Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Microbiome and Development of Ovarian Cancer

Author(s): Aditi Dhingra, Divyani Sharma, Anuj Kumar, Shalini Singh and Pramod Kumar*

Volume 22, Issue 11, 2022

Published on: 27 July, 2022

Page: [1073 - 1090] Pages: 18

DOI: 10.2174/1871530322666220509034847

Price: $65

Abstract

Cancer of the female reproductive system involves abnormal cell growth that can potentially invade the peritoneal cavity resulting in malignancy and disease severity. Ovarian cancer is the most common type of gynecological cancer, which often remains undiagnosed until the later stages of the disease or until cancer has metastasized towards the peritoneum and omentum, compelling it to be a deadly disease complicating the prognosis and therapeutics. Environmental, genetics and microbial factors are the common mainsprings to the disease. Moreover, human beings harbor rich microbial diversity in various organs (gut, respiratory tract, reproductive tract, etc.) as a microbiome, crucially impacting health. Any dysbiosis in the microbial diversity or richness of the reproductive tract and gut can contribute to preconditions to develop/progress various diseases, including ovarian carcinoma. The microbiome may have a casual or associate role in ovarian cancer development, with Proteobacteria being the most dominant taxa in cancer patients and Firmicutes being the most dominant in a normal healthy adult female. A healthy estrogen-gut axis has an essential role in estrogen metabolism and utilization. However, estrobolome (Bacteriodete, Firmicutes, Actinobacteria, and Proteobacteria) dysbiosis has an indirect association with ovarian carcinoma. Microbes associated with sexually transmitted diseases also impact the induction and progression of ovarian malignancies. Altogether, the microbes and their metabolites are incidental to the risk of developing ovarian carcinoma.

Keywords: Ovarian cancer, microbiome, estrobolome, probiotics, gut microbiota, microbial dysbiosis.

Graphical Abstract

[1]
Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Primers, 2016, 2(1), 16061.
[http://dx.doi.org/10.1038/nrdp.2016.61] [PMID: 27558151]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Angeli, D.; Salvi, S.; Tedaldi, G. Genetic predispositions to breast and ovarian cancers: How many and which genes to test? Int. J. Mol. Sci., 2020, 21(3), 1128.
[http://dx.doi.org/10.3390/ijms21031128] [PMID: 32046255]
[4]
Hollis, R.L.; Gourley, C. Genetic and molecular changes in ovarian cancer. Cancer Biol. Med., 2016, 13(2), 236-247.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0024] [PMID: 27458531]
[5]
Toss, A.; Tomasello, C.; Razzaboni, E.; Contu, G.; Grandi, G.; Cagnacci, A.; Schilder, R.J.; Cortesi, L. Hereditary ovarian cancer: Not only BRCA 1 and 2 genes. BioMed Res. Int., 2015, 2015, 341723.
[http://dx.doi.org/10.1155/2015/341723] [PMID: 26075229]
[6]
Zhou, B.; Sun, C.; Huang, J.; Xia, M.; Guo, E.; Li, N.; Lu, H.; Shan, W.; Wu, Y.; Li, Y.; Xu, X.; Weng, D.; Meng, L.; Hu, J.; Gao, Q.; Ma, D.; Chen, G. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci. Rep., 2019, 9(1), 1691.
[http://dx.doi.org/10.1038/s41598-018-38031-2] [PMID: 30737418]
[7]
Xu, J.; Peng, J.J.; Yang, W.; Fu, K.; Zhang, Y. Vaginal microbiomes and ovarian cancer: A review. Am. J. Cancer Res., 2020, 10(3), 743-756.
[PMID: 32266088]
[8]
Roy, S.; Trinchieri, G. Microbiota: A key orchestrator of cancer therapy. Nat. Rev. Cancer, 2017, 17(5), 271-285.
[http://dx.doi.org/10.1038/nrc.2017.13] [PMID: 28303904]
[9]
Chase, D.; Goulder, A.; Zenhausern, F.; Monk, B.; Herbst-Kralovetz, M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: A review of applications in etiology, symptoms and treatment. Gynecol. Oncol., 2015, 138(1), 190-200.
[http://dx.doi.org/10.1016/j.ygyno.2015.04.036] [PMID: 25957158]
[10]
Mani, S. Microbiota and breast cancer. Prog. Mol. Biol. Transl. Sci., 2017, 151, 217-229.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.004] [PMID: 29096895]
[11]
Vogtmann, E.; Goedert, J.J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer, 2016, 114(3), 237-242.
[http://dx.doi.org/10.1038/bjc.2015.465] [PMID: 26730578]
[12]
Xu, S.; Liu, Z.; Lv, M.; Chen, Y.; Liu, Y. Intestinal dysbiosis promotes epithelial-mesenchymal transition by activating tumor-associated macrophages in ovarian cancer. Pathog. Dis., 2019, 77(2), ftz019.
[http://dx.doi.org/10.1093/femspd/ftz019] [PMID: 30916767]
[13]
Idahl, A.; Lundin, E.; Jurstrand, M.; Kumlin, U.; Elgh, F.; Ohlson, N.; Ottander, U. Chlamydia trachomatis and Mycoplasma genitalium plasma antibodies in relation to epithelial ovarian tumors. Infect. Dis. Obstet. Gynecol., 2011, 2011, 824627.
[14]
Rappa, F.; Farina, F.; Zummo, G.; David, S.; Campanella, C.; Carini, F.; Tomasello, G.; Damiani, P.; Cappello, F.; DE Macario, E.C.; Macario, A.J.L. HSP-molecular chaperones in cancer biogenesis and tumor therapy: An overview. Anticancer Res., 2012, 32(12), 5139-5150.
[PMID: 23225410]
[15]
Idahl, A.; Le Cornet, C.; González Maldonado, S.; Waterboer, T.; Bender, N.; Tjønneland, A.; Hansen, L.; Boutron-Ruault, M.C.; Fournier, A.; Kvaskoff, M.; Boeing, H.; Trichopoulou, A.; Valanou, E.; Peppa, E.; Palli, D.; Agnoli, C.; Mattiello, A.; Tumino, R.; Sacerdote, C.; Onland-Moret, N.C.; Gram, I.T.; Weiderpass, E.; Quirós, J.R.; Duell, E.J.; Sánchez, M.J.; Chirlaque, M.D.; Barricarte, A.; Gil, L.; Brändstedt, J.; Riesbeck, K.; Lundin, E.; Khaw, K.T.; Perez-Cornago, A.; Gunter, M.J.; Dossus, L.; Kaaks, R.; Fortner, R.T. Serologic markers of Chlamydia trachomatis and other sexually transmitted infections and subsequent ovarian cancer risk: Results from the EPIC cohort. Int. J. Cancer, 2020, 147(8), 2042-2052.
[http://dx.doi.org/10.1002/ijc.32999] [PMID: 32243586]
[16]
Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Alwine, J.C.; Coukos, G.; Robertson, E.S. The ovarian cancer oncobiome. Oncotarget, 2017, 8(22), 36225-36245.
[http://dx.doi.org/10.18632/oncotarget.16717] [PMID: 28410234]
[17]
Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas, 2017, 103, 45-53.
[http://dx.doi.org/10.1016/j.maturitas.2017.06.025] [PMID: 28778332]
[18]
Sedláková, I.; Vávrová, J.; Tošner, J.; Hanousek, L. Lysophosphatidic acid (LPA)-a perspective marker in ovarian cancer. Tumour Biol., 2011, 32(2), 311-316.
[http://dx.doi.org/10.1007/s13277-010-0123-8] [PMID: 21061112]
[19]
Mills, G.B.; May, C.; McGill, M.; Roifman, C.M.; Mellors, A. A putative new growth factor in ascitic fluid from ovarian cancer patients: Identification, characterization, and mechanism of action. Cancer Res., 1988, 48(5), 1066-1071.
[PMID: 3422589]
[20]
Fishman, D.A.; Bozorgi, K. The scientific basis of early detection of epithelial ovarian cancer: The National Ovarian Cancer Early Detection Program (NOCEDP). Cancer Treat. Res., 2002, 107, 3-28.
[http://dx.doi.org/10.1007/978-1-4757-3587-1_1] [PMID: 11775458]
[21]
Fang, X.; Schummer, M.; Mao, M.; Yu, S.; Tabassam, F.H.; Swaby, R.; Hasegawa, Y.; Tanyi, J.L.; LaPushin, R.; Eder, A.; Jaffe, R. Er ickson, J.; Mills, G.B. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim. Biophys. Acta, 2002, 1582(1-3), 257-264.
[http://dx.doi.org/10.1016/S1388-1981(02)00179-8] [PMID: 12069836]
[22]
Xiao, Y.J.; Schwartz, B.; Washington, M.; Kennedy, A.; Webster, K.; Belinson, J.; Xu, Y. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: Comparison of the lysophospholipid contents in malignant vs. nonmalignant ascitic fluids. Anal. Biochem., 2001, 290(2), 302-313.
[http://dx.doi.org/10.1006/abio.2001.5000] [PMID: 11237333]
[23]
Piao, J.; Lee, E.J.; Lee, M. Association between pelvic inflammatory disease and risk of ovarian cancer: An updated meta-analysis. Gynecol. Oncol., 2020, 157(2), 542-548.
[24]
Fong, M.Y.; McDunn, J.; Kakar, S.S. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One, 2011, 6(5), e19963.
[http://dx.doi.org/10.1371/journal.pone.0019963] [PMID: 21625518]
[25]
Kozar, N.; Kruusmaa, K.; Bitenc, M.; Argamasilla, R.; Adsuar, A.; Goswami, N.; Arko, D.; Takač, I. Metabolomic profiling suggests long chain ceramides and sphingomyelins as a possible diagnostic biomarker of epithelial ovarian cancer. Clin. Chim. Acta, 2018, 481, 108-114.
[http://dx.doi.org/10.1016/j.cca.2018.02.029] [PMID: 29481776]
[26]
Zeleznik, O.A.; Clish, C.B.; Kraft, P.; Avila-Pacheco, J.; Eliassen, A.H.; Tworoger, S.S. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: A 23-year prospective study. J. Natl. Cancer Inst., 2020, 112(6), 628-636.
[http://dx.doi.org/10.1093/jnci/djz195] [PMID: 31593240]
[27]
Bienias, K.; Fiedorowicz, A.; Sadowska, A.; Prokopiuk, S.; Car, H. Regulation of sphingomyelin metabolism. Pharmacol. Rep., 2016, 68(3), 570-581.
[http://dx.doi.org/10.1016/j.pharep.2015.12.008] [PMID: 26940196]
[28]
Maurmann, L.; Belkacemi, L.; Adams, N.R.; Majmudar, P.M.; Moghaddas, S.; Bose, R.N. A novel cisplatin mediated apoptosis pathway is associated with acid sphingomyelinase and FAS proapoptotic protein activation in ovarian cancer. Apoptosis, 2015, 20(7), 960-974.
[http://dx.doi.org/10.1007/s10495-015-1124-2] [PMID: 25846011]
[29]
Nongonierma, A.B.; FitzGerald, R.J. Milk proteins as a source of tryptophan-containing bioactive peptides. Food Funct., 2015, 6(7), 2115-2127.
[http://dx.doi.org/10.1039/C5FO00407A] [PMID: 26027501]
[30]
Sipos, A.; Ujlaki, G.; Mikó, E.; Maka, E.; Szabó, J.; Uray, K.; Krasznai, Z.; Bai, P. The role of the microbiome in ovarian cancer: Mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol. Med., 2021, 27(1), 33.
[http://dx.doi.org/10.1186/s10020-021-00295-2] [PMID: 33794773]
[31]
Kaur, H.; Bose, C.; Mande, S.S. Tryptophan metabolism by gut microbiome and gut-brain-axis: An in silico analysis. Front. Neurosci., 2019, 13, 1365.
[http://dx.doi.org/10.3389/fnins.2019.01365] [PMID: 31920519]
[32]
Nené, N.R.; Reisel, D.; Leimbach, A.; Franchi, D.; Jones, A.; Evans, I.; Knapp, S.; Ryan, A.; Ghazali, S.; Timms, J.F.; Paprotka, T.; Bjørge, L.; Zikan, M.; Cibula, D.; Colombo, N.; Widschwendter, M. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: A case-control study. Lancet Oncol., 2019, 20(8), 1171-1182.
[http://dx.doi.org/10.1016/S1470-2045(19)30340-7] [PMID: 31300207]
[33]
Plewa, S.; Horała, A.; Dereziński, P.; Klupczynska, A.; Nowak-Markwitz, E.; Matysiak, J.; Kokot, Z.J. Usefulness of amino acid profiling in ovarian cancer screening with special emphasis on their role in cancerogenesis. Int. J. Mol. Sci., 2017, 18(12), 2727.
[http://dx.doi.org/10.3390/ijms18122727] [PMID: 29258187]
[34]
Shui, L.; Yang, X.; Li, J.; Yi, C.; Sun, Q.; Zhu, H. Gut microbiome as a potential factor for modulating resistance of cancer immunotherapy. Front. Immunol., 2020, 10, 2989.
[http://dx.doi.org/10.3389/fimmu.2019.02989] [PMID: 32010123]
[35]
Mercado, AI; Oliveros, MN Microbial population changes and their relationship with human health and disease. Microorganisms, 2019, 7(3), 68.
[36]
Łaniewski, P.; Ilhan, Z.E.; Herbst-Kralovetz, M.M. The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol., 2020, 17(4), 232-250.
[http://dx.doi.org/10.1038/s41585-020-0286-z] [PMID: 32071434]
[37]
Dixon, C.L.; Richardson, L.; Sheller-Miller, S.; Saade, G.; Menon, R. A distinct mechanism of senescence activation in amnion epithelial cells by infection, inflammation, and oxidative stress. Am. J. Reprod. Immunol., 2018, 79(3), 10.
[http://dx.doi.org/10.1111/aji.12790] [PMID: 29193446]
[38]
Dasari, S.; Karanam, S.; Wudayagiri, R.A.; Valluru, L. Role of Microbial flora in female genital tract: A comprehensive review. Asian Pac. J. Trop. Dis., 2016, 6(11), 909-917.
[http://dx.doi.org/10.1016/S2222-1808(16)61155-6]
[39]
Wang, Q.; Zhao, L.; Han, L.; Fu, G.; Tuo, X.; Ma, S.; Li, Q.; Wang, Y.; Liang, D.; Tang, M.; Sun, C.; Wang, Q.; Song, Q.; Li, Q. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J. Ovarian Res., 2020, 13(1), 8.
[http://dx.doi.org/10.1186/s13048-019-0603-4] [PMID: 31954395]
[40]
Lamont, R.F.; Sobel, J.D.; Akins, R.A.; Hassan, S.S.; Chaiworapongsa, T.; Kusanovic, J.P.; Romero, R. The vaginal microbiome: New information about genital tract flora using molecular based techniques. BJOG, 2011, 118(5), 533-549.
[http://dx.doi.org/10.1111/j.1471-0528.2010.02840.x] [PMID: 21251190]
[41]
Ma, B.; Forney, L.J.; Ravel, J. Vaginal microbiome: Rethinking health and disease. Annu. Rev. Microbiol., 2012, 66(1), 371-389.
[http://dx.doi.org/10.1146/annurev-micro-092611-150157] [PMID: 22746335]
[42]
Power, M.L.; Quaglieri, C.; Schulkin, J. Reproductive microbiomes: A new thread in the microbial network. Reprod. Sci., 2017, 24(11), 1482-1492.
[http://dx.doi.org/10.1177/1933719117698577] [PMID: 28322134]
[43]
DiGiulio, D.B.; Romero, R.; Amogan, H.P.; Kusanovic, J.P.; Bik, E.M.; Gotsch, F.; Kim, C.J.; Erez, O.; Edwin, S.; Relman, D.A. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: A molecular and culture-based investigation. PLoS One, 2008, 3(8), e3056.
[http://dx.doi.org/10.1371/journal.pone.0003056] [PMID: 18725970]
[44]
MacIntyre, D.A.; Chandiramani, M.; Lee, Y.S.; Kindinger, L.; Smith, A.; Angelopoulos, N.; Lehne, B.; Arulkumaran, S.; Brown, R.; Teoh, T.G.; Holmes, E.; Nicoholson, J.K.; Marchesi, J.R.; Bennett, P.R. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep., 2015, 5(1), 8988.
[http://dx.doi.org/10.1038/srep08988] [PMID: 25758319]
[45]
Sood, R.; Zehnder, J.L.; Druzin, M.L.; Brown, P.O. Gene expression patterns in human placenta. Proc. Natl. Acad. Sci. USA, 2006, 103(14), 5478-5483.
[http://dx.doi.org/10.1073/pnas.0508035103]
[46]
Olaniyi, K.S.; Moodley, J.; Mahabeer, Y.; Mackraj, I. Placental microbial colonization and its association with pre-eclampsia. Front. Cell. Infect. Microbiol., 2020, 10, 413.
[http://dx.doi.org/10.3389/fcimb.2020.00413] [PMID: 32903432]
[47]
Stout, M.J.; Conlon, B.; Landeau, M.; Lee, I.; Bower, C.; Zhao, Q.; Roehl, K.A.; Nelson, D.M.; Macones, G.A.; Mysorekar, I.U. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations., 2013, 208(3), 226-227.
[http://dx.doi.org/10.1016/j.ajog.2013.01.018]
[48]
Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med., 2014, 6, 237ra265.
[49]
Han, Y.W.; Shen, T.; Chung, P.; Buhimschi, I.A.; Buhimschi, C.S. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J. Clin. Microbiol., 2009, 47(1), 38-47.
[http://dx.doi.org/10.1128/JCM.01206-08] [PMID: 18971361]
[50]
Romero, R.; Schaudinn, C.; Kusanovic, J.P.; Gorur, A.; Gotsch, F.; Webster, P.; Nhan-Chang, C.L.; Erez, O.; Kim, C.J.; Espinoza, J.; Gonçalves, L.F.; Vaisbuch, E.; Mazaki-Tovi, S.; Hassan, S.S.; Costerton, J.W. Detection of a microbial biofilm in intraamniotic infection. Am. J. Obstet. Gynecol., 2008, 198(1), 135.e1-135.e5.
[http://dx.doi.org/10.1016/j.ajog.2007.11.026] [PMID: 18166328]
[51]
Fardini, Y.; Chung, P.; Dumm, R.; Joshi, N.; Han, Y.W. Transmission of diverse oral bacteria to murine placenta: Evidence for the oral microbiome as a potential source of intrauterine infection. Infect. Immun., 2010, 78(4), 1789-1796.
[http://dx.doi.org/10.1128/IAI.01395-09] [PMID: 20123706]
[52]
Han, Y.W.; Ikegami, A.; Bissada, N.F.; Herbst, M.; Redline, R.W.; Ashmead, G.G. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J. Clin. Microbiol., 2006, 44(4), 1475-1483.
[http://dx.doi.org/10.1128/JCM.44.4.1475-1483.2006] [PMID: 16597879]
[53]
Fardini, Y.; Wang, X.; Témoin, S.; Nithianantham, S.; Lee, D.; Shoham, M.; Han, Y.W. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol. Microbiol., 2011, 82(6), 1468-1480.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07905.x] [PMID: 22040113]
[54]
Offenbacher, S.; Beck, J.D.; Jared, H.L.; Mauriello, S.M.; Mendoza, L.C.; Couper, D.J.; Stewart, D.D.; Murtha, A.P.; Cochran, D.L.; Dudley, D.J.; Reddy, M.S.; Geurs, N.C.; Hauth, J.C. Effects of periodontal therapy on rate of preterm delivery: A randomized controlled trial. Obstet. Gynecol., 2009, 114(3), 551-559.
[http://dx.doi.org/10.1097/AOG.0b013e3181b1341f] [PMID: 19701034]
[55]
Macones, G.A.; Parry, S.; Nelson, D.B.; Strauss, J.F.; Ludmir, J.; Cohen, A.W.; Stamilio, D.M.; Appleby, D.; Clothier, B.; Sammel, M.D.; Jeffcoat, M. Treatment of localized periodontal disease in pregnancy does not reduce the occurrence of preterm birth: Results from the Periodontal Infections and Prematurity Study (PIPS). Am. J. Obstet. Gynecol., 2010, 202(2), 147.e1-147.e8.
[http://dx.doi.org/10.1016/j.ajog.2009.10.892] [PMID: 20113691]
[56]
Stennett, C.A.; Dyer, T.V.; He, X.; Robinson, C.K.; Ravel, J.; Ghanem, K.G.; Brotman, R.M. A cross-sectional pilot study of birth mode and vaginal microbiota in reproductive-age women. PLoS One, 2020, 15(4), e0228574.
[http://dx.doi.org/10.1371/journal.pone.0228574] [PMID: 32236123]
[57]
Dunn, A.B.; Jordan, S.; Baker, B.J.; Carlson, N.S. The maternal infant microbiome: Considerations for labor and birth. MCN Am. J. Matern. Child Nurs., 2017, 42(6), 318-325.
[http://dx.doi.org/10.1097/NMC.0000000000000373] [PMID: 28825919]
[58]
Dominguez-Bello, MG; Costello, EK; Contreras, M.; Magris, M.; Hidalgo, G; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U S A, 2010, 107(26), 11971-11975.
[http://dx.doi.org/10.1073/pnas.1002601107]
[59]
Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int., 2017, 66(4), 515-522.
[http://dx.doi.org/10.1016/j.alit.2017.07.010] [PMID: 28826938]
[60]
Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; Heath, A.C.; Warner, B.; Reeder, J.; Kuczynski, J.; Caporaso, J.G.; Lozupone, C.A.; Lauber, C.; Clemente, J.C.; Knights, D.; Knight, R.; Gordon, J.I. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402), 222-227.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[61]
Stiemsma, L.T.; Turvey, S.E. Asthma and the microbiome: Defining the critical window in early life. Allergy Asthma Clin. Immunol., 2017, 13(1), 3.
[http://dx.doi.org/10.1186/s13223-016-0173-6] [PMID: 28077947]
[62]
Borgo, P.V.; Rodrigues, V.A.; Feitosa, A.C.; Xavier, K.C.; Avila-Campos, M.J. Association between periodontal condition and subgingival microbiota in women during pregnancy: A longitudinal study. J. Appl. Oral Sci., 2014, 22(6), 528-533.
[http://dx.doi.org/10.1590/1678-775720140164] [PMID: 25591021]
[63]
Emmatty, R.; Mathew, J.J.; Kuruvilla, J. Comparative evaluation of subgingival plaque microflora in pregnant and non-pregnant women: A clinical and microbiologic study. J. Indian Soc. Periodontol., 2013, 17(1), 47-51.
[http://dx.doi.org/10.4103/0972-124X.107474] [PMID: 23633772]
[64]
Jeffcoat, M.K.; Hauth, J.C.; Geurs, N.C.; Reddy, M.S.; Cliver, S.P.; Hodgkins, P.M.; Goldenberg, R.L. Periodontal disease and preterm birth: Results of a pilot intervention study. J. Periodontol., 2003, 74(8), 1214-1218.
[http://dx.doi.org/10.1902/jop.2003.74.8.1214] [PMID: 14514236]
[65]
Offenbacher, S.; Lieff, S.; Boggess, K.A.; Murtha, A.P.; Madianos, P.N.; Champagne, C.M.; McKaig, R.G.; Jared, H.L.; Mauriello, S.M.; Auten, R.L., Jr; Herbert, W.N.; Beck, J.D. Maternal periodontitis and prematurity. Part I: Obstetric outcome of prematurity and growth restriction. Ann. Periodontol., 2001, 6(1), 164-174.
[http://dx.doi.org/10.1902/annals.2001.6.1.164] [PMID: 11887460]
[66]
Boggess, K.A.; Lieff, S.; Murtha, A.P.; Moss, K.; Beck, J.; Offenbacher, S. Maternal periodontal disease is associated with an increased risk for preeclampsia. Obstet. Gynecol., 2003, 101(2), 227-231.
[PMID: 12576243]
[67]
Michalowicz, B.S.; Hodges, J.S.; DiAngelis, A.J.; Lupo, V.R.; Novak, M.J.; Ferguson, J.E.; Buchanan, W.; Bofill, J.; Papapanou, P.N.; Mitchell, D.A.; Matseoane, S.; Tschida, P.A.; Study, O.P.T. Treatment of periodontal disease and the risk of preterm birth. N. Engl. J. Med., 2006, 355(18), 1885-1894.
[http://dx.doi.org/10.1056/NEJMoa062249] [PMID: 17079762]
[68]
Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Van den Veyver, I.; Milosavljevic, A.; Gevers, D.; Huttenhower, C.; Petrosino, J.; Versalovic, J. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One, 2012, 7(6), e36466.
[http://dx.doi.org/10.1371/journal.pone.0036466] [PMID: 22719832]
[69]
Romero, R.; Hassan, S.S.; Gajer, P.; Tarca, A.L.; Fadrosh, D.W.; Nikita, L.; Galuppi, M.; Lamont, R.F.; Chaemsaithong, P.; Miranda, J.; Chaiworapongsa, T.; Ravel, J. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2014, 2(1), 4.
[http://dx.doi.org/10.1186/2049-2618-2-4] [PMID: 24484853]
[70]
Reid, G.; Younes, J.A.; Van der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota restoration: Natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol., 2011, 9(1), 27-38.
[http://dx.doi.org/10.1038/nrmicro2473] [PMID: 21113182]
[71]
Verstraelen, H.; Verhelst, R.; Claeys, G.; De Backer, E.; Temmerman, M.; Vaneechoutte, M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol., 2009, 9(1), 116.
[http://dx.doi.org/10.1186/1471-2180-9-116] [PMID: 19490622]
[72]
Borgdorff, H.; Tsivtsivadze, E.; Verhelst, R.; Marzorati, M.; Jurriaans, S.; Ndayisaba, G.F.; Schuren, F.H.; van de Wijgert, J.H. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J., 2014, 8(9), 1781-1793.
[http://dx.doi.org/10.1038/ismej.2014.26] [PMID: 24599071]
[73]
Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; Brotman, R.M.; Davis, C.C.; Ault, K.; Peralta, L.; Forney, L.J. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4680-4687.
[http://dx.doi.org/10.1073/pnas.1002611107] [PMID: 20534435]
[74]
Gajer, P.; Brotman, R.M.; Bai, G.; Sakamoto, J.; Schütte, U.M.; Zhong, X.; Koenig, S.S.; Fu, L.; Ma, Z.S.; Zhou, X.; Abdo, Z.; Forney, L.J.; Ravel, J. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med., 2012, 4(132), 132ra52.
[http://dx.doi.org/10.1126/scitranslmed.3003605] [PMID: 22553250]
[75]
Fettweis, J.M.; Brooks, J.P.; Serrano, M.G.; Sheth, N.U.; Girerd, P.H.; Edwards, D.J.; Strauss, J.F.; Jefferson, K.K.; Buck, G.A. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology, 2014, 160(Pt 10), 2272-2282.
[http://dx.doi.org/10.1099/mic.0.081034-0] [PMID: 25073854]
[76]
Borgdorff, H.; van der Veer, C.; van Houdt, R. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS One, 2017, 12(7), e0181135.
[http://dx.doi.org/10.1371/journal.pone.0181135]
[77]
DiGiulio, D.B.; Callahan, B.J.; McMurdie, P.J.; Costello, E.K.; Lyell, D.J.; Robaczewska, A.; Sun, C.L.; Goltsman, D.S.; Wong, R.J.; Shaw, G.; Stevenson, D.K.; Holmes, S.P.; Relman, D.A. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA, 2015, 112(35), 11060-11065.
[http://dx.doi.org/10.1073/pnas.1502875112] [PMID: 26283357]
[78]
Eggert-Kruse, W.; Botz, I.; Pohl, S.; Rohr, G.; Strowitzki, T. Antimicrobial activity of human cervical mucus. Hum. Reprod., 2000, 15(4), 778-784.
[http://dx.doi.org/10.1093/humrep/15.4.778] [PMID: 10739819]
[79]
Heil, B.A.; Paccamonti, D.L.; Sones, J.L. Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol. Genomics, 2019, 51(8), 390-399.
[http://dx.doi.org/10.1152/physiolgenomics.00045.2019] [PMID: 31251700]
[80]
Saraoui, T.; Leroi, F.; Björkroth, J.; Pilet, M.F. Lactococcus piscium: A psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food-a review. J. Appl. Microbiol., 2016, 121(4), 907-918.
[http://dx.doi.org/10.1111/jam.13179] [PMID: 27172050]
[81]
Witkin, S.S.; Linhares, I.M.; Giraldo, P. Bacterial flora of the female genital tract: Function and immune regulation. Best Pract. Res. Clin. Obstet. Gynaecol., 2007, 21(3), 347-354.
[http://dx.doi.org/10.1016/j.bpobgyn.2006.12.004] [PMID: 17215167]
[82]
Shannon, B.; Yi, T.J.; Perusini, S.; Gajer, P.; Ma, B.; Humphrys, M.S.; Thomas-Pavanel, J.; Chieza, L.; Janakiram, P.; Saunders, M.; Tharao, W.; Huibner, S.; Shahabi, K.; Ravel, J.; Rebbapragada, A.; Kaul, R. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol., 2017, 10(5), 1310-1319.
[http://dx.doi.org/10.1038/mi.2016.129] [PMID: 28120845]
[83]
Veer, C.V.; Bruisten, S.M.; Helm, J.J. De vries, H.J.C.; Van Houdt, R. The cervico-vaginale microbiota in chlamydia trachomatis notifies women: A case control study at the sexually transmitted infection outpatient clinic in Amsterdam. Virus Evol., 2017, 64(1), 24-31.
[PMID: 27567124]
[84]
Patton, D.L.; Landers, D.V.; Schachter, J. Experimental Chlamydia trachomatis salpingitis in mice: Initial studies on the characterization of the leukocyte response to chlamydial infection. J. Infect. Dis., 1989, 159(6), 1105-1110.
[http://dx.doi.org/10.1093/infdis/159.6.1105] [PMID: 2656878]
[85]
Ingerslev, K.; Høgdall, E.; Ruminski, S.W.; Schnack, T.H.; Lidang, M.; Høgdall, C.; Blaakaer, J. The prevalence of EBV and CMV DNA in epithelial ovarian cancer. Infect. Agent. Cancer, 2019, 26, 14-17.
[http://dx.doi.org/10.1186/s13027-019-0223-z]
[86]
Paradowska, E.; Jabłońska, A.; Studzińska, M.; Wilczyński, M.; Wilczyński, J.R. Detection and genotyping of CMV and HPV in tumors and fallopian tubes from epithelial ovarian cancer patients. Sci. Rep., 2019, 9(1), 19935.
[http://dx.doi.org/10.1038/s41598-019-56448-1] [PMID: 31882737]
[87]
Cullin, N.; Azevedo Antunes, C.; Straussman, R.; Stein-Thoeringer, C.K.; Elinav, E. Microbiome and cancer. Cancer Cell, 2021, 39(10), 1317-1341.
[http://dx.doi.org/10.1016/j.ccell.2021.08.006] [PMID: 34506740]
[88]
De Rycke, J.; Oswald, E. Cytolethal distending toxin (CDT): A bacterial weapon to control host cell proliferation? FEMS Microbiol. Lett., 2001, 203(2), 141-148.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10832.x] [PMID: 11583839]
[89]
Kurashima, Y.; Murata-Kamiya, N.; Kikuchi, K.; Higashi, H.; Azuma, T.; Kondo, S.; Hatakeyama, M. Deregulation of catenin signal by Helicobacter pylori CagA requires the CagA multimerization sequence. Int. J. Cancer, 2007.
[PMID: 17960618]
[90]
Lu, R.; Bosland, M.; Xia, Y.; Zhang, Y.G.; Kato, I.; Sun, J. Presence of Salmonella AvrA in colorectal tumor and its precursor lesions in mouse intestine and human specimens. Oncotarget, 2017, 8(33), 55104-55115.
[http://dx.doi.org/10.18632/oncotarget.19052] [PMID: 28903406]
[91]
Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; El-Omar, E.M.; Brenner, D.; Fuchs, C.S.; Meyerson, M.; Garrett, W.S. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013, 14(2), 207-215.
[http://dx.doi.org/10.1016/j.chom.2013.07.007] [PMID: 23954159]
[92]
Rossi, T.; Vergara, D.; Fanini, F.; Maffia, M.; Bravaccini, S.; Pirini, F. Microbiota derived metabolites in tumor progression and metastasis. Int. J. Mol. Sci., 2020, 21(16), E5786.
[http://dx.doi.org/10.3390/ijms21165786] [PMID: 32806665]
[93]
Bellone, M.; Brevi, A.; Huber, S. Microbiota-propelled T-helper 17 cells in inflammatory disease and cancer. Microbiol. Mol. Biol. Rev., 2020, 84(2), e00064-19.
[94]
Omenetti, S.; Pizarro, T.T. The Treg/Th17 axis: A dynamic balance regulated by gut microbiome. Front. Immunol., 2015, 6, 639.
[http://dx.doi.org/10.3389/fimmu.2015.00639] [PMID: 26734006]
[95]
Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Zou, W. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood, 2009, 114(2), 357-359.
[http://dx.doi.org/10.1182/blood-2008-09-177360] [PMID: 19289853]
[96]
Mima, K.; Sukawa, Y.; Nishihara, R.; Qian, Z.R.; Yamauchi, M.; Inamura, K.; Kim, S.A.; Masuda, A.; Nowak, J.A.; Nosho, K.; Kostic, A.D.; Giannakis, M.; Watanabe, H.; Bullman, S.; Milner, D.A.; Harris, C.C.; Giovannucci, E.; Garraway, L.A.; Freeman, G.J.; Dranoff, G.; Chan, A.T.; Garrett, W.S.; Huttenhower, C.; Fuchs, C.S.; Ogino, S. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol., 2015, 1(5), 653-661.
[http://dx.doi.org/10.1001/jamaoncol.2015.1377] [PMID: 26181352]
[97]
Onderdonk, A.; Delaney, M.; Fichorova, R. The human microbiome during bacterial vaginosis. Clin. Microbiol. Rev., 2016, 29(2), 223-238.
[http://dx.doi.org/10.1128/CMR.00075-15]
[98]
Asea, A.; Kaur, P. Heat Shock Protein 60 in Human Diseases and Disorders; Springer: Cham, 2019, p. 18.
[http://dx.doi.org/10.1007/978-3-030-23154-5]
[99]
Osterloh, A.; Meier, SF; Veit, A.; Fleischer, B.; Von, BA; Breloer, M. Lipopolysaccharide free heat shock protein 60 activates T-cell. J. Biol. Chem., 2004, 279(46), 47906-479011.
[http://dx.doi.org/10.1074/jbc.M408440200]
[100]
Cappello, F.; Czarnecka, A.M.; La Rocca, G.; Di Stefano, A.; Zummo, G.; Macario, A.J.L. Hsp60 and Hspl0 as antitumor molecular agents. Cancer Biol. Ther., 2007, 6(4), 487-489.
[http://dx.doi.org/10.4161/cbt.6.4.4087] [PMID: 17457039]
[101]
Cappello, F.; Macario, E.; Felice, V.; Zummo, G.; Macario, A.J.L. Chlamydia trachomatis infection and Anti-HSP60 Immunity: The two sides of coin. PloS Pathog., 2009, 5(8), e1000552.
[102]
Res, P.C.; Schaar, C.G.; Breedveld, F.C.; van Eden, W.; van Embden, J.D.; Cohen, I.R.; de Vries, R.R. Synovial fluid T cell reactivity against 65 kD heat shock protein of mycobacteria in early chronic arthritis. Lancet, 1988, 2(8609), 478-480.
[http://dx.doi.org/10.1016/S0140-6736(88)90123-7] [PMID: 2457140]
[103]
Gaston, J.S.H.; Life, P.F.; Jenner, P.J.; Colston, M.J.; Bacon, P.A. Recognition of a mycobacteria-specific epitope in the 65-kD heat-shock protein by synovial fluid-derived T cell clones. J. Exp. Med., 1990, 171(3), 831-841.
[http://dx.doi.org/10.1084/jem.171.3.831] [PMID: 1689764]
[104]
De Graeff-Meeder, E.R.; van der Zee, R.; Rijkers, G.T.; Schuurman, H.J.; Kuis, W.; Bijlsma, J.W.; Zegers, B.J.; van Eden, W. Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet, 1991, 337(8754), 1368-1372.
[http://dx.doi.org/10.1016/0140-6736(91)93057-G] [PMID: 1674762]
[105]
Liyanagamage, D.S.N.K.; Martinus, R.D. Role of mitochondrial stress protein HSP60 in diabetes induced neuroinflammation. Mediators Inflamm., 2020, 2020, 8073516.
[http://dx.doi.org/10.1155/2020/8073516] [PMID: 32410865]
[106]
Grundtman, C.; Kreutmayer, S.B.; Almanzar, G.; Wick, M.C.; Wick, G. Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 960-968.
[http://dx.doi.org/10.1161/ATVBAHA.110.217877] [PMID: 21508342]
[107]
Cui, X.; Liu, Y.; Wang, S.; Zhao, N.; Qin, J.; Li, Y.; Fan, C.; Shan, Z.; Teng, W. Circulating exosomes activate dendritic cells and induce unbalanced CD4+ T cell differentiation in Hashimoto thyroiditis. J. Clin. Endocrinol. Metab., 2019, 104(10), 4607-4618.
[http://dx.doi.org/10.1210/jc.2019-00273] [PMID: 31199456]
[108]
Feng, H.; Zeng, Y.; Graner, M.W.; Katsanis, E. Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood, 2002, 100(12), 4108-4115.
[http://dx.doi.org/10.1182/blood-2002-05-1389] [PMID: 12393401]
[109]
van Houdt, R.; Ma, B.; Bruisten, S.M.; Speksnijder, A.G.C.L.; Ravel, J.; de Vries, H.J.C. Lactobacillus iners-dominated vaginal microbiota is associated with increased susceptibility to Chlamydia trachomatis infection in Dutch women: A case-control study. Sex. Transm. Infect., 2018, 94(2), 117-123.
[http://dx.doi.org/10.1136/sextrans-2017-053133] [PMID: 28947665]
[110]
Spear, G.T.; French, A.L.; Gilbert, D.; Zariffard, M.R.; Mirmonsef, P.; Sullivan, T.H.; Spear, W.W.; Landay, A.; Micci, S.; Lee, B.H.; Hamaker, B.R. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. J. Infect. Dis., 2014, 210(7), 1019-1028.
[http://dx.doi.org/10.1093/infdis/jiu231] [PMID: 24737800]
[111]
Muhleisen, A.L.; Herbst-Kralovetz, M.M. Menopause and the vaginal microbiome. Maturitas, 2016, 91, 42-50.
[http://dx.doi.org/10.1016/j.maturitas.2016.05.015] [PMID: 27451320]
[112]
Chiaffarino, F.; Pelucchi, C.; Negri, E.; Parazzini, F.; Franceschi, S.; Talamini, R.; Montella, M.; Ramazzotti, V.; La Vecchia, C. Breastfeeding and the risk of epithelial ovarian cancer in an Italian population. Gynecol. Oncol., 2005, 98(2), 304-308.
[http://dx.doi.org/10.1016/j.ygyno.2005.05.006] [PMID: 15975644]
[113]
World Health Organization. Maternal, newborn, child and adolescent health., Available from: https://www.who.int/teams/maternalnewborn-child-adolescent-health-and-ageing
[114]
Babic, A.; Sasamoto, N.; Rosner, B.A.; Tworoger, S.S.; Jordan, S.J.; Risch, H.A.; Harris, H.R.; Rossing, M.A.; Doherty, J.A.; Fortner, R.T.; Chang-Claude, J.; Goodman, M.T.; Thompson, P.J.; Moysich, K.B.; Ness, R.B.; Kjaer, S.K.; Jensen, A.; Schildkraut, J.M.; Titus, L.J.; Cramer, D.W.; Bandera, E.V.; Qin, B.; Sieh, W.; McGuire, V.; Sutphen, R.; Pearce, C.L.; Wu, A.H.; Pike, M.; Webb, P.M.; Modugno, F.; Terry, K.L. Association between breastfeeding and ovarian cancer risk. JAMA Oncol., 2020, 6(6), e200421.
[http://dx.doi.org/10.1001/jamaoncol.2020.0421] [PMID: 32239218]
[115]
Stinson, L.F.; Sindi, A.S.M.; Cheema, A.S.; Lai, C.T.; Mühlhäusler, B.S.; Wlodek, M.E.; Payne, M.S.; Geddes, D.T. The human milk microbiome: Who, what, when, where, why, and how? Nutr. Rev., 2021, 79(5), 529-543.
[http://dx.doi.org/10.1093/nutrit/nuaa029] [PMID: 32443154]
[116]
Parsonnet, J. Bacterial infection as a cause of cancer. Environ. Health Perspect., 1995, 103(8)(Suppl. 8), 263-268.
[PMID: 8741796]
[117]
Scholler, N.; Urban, N. CA125 in ovarian cancer. Biomarkers Med., 2007, 1(4), 513-523.
[http://dx.doi.org/10.2217/17520363.1.4.513] [PMID: 20477371]
[118]
Hofmann, A.F.; Hagey, L.R.; Krasowski, M.D. Bile salts of vertebrates: Structural variation and possible evolutionary significance. J. Lipid Res., 2010, 51(2), 226-246.
[http://dx.doi.org/10.1194/jlr.R000042] [PMID: 19638645]
[119]
Lieberman, M.; Peet, A. Essentials of Medical Biochemistry; Wolters Kluwer: Alphen aan den Rijn, Netherlands, 2007, p. 432.
[120]
Hofmann, A.F. The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile salts. Biochem. J., 1963, 89(1), 57-68.
[http://dx.doi.org/10.1042/bj0890057] [PMID: 14097367]
[121]
Stadler, J.; Yeung, K.S.; Furrer, R.; Marcon, N.; Himal, H.S.; Bruce, W.R. Proliferative activity of rectal mucosa and soluble fecal bile acids in patients with normal colons and in patients with colonic polyps or cancer. Cancer Lett., 1988, 38(3), 315-320.
[http://dx.doi.org/10.1016/0304-3835(88)90023-7] [PMID: 3349450]
[122]
Pinto, R.C. Chemometrics methods and strategies in metabolomics. In: Metabolomics: From Fundamentals to Clinical Applications; Sussolini, A., Ed.; Springer, 2017.
[http://dx.doi.org/10.1007/978-3-319-47656-8_7]
[123]
Cox, M.J.; Cookson, W.O.; Moffatt, M.F. Sequencing the human microbiome in health and disease. Hum. Mol. Genet., 2013, 22(R1), R88-R94.
[http://dx.doi.org/10.1093/hmg/ddt398] [PMID: 23943792]
[124]
Eisen, J.A. Environmental shotgun sequencing: Its potential and challenges for studying the hidden world of microbes. PLoS Biol., 2007, 5(3), e82.
[http://dx.doi.org/10.1371/journal.pbio.0050082] [PMID: 17355177]
[125]
Saorin, A.; Di Gregorio, E.; Miolo, G.; Steffan, A.; Corona, G. Emerging role of metabolomics in ovarian cancer diagnosis. Metabolites, 2020, 10(10), 419.
[http://dx.doi.org/10.3390/metabo10100419] [PMID: 33086611]
[126]
Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-throughput sequencing technologies. Mol. Cell, 2015, 58(4), 586-597.
[http://dx.doi.org/10.1016/j.molcel.2015.05.004] [PMID: 26000844]
[127]
Daly, G.M.; Leggett, R.M.; Rowe, W.; Stubbs, S.; Wilkinson, M.; Ramirez-Gonzalez, R.H.; Caccamo, M.; Bernal, W.; Heeney, J.L. Ramirez- Gonzalez, R.H. Host subtraction, filtering and assembly validations for novel viral discovery using next generation sequencing data. PLoS One, 2015, 10(6), e0129059.
[http://dx.doi.org/10.1371/journal.pone.0129059] [PMID: 26098299]
[128]
Loman, N.J.; Constantinidou, C.; Chan, J.Z.; Halachev, M.; Sergeant, M.; Penn, C.W.; Robinson, E.R.; Pallen, M.J. High-throughput bacterial genome sequencing: An embarrassment of choice, a world of opportunity. Nat. Rev. Microbiol., 2012, 10(9), 599-606.
[http://dx.doi.org/10.1038/nrmicro2850] [PMID: 22864262]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy