolemia (FH) as a high-frequency genetic disorder is diagnosed based on family and/or patient’s history of coronary heart disease (CHD) or some other atherosclerotic diseases, LDL-C levels, and/or clinical signs such as tendinous xanthoma, arcus cornealis before age 45 years as well as a functional mutation in the LDLR, apoB or PCSK9 gene. Its clinical features are detectable since early childhood. Early diagnosis and timely treatment increase life expectancy in most patients with FH. Current FH therapies decrease the level of lowdensity lipoprotein up to ≥50% from baseline with diet, pharmacotherapeutic treatment, lipid apheresis, and liver transplantation. The cornerstone of medical therapy is the use of more potent statins in higher doses, to which often ezetimibe has to be added, but some FH patients do not achieve the target LDL-C with this therapy Therefore, besides these and the most recent but already established therapeutic approaches including PCSK9 inhibitors, inclisiran, and bempedoic acid, new therapies are on the horizon such as gene therapy, CRISPR/Cas9 strategy, etc. This paper focuses on cellular and molecular potential strategies for the treatment of FH.

Keywords: Familial hypercholesterolemia, gene therapy, cellular therapy, autosomal dominant, low-density lipoproteins (LDLs), LDL-receptor.

Graphical Abstract

[1]
Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, Ž.; Riccardi, G.; Taskinen, M.R.; Tokgozoglu, L.; Verschuren, W.M.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L.; Cooney, M.T. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur. Heart J., 2016, 37(39), 2999-3058.
[http://dx.doi.org/10.1093/eurheartj/ehw272] [PMID: 27567407]
[2]
Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J. Familial hypercholesterolemias: Prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol., 2011, 5(3)(Suppl.), S9-S17.
[http://dx.doi.org/10.1016/j.jacl.2011.03.452] [PMID: 21600530]
[3]
Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; Tybjærg-Hansen, A.; Watts, G.F.; Averna, M.; Boileau, C.; Borén, J.; Catapano, A.L.; Defesche, J.C.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Masana, L.; Pajukanta, P.; Parhofer, K.G.; Ray, K.K.; Stalenhoef, A.F.; Stroes, E.; Taskinen, M.R.; Wiegman, A.; Wiklund, O.; Chapman, M.J.; Cuchel, M.; Bruckert, E.; Chapman, M.J.; Descamps, O.S.; Ginsberg, H.N.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Raal, F.J.; Santos, R.D.; Steinhagen-Thiessen, E.; Tybjaerg-Hansen, A.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Averna, M.; Boileau, C.; Boren, J.; Catapano, A.L.; Defesche, J.C.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Masana, L.; Pajukanta, P.; Parhofer, K.G.; Ray, K.K.; Stalenhoef, A.F.H.; Stroes, E.; Taskinen, M-R.; Wiegman, A.; Wiklund, O. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J., 2014, 35(32), 2146-2157.
[http://dx.doi.org/10.1093/eurheartj/ehu274] [PMID: 25053660]
[4]
Soutar, A.K.; Naoumova, R.P. Mechanisms of disease: Genetic causes of familial hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med., 2007, 4(4), 214-225.
[http://dx.doi.org/10.1038/ncpcardio0836] [PMID: 17380167]
[5]
Tada, H.; Kawashiri, M.A.; Ohtani, R.; Noguchi, T.; Nakanishi, C.; Konno, T.; Hayashi, K.; Nohara, A.; Inazu, A.; Kobayashi, J.; Mabuchi, H.; Yamagishi, M. A novel type of familial hypercholesterolemia: Double heterozygous mutations in LDL receptor and LDL receptor adaptor protein 1 gene. Atherosclerosis, 2011, 219(2), 663-666.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.08.004] [PMID: 21872251]
[6]
Benito-Vicente, A.; Uribe, K.B.; Jebari, S.; Galicia-Garcia, U.; Ostolaza, H.; Martin, C. Familial hypercholesterolemia: The most frequent cholesterol metabolism disorder caused disease. Int. J. Mol. Sci., 2018, 19(11), E3426.
[http://dx.doi.org/10.3390/ijms19113426] [PMID: 30388787]
[7]
Akioyamen, L.E.; Genest, J.; Shan, S.D.; Reel, R.L.; Albaum, J.M.; Chu, A.; Tu, J.V. Estimating the prevalence of heterozygous familial hypercholesterolaemia: A systematic review and meta-analysis. BMJ Open, 2017, 7(9), e016461.
[http://dx.doi.org/10.1136/bmjopen-2017-016461] [PMID: 28864697]
[8]
Sniderman, A.D.; Tsimikas, S.; Fazio, S. The severe hypercholesterolemia phenotype: Clinical diagnosis, management, and emerging therapies. J. Am. Coll. Cardiol., 2014, 63(19), 1935-1947.
[http://dx.doi.org/10.1016/j.jacc.2014.01.060] [PMID: 24632267]
[9]
Reiner, Ž.; Sahebkar, A. Treatment of children with heterozygous familial hypercholesterolemia. Int. J. Cardiol., 2020, 304, 177-178.
[http://dx.doi.org/10.1016/j.ijcard.2019.10.055]
[10]
Reiner, Ž. Treatment of Children with Homozygous Familial Hypercholesterolaemia; SAGE Publications: London, 2018.
[http://dx.doi.org/10.1177/2047487318781360]
[11]
Vallejo-Vaz, A.J.; Akram, A.; Kondapally Seshasai, S.R.; Cole, D.; Watts, G.F.; Hovingh, G.K.; Kastelein, J.J.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; Freiberger, T.; Abifadel, M.; Aguilar-Salinas, C.A.; Alnouri, F.; Alonso, R.; Al-Rasadi, K.; Banach, M.; Bogsrud, M.P.; Bourbon, M.; Bruckert, E.; Car, J.; Ceska, R.; Corral, P.; Descamps, O.; Dieplinger, H.; Do, C.T.; Durst, R.; Ezhov, M.V.; Fras, Z.; Gaita, D.; Gaspar, I.M.; Genest, J.; Harada-Shiba, M.; Jiang, L.; Kayikcioglu, M.; Lam, C.S.; Latkovskis, G.; Laufs, U.; Liberopoulos, E.; Lin, J.; Lin, N.; Maher, V.; Majano, N.; Marais, A.D.; März, W.; Mirrakhimov, E.; Miserez, A.R.; Mitchenko, O.; Nawawi, H.; Nilsson, L.; Nordestgaard, B.G.; Paragh, G.; Petrulioniene, Z.; Pojskic, B.; Reiner, Ž.; Sahebkar, A.; Santos, L.E.; Schunkert, H.; Shehab, A.; Slimane, M.N.; Stoll, M.; Su, T.C.; Susekov, A.; Tilney, M.; Tomlinson, B.; Tselepis, A.D.; Vohnout, B.; Widén, E.; Yamashita, S.; Catapano, A.L.; Ray, K.K. Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: Rationale and design of the global EAS familial hypercholesterolaemia studies collaboration. Atheroscler. Suppl., 2016, 22, 1-32.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2016.10.001] [PMID: 27939304]
[12]
Vallejo-Vaz, A.J.; De Marco, M.; Stevens, C.A.T.; Akram, A.; Freiberger, T.; Hovingh, G.K.; Kastelein, J.J.P.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; Watts, G.F.; Abifadel, M.; Aguilar-Salinas, C.A.; Al-Khnifsawi, M.; AlKindi, F.A.; Alnouri, F.; Alonso, R.; Al-Rasadi, K.; Al-Sarraf, A.; Ashavaid, T.F.; Binder, C.J.; Bogsrud, M.P.; Bourbon, M.; Bruckert, E.; Chlebus, K.; Corral, P.; Descamps, O.; Durst, R.; Ezhov, M.; Fras, Z.; Genest, J.; Groselj, U.; Harada-Shiba, M.; Kayikcioglu, M.; Lalic, K.; Lam, C.S.P.; Latkovskis, G.; Laufs, U.; Liberopoulos, E.; Lin, J.; Maher, V.; Majano, N.; Marais, A.D.; März, W.; Mirrakhimov, E.; Miserez, A.R.; Mitchenko, O.; Nawawi, H.M.; Nordestgaard, B.G.; Paragh, G.; Petrulioniene, Z.; Pojskic, B.; Postadzhiyan, A.; Reda, A.; Reiner, Ž.; Sadoh, W.E.; Sahebkar, A.; Shehab, A.; Shek, A.B.; Stoll, M.; Su, T.C.; Subramaniam, T.; Susekov, A.V.; Symeonides, P.; Tilney, M.; Tomlinson, B.; Truong, T.H.; Tselepis, A.D.; Tybjærg-Hansen, A.; Vázquez-Cárdenas, A.; Viigimaa, M.; Vohnout, B.; Widén, E.; Yamashita, S.; Banach, M.; Gaita, D.; Jiang, L.; Nilsson, L.; Santos, L.E.; Schunkert, H.; Tokgözoğlu, L.; Car, J.; Catapano, A.L.; Ray, K.K. Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis, 2018, 277, 234-255.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.051] [PMID: 30270054]
[13]
Barter, P.J.; Rye, K.A. New era of lipid-lowering drugs. Pharmacol. Rev., 2016, 68(2), 458-475.
[http://dx.doi.org/10.1124/pr.115.012203] [PMID: 26983688]
[14]
Ruscica, M.; Ferri, N.; Santos, R.D.; Sirtori, C.R.; Corsini, A. Lipid lowering drugs: Present status and future developments. Curr. Atheroscler. Rep., 2021, 23(5), 17.
[http://dx.doi.org/10.1007/s11883-021-00918-3] [PMID: 33694108]
[15]
Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567.
[http://dx.doi.org/10.1007/s10557-013-6479-4] [PMID: 23913122]
[16]
Sahebkar, A.; Watts, G.F. New LDL-cholesterol lowering therapies: Pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin. Ther., 2013, 35(8), 1082-1098.
[http://dx.doi.org/10.1016/j.clinthera.2013.06.019] [PMID: 23932550]
[17]
Yu, D.; Liao, J.K. Emerging views of statin pleiotropy and cholesterol lowering. Cardiovasc. Res., 2022, 118(2), 413-423.
[http://dx.doi.org/10.1093/cvr/cvab032] [PMID: 33533892]
[18]
Amin, F.; Fathi, F.; Reiner, Ž.; Banach, M.; Sahebkar, A. The role of statins in lung cancer. Arch. Med. Sci., 2021, 18(1), 141-152.
[http://dx.doi.org/10.5114/aoms/123225] [PMID: 35154535]
[19]
Bahrami, A.; Parsamanesh, N.; Atkin, S.L.; Banach, M.; Sahebkar, A. Effect of statins on toll-like receptors: A new insight to pleiotropic effects. Pharmacol. Res., 2018, 135, 230-238.
[http://dx.doi.org/10.1016/j.phrs.2018.08.014] [PMID: 30120976]
[20]
Khalifeh, M.; Penson, P.E.; Banach, M.; Sahebkar, A. Statins as anti-pyroptotic agents. Arch. Med. Sci., 2021, 17(5), 1414-1417.
[http://dx.doi.org/10.5114/aoms/141155] [PMID: 34522271]
[21]
Reiner, Ž.; Hatamipour, M.; Banach, M.; Pirro, M.; Al-Rasadi, K.; Jamialahmadi, T.; Radenkovic, D.; Montecucco, F.; Sahebkar, A. Statins and the COVID-19 main protease: In silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496.
[http://dx.doi.org/10.5114/aoms.2020.94655] [PMID: 32399094]
[22]
Sahebkar, A.; Kiaie, N.; Gorabi, A.M.; Mannarino, M.R.; Bianconi, V.; Jamialahmadi, T.; Pirro, M.; Banach, M. A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog. Lipid Res., 2021, 84, 101127.
[http://dx.doi.org/10.1016/j.plipres.2021.101127] [PMID: 34509516]
[23]
Sahebkar, A.; Kotani, K.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Ray, K.K.; Blaha, M.J.; Rysz, J.; Toth, P.P.; Muntner, P.; Lip, G.Y.; Banach, M. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis, 2015, 241(2), 433-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.05.022] [PMID: 26074317]
[24]
Shakour, N.; Ruscica, M.; Hadizadeh, F.; Cirtori, C.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Statins and C-reactive protein: In silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(6), 1432-1439.
[http://dx.doi.org/10.5114/aoms.2020.100304] [PMID: 33224343]
[25]
Sohrevardi, S.M.; Nasab, F.S.; Mirjalili, M.R.; Bagherniya, M.; Tafti, A.D.; Jarrahzadeh, M.H.; Azarpazhooh, M.R.; Saeidmanesh, M.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial. Arch. Med. Sci., 2019, 17(5), 1423-1428.
[http://dx.doi.org/10.5114/aoms.2019.89330] [PMID: 34522273]
[26]
Vahedian-Azimi, A.; Mohammadi, S.M.; Heidari Beni, F.; Banach, M.; Guest, P.C.; Jamialahmadi, T.; Sahebkar, A. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: A systematic review and meta-analysis. Arch. Med. Sci., 2021, 17(3), 579-595.
[http://dx.doi.org/10.5114/aoms/132950] [PMID: 34025827]
[27]
Bansal, P.; Arora, M. Small interfering RNAs and RNA therapeutics in cardiovascular diseases. Adv. Exp. Med. Biol., 2020, 1229, 369-381.
[http://dx.doi.org/10.1007/978-981-15-1671-9_23] [PMID: 32285425]
[28]
McClorey, G.; Wood, M.J. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr. Opin. Pharmacol., 2015, 24, 52-58.
[http://dx.doi.org/10.1016/j.coph.2015.07.005] [PMID: 26277332]
[29]
Sullenger, B.A.; Nair, S. From the RNA world to the clinic. Science, 2016, 352(6292), 1417-1420.
[http://dx.doi.org/10.1126/science.aad8709] [PMID: 27313039]
[30]
Wang, X.; Musunuru, K. Angiopoietin-like 3: From discovery to therapeutic gene editing. JACC Basic Transl. Sci., 2019, 4(6), 755-762.
[http://dx.doi.org/10.1016/j.jacbts.2019.05.008] [PMID: 31709322]
[31]
Vuorio, A.; Watts, G.F.; Schneider, W.J.; Tsimikas, S.; Kovanen, P.T. Familial hypercholesterolemia and elevated lipoprotein(a): Double heritable risk and new therapeutic opportunities. J. Intern. Med., 2020, 287(1), 2-18.
[http://dx.doi.org/10.1111/joim.12981] [PMID: 31858669]
[32]
Nordestgaard, B.G.; Nicholls, S.J.; Langsted, A.; Ray, K.K.; Tybjærg-Hansen, A. Advances in lipid-lowering therapy through gene-silencing technologies. Nat. Rev. Cardiol., 2018, 15(5), 261-272.
[http://dx.doi.org/10.1038/nrcardio.2018.3] [PMID: 29417937]
[33]
Reiner, Ž. Management of patients with familial hypercholesterolaemia. Nat. Rev. Cardiol., 2015, 12(10), 565-575.
[http://dx.doi.org/10.1038/nrcardio.2015.92] [PMID: 26076948]
[34]
Duell, P.B.; Santos, R.D.; Kirwan, B-A.; Witztum, J.L.; Tsimikas, S.; Kastelein, J.J.P. Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J. Clin. Lipidol., 2016, 10(4), 1011-1021.
[http://dx.doi.org/10.1016/j.jacl.2016.04.013] [PMID: 27578134]
[35]
Fogacci, F.; Ferri, N.; Toth, P.P.; Ruscica, M.; Corsini, A.; Cicero, A.F.G. Efficacy and safety of mipomersen: A systematic review and meta-analysis of randomized clinical trials. Drugs, 2019, 79(7), 751-766.
[http://dx.doi.org/10.1007/s40265-019-01114-z] [PMID: 30989634]
[36]
Visser, M.E.; Wagener, G.; Baker, B.F.; Geary, R.S.; Donovan, J.M.; Beuers, U.H.; Nederveen, A.J.; Verheij, J.; Trip, M.D.; Basart, D.C.; Kastelein, J.J.; Stroes, E.S. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: A randomized, double-blind, placebo-controlled trial. Eur. Heart J., 2012, 33(9), 1142-1149.
[http://dx.doi.org/10.1093/eurheartj/ehs023] [PMID: 22507979]
[37]
Bell, D.A.; Hooper, A.J.; Watts, G.F.; Burnett, J.R. Mipomersen and other therapies for the treatment of severe familial hypercholesterolemia. Vasc. Health Risk Manag., 2012, 8, 651-659.
[PMID: 23226021]
[38]
Fernando, C. Mipomersen, an apolipoprotein B synthesis inhibitor: A literature study analyzing efficacy and safety when used for treating patients with familial hypercholesterolemia. Thesis. Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden, 2019.
[39]
Reiner, Ž. PCSK9 inhibitors-past, present and future. Expert Opin. Drug Metab. Toxicol., 2015, 11(10), 1517-1521.
[http://dx.doi.org/10.1517/17425255.2015.1075506] [PMID: 26329686]
[40]
Reiner, Ž. PCSK9 inhibitors in clinical practice: Expectations and reality. Atherosclerosis, 2018, 270, 187-188.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.001] [PMID: 29366497]
[41]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[42]
Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[43]
Diaz, R.; Li, Q.H.; Bhatt, D.L.; Bittner, V.A.; Baccara-Dinet, M.T.; Goodman, S.G. Intensity of statin treatment after acute coronary syndrome, residual risk, and its modification by alirocumab: Insights from the Odyssey Outcomes trial. Eur. J. Prev. Cardiol., 2020.
[PMID: 33755145]
[44]
Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609243] [PMID: 27959715]
[45]
Nishikido, T.; Ray, K.K. Inclisiran for the treatment of dyslipidemia. Expert Opin. Investig. Drugs, 2018, 27(3), 287-294.
[http://dx.doi.org/10.1080/13543784.2018.1442435] [PMID: 29451410]
[46]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.; Turner, T.; Visseren, F.L.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[47]
Kosmas, C.E.; Muñoz Estrella, A.; Sourlas, A.; Silverio, D.; Hilario, E.; Montan, P.D.; Guzman, E. Inclisiran: A new promising agent in the management of hypercholesterolemia. Diseases, 2018, 6(3), 63.
[http://dx.doi.org/10.3390/diseases6030063] [PMID: 30011788]
[48]
Pećin, I.; Reiner, Ž. Novel experimental agents for the treatment of hypercholesterolemia. J. Exp. Pharmacol., 2021, 13, 91-100.
[http://dx.doi.org/10.2147/JEP.S267376] [PMID: 33603500]
[49]
Blaum, C.; Brunner, F.J.; Goßling, A.; Kröger, F.; Bay, B.; Lorenz, T.; Graef, A.; Zeller, T.; Schnabel, R.; Clemmensen, P.; Westermann, D.; Blankenberg, S.; Seiffert, M.; Waldeyer, C. Target populations and treatment cost for bempedoic acid and PCSK9 inhibitors: A simulation study in a contemporary CAD cohort. Clin. Ther., 2021, 43(9), 1583-1600.
[http://dx.doi.org/10.1016/j.clinthera.2021.07.019] [PMID: 34462126]
[50]
Wierzbicki, A.S.; Hardman, T.C.; Viljoen, A. Inhibition of pre-protein convertase serine kexin-9 (PCSK-9) as a treatment for hyperlipidaemia. Expert Opin. Investig. Drugs, 2012, 21(5), 667-676.
[http://dx.doi.org/10.1517/13543784.2012.679340] [PMID: 22493980]
[51]
Hajighasemi, S.; Mahdavi Gorabi, A.; Bianconi, V.; Pirro, M.; Banach, M.; Ahmadi Tafti, H.; Reiner, Ž.; Sahebkar, A. A review of gene- and cell-based therapies for familial hypercholesterolemia. Pharmacol. Res., 2019, 143, 119-132.
[http://dx.doi.org/10.1016/j.phrs.2019.03.016] [PMID: 30910740]
[52]
Al-Allaf, F.A.; Coutelle, C.; Waddington, S.N.; David, A.L.; Harbottle, R.; Themis, M. LDLR-Gene therapy for familial hypercholesterolaemia: Problems, progress, and perspectives. Int. Arch. Med., 2010, 3(1), 36.
[http://dx.doi.org/10.1186/1755-7682-3-36] [PMID: 21144047]
[53]
Ajufo, E.; Cuchel, M. Recent developments in gene therapy for homozygous familial hypercholesterolemia. Curr. Atheroscler. Rep., 2016, 18(5), 22.
[http://dx.doi.org/10.1007/s11883-016-0579-0] [PMID: 26980316]
[54]
Kassim, S.H.; Li, H.; Vandenberghe, L.H.; Hinderer, C.; Bell, P.; Marchadier, D.; Wilson, A.; Cromley, D.; Redon, V.; Yu, H.; Wilson, J.M.; Rader, D.J. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis. PLoS One, 2010, 5(10), e13424.
[http://dx.doi.org/10.1371/journal.pone.0013424] [PMID: 20976059]
[55]
Somanathan, S.; Jacobs, F.; Wang, Q.; Hanlon, A.L.; Wilson, J.M.; Rader, D.J. AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ. Res., 2014, 115(6), 591-599.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304008] [PMID: 25023731]
[56]
Yu, H.; Rimbert, A.; Palmer, A.E.; Toyohara, T.; Xia, Y.; Xia, F.; Ferreira, L.M.R.; Chen, Z.; Chen, T.; Loaiza, N.; Horwitz, N.B.; Kacergis, M.C.; Zhao, L.; Soukas, A.A.; Kuivenhoven, J.A.; Kathiresan, S.; Cowan, C.A. GPR146 deficiency protects against hypercholesterolemia and atherosclerosis. Cell, 2019, 179(6), 1276-1288.e14.
[http://dx.doi.org/10.1016/j.cell.2019.10.034] [PMID: 31778654]
[57]
Oka, K.; Mullins, C.E.; Kushwaha, R.S.; Leen, A.M.; Chan, L. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon catheter hepatic delivery of helper-dependent adenoviral vector. Gene Ther., 2015, 22(1), 87-95.
[http://dx.doi.org/10.1038/gt.2014.85] [PMID: 25231173]
[58]
Hou, X.; Jiao, R.; Guo, X.; Wang, T.; Chen, P.; Wang, D.; Chen, Y.; He, C.Y.; Chen, Z.Y. Construction of minicircle DNA vectors capable of correcting familial hypercholesterolemia phenotype in a LDLR-deficient mouse model. Gene Ther., 2016, 23(8-9), 657-663.
[http://dx.doi.org/10.1038/gt.2016.37] [PMID: 27092942]
[59]
Platt, R.J.; Chen, S.; Zhou, Y.; Yim, M.J.; Swiech, L.; Kempton, H.R.; Dahlman, J.E.; Parnas, O.; Eisenhaure, T.M.; Jovanovic, M.; Graham, D.B.; Jhunjhunwala, S.; Heidenreich, M.; Xavier, R.J.; Langer, R.; Anderson, D.G.; Hacohen, N.; Regev, A.; Feng, G.; Sharp, P.A.; Zhang, F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014, 159(2), 440-455.
[http://dx.doi.org/10.1016/j.cell.2014.09.014] [PMID: 25263330]
[60]
Jarrett, K.E.; Lee, C.M.; Yeh, Y-H.; Hsu, R.H.; Gupta, R.; Zhang, M.; Rodriguez, P.J.; Lee, C.S.; Gillard, B.K.; Bissig, K.D.; Pownall, H.J.; Martin, J.F.; Bao, G.; Lagor, W.R. Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci. Rep., 2017, 7(1), 44624.
[http://dx.doi.org/10.1038/srep44624] [PMID: 28300165]
[61]
Zhao, H.; Li, Y.; He, L.; Pu, W.; Yu, W.; Li, Y.; Wu, Y.T.; Xu, C.; Wei, Y.; Ding, Q.; Song, B.L.; Huang, H.; Zhou, B. In vivo AAV-CRISPR/Cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia. Circulation, 2020, 141(1), 67-79.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042476] [PMID: 31779484]
[62]
Thakore, P.I.; Kwon, J.B.; Nelson, C.E.; Rouse, D.C.; Gemberling, M.P.; Oliver, M.L.; Gersbach, C.A. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun., 2018, 9(1), 1674.
[http://dx.doi.org/10.1038/s41467-018-04048-4] [PMID: 29700298]
[63]
Takahashi, K.; Yamanaka, S. Induced pluripotent stem cells in medicine and biology. Development, 2013, 140(12), 2457-2461.
[http://dx.doi.org/10.1242/dev.092551] [PMID: 23715538]
[64]
Mahla, R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol., 2016, 2016, 6940283.
[http://dx.doi.org/10.1155/2016/6940283]
[65]
Cayo, M.A.; Cai, J.; DeLaForest, A.; Noto, F.K.; Nagaoka, M.; Clark, B.S. ‘JD’iPS cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology, 2012, 56(6), 2163.
[http://dx.doi.org/10.1002/hep.25871] [PMID: 22653811]
[66]
Rashid, S.T.; Corbineau, S.; Hannan, N.; Marciniak, S.J.; Miranda, E.; Alexander, G.; Huang-Doran, I.; Griffin, J.; Ahrlund-Richter, L.; Skepper, J.; Semple, R.; Weber, A.; Lomas, D.A.; Vallier, L. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest., 2010, 120(9), 3127-3136.
[http://dx.doi.org/10.1172/JCI43122] [PMID: 20739751]
[67]
Fattahi, F.; Asgari, S.; Pournasr, B.; Seifinejad, A.; Totonchi, M.; Taei, A.; Aghdami, N.; Salekdeh, G.H.; Baharvand, H. Disease-corrected hepatocyte-like cells from familial hypercholesterolemia-induced pluripotent stem cells. Mol. Biotechnol., 2013, 54(3), 863-873.
[http://dx.doi.org/10.1007/s12033-012-9635-3] [PMID: 23247991]
[68]
Ramakrishnan, V.M.; Yang, J-Y.; Tien, K.T.; McKinley, T.R.; Bocard, B.R.; Maijub, J.G.; Burchell, P.O.; Williams, S.K.; Morris, M.E.; Hoying, J.B.; Wade-Martins, R.; West, F.D.; Boyd, N.L. Restoration of physiologically responsive low-density lipoprotein receptor-mediated endocytosis in genetically deficient induced pluripotent stem cells. Sci. Rep., 2015, 5(1), 13231.
[http://dx.doi.org/10.1038/srep13231] [PMID: 26307169]
[69]
Omer, L.; Hudson, E.A.; Zheng, S.; Hoying, J.B.; Shan, Y.; Boyd, N.L. CRISPR correction of a homozygous low‐density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells. Hepatol. Commun., 2017, 1(9), 886-898.
[http://dx.doi.org/10.1002/hep4.1110] [PMID: 29130076]
[70]
van der Graaf, A.; Cuffie-Jackson, C.; Vissers, M.N.; Trip, M.D.; Gagné, C.; Shi, G.; Veltri, E.; Avis, H.J.; Kastelein, J.J. Efficacy and safety of coadministration of ezetimibe and simvastatin in adolescents with heterozygous familial hypercholesterolemia. J. Am. Coll. Cardiol., 2008, 52(17), 1421-1429.
[http://dx.doi.org/10.1016/j.jacc.2008.09.002] [PMID: 18940534]
[71]
Shepherd, J. Mechanism of action of bile acid sequestrants and other lipid-lowering drugs. Cardiology, 1989, 76(Suppl. 1), 65-71.
[http://dx.doi.org/10.1159/000174548] [PMID: 2713876]
[72]
Alonso, R.; Perez de Isla, L.; Muñiz-Grijalvo, O.; Diaz-Diaz, J.L.; Mata, P. Familial hypercholesterolaemia diagnosis and management. Eur. Cardiol., 2018, 13(1), 14-20.
[http://dx.doi.org/10.15420/ecr.2018:10:2] [PMID: 30310464]
[73]
Cuchel, M.; Meagher, E.; du Toit, T.H.; Blom, D.; Marais, A.; Hegele, R. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in homozygous familial hypercholesterolemia. Lancet, 2013, 381(9860), 40.
[http://dx.doi.org/10.1016/S0140-6736(12)61731-0] [PMID: 23122768]
[74]
Turgeon, R.D.; Barry, A.R.; Pearson, G.J. Familial hypercholesterolemia: Review of diagnosis, screening, and treatment. Can. Fam. Physician, 2016, 62(1), 32-37.
[PMID: 26796832]
[75]
Kavey, R.E.; Allada, V.; Daniels, S.R.; Hayman, L.L.; McCrindle, B.W.; Newburger, J.W.; Parekh, R.S.; Steinberger, J. Cardiovascular risk reduction in high-risk pediatric patients: A scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research. J. Cardiovasc. Nurs., 2007, 22(3), 218-253.
[http://dx.doi.org/10.1097/01.JCN.0000267827.50320.85] [PMID: 17545824]
[76]
Parhofer, K.G. Mipomersen: Evidence-based review of its potential in the treatment of homozygous and severe heterozygous familial hypercholesterolemia. Core Evid., 2012, 7, 29-38.
[http://dx.doi.org/10.2147/CE.S25239] [PMID: 22701100]
[77]
Rader, D.J.; Cohen, J.; Hobbs, H.H. Monogenic hypercholesterolemia: New insights in pathogenesis and treatment. J. Clin. Invest., 2003, 111(12), 1795-1803.
[http://dx.doi.org/10.1172/JCI200318925] [PMID: 12813012]
[78]
Johns, D.G.; Wang, S.P.; Rosa, R.; Hubert, J.; Xu, S.; Chen, Y.; Bateman, T.; Blaustein, R.O. Impact of drug distribution into adipose on tissue function: The Cholesteryl Ester Transfer Protein (CETP) inhibitor anacetrapib as a test case. Pharmacol. Res. Perspect., 2019, 7(6), e00543.
[http://dx.doi.org/10.1002/prp2.543] [PMID: 31832204]
[79]
Kastelein, J.J.; Hovingh, G.K.; Langslet, G.; Baccara-Dinet, M.T.; Gipe, D.A.; Chaudhari, U.; Zhao, J.; Minini, P.; Farnier, M. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 monoclonal antibody alirocumab vs. placebo in patients with heterozygous familial hypercholesterolemia. J. Clin. Lipidol., 2017, 11(1), 195-203.e4.
[http://dx.doi.org/10.1016/j.jacl.2016.12.004] [PMID: 28391886]
[80]
Bilen, O.; Ballantyne, C.M. Bempedoic acid (ETC-1002): An investigational inhibitor of ATP citrate lyase. Curr. Atheroscler. Rep., 2016, 18(10), 61.
[http://dx.doi.org/10.1007/s11883-016-0611-4] [PMID: 27663902]
[81]
Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; Silbernagel, G.; Staels, B.; Borén, J.; Catapano, A.L.; De Backer, G.; Deanfield, J.; Descamps, O.S.; Kovanen, P.T.; Riccardi, G.; Tokgözoglu, L.; Chapman, M.J. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis, 2014, 232(2), 346-360.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.043] [PMID: 24468148]
[82]
Li, H.; Dong, B.; Park, S.W.; Lee, H-S.; Chen, W.; Liu, J. Hepatocyte nuclear factor 1α plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem., 2009, 284(42), 28885-28895.
[http://dx.doi.org/10.1074/jbc.M109.052407] [PMID: 19687008]
[83]
Chen, C.H.; Yang, J.C.; Uang, Y.S.; Lin, C.J. Improved dissolution rate and oral bioavailability of lovastatin in red yeast rice products. Int. J. Pharm., 2013, 444(1-2), 18-24.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.028] [PMID: 23352857]
[84]
Gaudet, D.; Durst, R.; Lepor, N.; Bakker-Arkema, R.; Bisgaier, C.; Masson, L.; Golden, L.; Kastelein, J.J.; Hegele, R.A.; Stein, E. Usefulness of gemcabene in homozygous familial hypercholesterolemia (from COBALT-1). Am. J. Cardiol., 2019, 124(12), 1876-1880.
[http://dx.doi.org/10.1016/j.amjcard.2019.09.010] [PMID: 31685212]
[85]
Banerjee, P.; Chan, K-C.; Tarabocchia, M.; Benito-Vicente, A.; Alves, A.C.; Uribe, K.B.; Bourbon, M.; Skiba, P.J.; Pordy, R.; Gipe, D.A.; Gaudet, D.; Martin, C. Functional analysis of LDLR (Low-Density Lipoprotein Receptor) variants in patient lymphocytes to assess the effect of evinacumab in homozygous familial hypercholesterolemia patients with a spectrum of LDLR activity. Arterioscler. Thromb. Vasc. Biol., 2019, 39(11), 2248-2260.
[http://dx.doi.org/10.1161/ATVBAHA.119.313051] [PMID: 31578082]
[86]
Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.023] [PMID: 26318398]
[87]
Wagschal, A.; Najafi-Shoushtari, S.H.; Wang, L.; Goedeke, L.; Sinha, S.; deLemos, A.S.; Black, J.C.; Ramírez, C.M.; Li, Y.; Tewhey, R.; Hatoum, I.; Shah, N.; Lu, Y.; Kristo, F.; Psychogios, N.; Vrbanac, V.; Lu, Y.C.; Hla, T.; de Cabo, R.; Tsang, J.S.; Schadt, E.; Sabeti, P.C.; Kathiresan, S.; Cohen, D.E.; Whetstine, J.; Chung, R.T.; Fernández-Hernando, C.; Kaplan, L.M.; Bernards, A.; Gerszten, R.E.; Näär, A.M. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med., 2015, 21(11), 1290-1297.
[http://dx.doi.org/10.1038/nm.3980] [PMID: 26501192]
[88]
Jiang, H.; Zhang, J.; Du, Y.; Jia, X.; Yang, F.; Si, S.; Wang, L.; Hong, B. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis, 2015, 243(2), 523-532.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.026] [PMID: 26523989]
[89]
Bai, J.; Na, H.; Hua, X.; Wei, Y.; Ye, T.; Zhang, Y.; Jian, G.; Zeng, W.; Yan, L.; Tang, Q. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget, 2017, 8(4), 6929-6939.
[http://dx.doi.org/10.18632/oncotarget.14322] [PMID: 28036293]
[90]
Gheibi Hayat, S.M.; Sahebkar, A.H. Antibody drug conjugates for cancer therapy. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul, 2017, 19(7), 20-27.
[91]
Zhang, H.; Feng, Z.; Huang, R.; Xia, Z.; Xiang, G.; Zhang, J. MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1. Int. J. Oncol., 2014, 45(5), 2143-2152.
[http://dx.doi.org/10.3892/ijo.2014.2596] [PMID: 25119660]
[92]
Xu, Y.; Zalzala, M.; Xu, J.; Li, Y.; Yin, L.; Zhang, Y. A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipoprotein metabolism. Nat. Commun., 2015, 6(1), 7466.
[http://dx.doi.org/10.1038/ncomms8466] [PMID: 26100857]
[93]
Hsu, S.H.; Wang, B.; Kota, J.; Yu, J.; Costinean, S.; Kutay, H.; Yu, L.; Bai, S.; La Perle, K.; Chivukula, R.R.; Mao, H.; Wei, M.; Clark, K.R.; Mendell, J.R.; Caligiuri, M.A.; Jacob, S.T.; Mendell, J.T.; Ghoshal, K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest., 2012, 122(8), 2871-2883.
[http://dx.doi.org/10.1172/JCI63539] [PMID: 22820288]
[94]
Goedeke, L.; Rotllan, N.; Ramírez, C.M.; Aranda, J.F.; Canfrán-Duque, A.; Araldi, E.; Fernández-Hernando, A.; Langhi, C.; de Cabo, R.; Baldán, Á.; Suárez, Y.; Fernández-Hernando, C. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243(2), 499-509.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.033] [PMID: 26520906]
[95]
Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; Yin, Y.; Wang, C.; Zhang, T.; Zhu, D.; Zhang, D.; Xu, J.; Chen, Q.; Ba, Y.; Liu, J.; Wang, Q.; Chen, J.; Wang, J.; Wang, M.; Zhang, Q.; Zhang, J.; Zen, K.; Zhang, C.Y. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res., 2012, 22(1), 107-126.
[http://dx.doi.org/10.1038/cr.2011.158] [PMID: 21931358]
[96]
Jiang, L.; Wang, L.Y.; Cheng, X.S. Novel approaches for the treatment of familial hypercholesterolemia: Current status and future challenges. J. Atheroscler. Thromb., 2018, 25(8), 665-673.
[http://dx.doi.org/10.5551/jat.43372] [PMID: 29899171]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy