Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Perspective

ROS Modulating Inorganic Nanoparticles: A Novel Cancer Therapeutic Tool

Author(s): Maria John Newton Amaldoss* and Charles Christopher Sorrell

Volume 16, Issue 2, 2022

Published on: 05 July, 2022

Page: [84 - 89] Pages: 6

DOI: 10.2174/2667387816666220506203123

Price: $65

Abstract

The term "reactive oxygen species" (ROS) refers to a family of extremely reactive molecules. They are crucial as secondary messengers in both physiological functioning and the development of cancer. Tumors have developed the ability to survive at elevated ROS levels with significantly higher H2O2 levels than normal tissues. Chemodynamic therapy is a novel approach to cancer treatment that generates highly toxic hydroxyl radicals via a Fenton/Fenton-like reaction between metals and peroxides. Inorganic nanoparticles cause cytotoxicity by releasing ROS. Inorganic nanoparticles can alter redox homoeostasis by generating ROS or diminishing scavenging mechanisms. Internalized nanoparticles generate ROS in biological systems independent of the route of internalisation. This method of producing ROS could be employed to kill cancer cells as a therapeutic strategy. ROS also play a role in regulating the development of normal stem cells, as excessive ROS disturb the stem cells' regular biological cycles. ROS treatment has a significant effect on normal cellular function. Mitochondrial ROS are at the centre of metabolic changes and control a variety of other cellular processes, which can lead to medication resistance in cancer patients. As a result, utilising ROS in therapeutic applications can be a double-edged sword that requires better understanding.

Keywords: ROS, inorganic nanoparticles, therapeutic tool, chemodynamic therapy, tumor, cytotoxicity.

« Previous
Graphical Abstract

[1]
Chio, I.I.C.; Tuveson, D.A. ROS in Cancer: The Burning Question. Trends Mol. Med., 2017, 23(5), 411-429.
[http://dx.doi.org/10.1016/j.molmed.2017.03.004] [PMID: 28427863]
[2]
Islam, M.O.; Bacchetti, T.; Ferretti, G. Alterations of Antioxidant Enzymes and Biomarkers of Nitro-oxidative Stress in Tissues of Bladder Cancer. Oxid. Med. Cell. Longev., 2019, 2019, 2730896.
[http://dx.doi.org/10.1155/2019/2730896] [PMID: 31191796]
[3]
He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem., 2017, 44(2), 532-553.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[4]
Karihtala, P.; Soini, Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS, 2007, 115(2), 81-103.
[http://dx.doi.org/10.1111/j.1600-0463.2007.apm_514.x] [PMID: 17295675]
[5]
Castaldo, S.A.; Freitas, J.R.; Conchinha, N.V.; Madureira, P.A. The Tumorigenic Roles of the Cellular REDOX Regulatory Systems. Oxid. Med. Cell. Longev., 2016, 2016, 8413032.
[http://dx.doi.org/10.1155/2016/8413032] [PMID: 26682014]
[6]
Wang, J.; Yi, J. Cancer cell killing via ROS: To increase or decrease, that is the question. Cancer Biol. Ther., 2008, 7(12), 1875-1884.
[http://dx.doi.org/10.4161/cbt.7.12.7067] [PMID: 18981733]
[7]
Conklin, K.A. Chemotherapy-Associated Oxidative Stress: Impact on Chemotherapeutic Effectiveness. Integr. Cancer Ther., 2004, 3(4), 294-300.
[http://dx.doi.org/10.1177/1534735404270335] [PMID: 15523100]
[8]
de Sá, Junior P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid. Med. Cell. Longev., 2017, 2017, 2467940.
[http://dx.doi.org/10.1155/2017/2467940] [PMID: 29123614]
[9]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[10]
Kepp, K.P. Bioinorganic Chemistry of Alzheimer’s Disease. Chem. Rev., 2012, 112(10), 5193-5239.
[http://dx.doi.org/10.1021/cr300009x] [PMID: 22793492]
[11]
Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem. Rev., 2019, 119(2), 1221-1322.
[http://dx.doi.org/10.1021/acs.chemrev.8b00138] [PMID: 30095897]
[12]
Sawicki, K.T.; Chang, H.C.; Ardehali, H. Role of Heme in Cardiovascular Physiology and Disease. J. Am. Heart Assoc., 4(1), e001138.
[http://dx.doi.org/10.1161/JAHA.114.001138] [PMID: 25559010]
[13]
Torti, S.V.; Torti, F.M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[http://dx.doi.org/10.1038/nrc3495] [PMID: 23594855]
[14]
Sun, H.; Zhang, C.; Cao, S.; Sheng, T.; Dong, N.; Xu, Y. Fenton reactions drive nucleotide and ATP syntheses in cancer. J. Mol. Cell Biol., 2018, 10(5), 448-459.
[http://dx.doi.org/10.1093/jmcb/mjy039] [PMID: 30016460]
[15]
Chen, H-Y. Why the Reactive Oxygen Species of the Fenton Reaction Switches from Oxoiron(IV) Species to Hydroxyl Radical in Phosphate Buffer Solutions? A Computational Rationale. ACS Omega, 2019, 4(9), 14105-14113.
[http://dx.doi.org/10.1021/acsomega.9b02023] [PMID: 31497730]
[16]
Xie, A.; Li, H.; Hao, Y.; Zhang, Y. Tuning the Toxicity of Reactive Oxygen Species into Advanced Tumor Therapy. Nanoscale Res. Lett., 2021, 16(1), 142.
[http://dx.doi.org/10.1186/s11671-021-03599-8] [PMID: 34518937]
[17]
Tian, Q.; Xue, F.; Wang, Y.; Cheng, Y.; An, L.; Yang, S.; Chen, X.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today, 2021, 39, 101162.
[http://dx.doi.org/10.1016/j.nantod.2021.101162]
[18]
Enami, S.; Sakamoto, Y.; Colussi Agustín, J. Fenton chemistry at aqueous interfaces. Proc. Natl. Acad. Sci. USA, 2014, 111(2), 623-628.
[http://dx.doi.org/10.1073/pnas.1314885111] [PMID: 24379389]
[19]
Aykin-Burns, N.; Ahmad, I.M.; Zhu, Y.; Oberley, L.W.; Spitz, D.R. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem. J., 2009, 418(1), 29-37.
[http://dx.doi.org/10.1042/BJ20081258] [PMID: 18937644]
[20]
Haber, F.; Weiss, J.; Pope, W.J. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 1934, 147(861), 332-351.
[http://dx.doi.org/10.1098/rspa.1934.0221]
[21]
Walling, C. Intermediates in the Reactions of Fenton Type Reagents. Acc. Chem. Res., 1998, 31(4), 155-157.
[http://dx.doi.org/10.1021/ar9700567]
[22]
Sawyer, D.T.; Sobkowiak, A.; Matsushita, T. Metal [MLx; M = Fe, Cu, Co, Mn]/Hydroperoxide-Induced Activation of Dioxygen for the Oxygenation of Hydrocarbons: Oxygenated Fenton Chemistry. Acc. Chem. Res., 1996, 29(9), 409-416.
[http://dx.doi.org/10.1021/ar950031c]
[23]
Tee, J.K.; Ong, C.N.; Bay, B.H.; Ho, H.K.; Leong, D.T. Oxidative stress by inorganic nanoparticles. WIREs Nanomedicine and Nanobiotechnolog, 2016, 8(3), 414-438.
[http://dx.doi.org/10.1002/wnan.1374] [PMID: 26359790]
[24]
Maksoudian, C.; Saffarzadeh, N.; Hesemans, E.; Dekoning, N.; Buttiens, K.; Soenen, S.J. Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Adv., 2020, 2(9), 3734-3763.
[http://dx.doi.org/10.1039/D0NA00286K]
[25]
Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[26]
Mehmood, R.; Ariotti, N.; Yang, J.L.; Koshy, P.; Sorrell, C.C. pH-Responsive Morphology-Controlled Redox Behavior and Cellular Uptake of Nanoceria in Fibrosarcoma. ACS Biomater. Sci. Eng., 2018, 4(3), 1064-1072.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00806] [PMID: 33418790]
[27]
Xu, C.; Qu, X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater., 2014, 6(3), e90-e90.
[http://dx.doi.org/10.1038/am.2013.88]
[28]
Sadidi, H.; Hooshmand, S.; Ahmadabadi, A.; Javad Hosseini, S.; Baino, F.; Vatanpour, M.; Kargozar, S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules, 2020, 25(19), 4559.
[http://dx.doi.org/10.3390/molecules25194559] [PMID: 33036163]
[29]
Tsunekawa, S.; Sivamohan, R.; Ohsuna, T.; Takahashi, H.; Tohji, K. In Materials Science Forum. In: Trans Tech Publ; , 1999; Vol. 315, pp. 439-445.
[30]
Gao, Y.; Chen, K.; Ma, J-L.; Gao, F. Cerium oxide nanoparticles in cancer. OncoTargets Ther., 2014, 7, 835-840.
[http://dx.doi.org/10.2147/OTT.S62057] [PMID: 24920925]
[31]
Thakur, N.; Manna, P.; Das, J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J. Nanobiotechnology, 2019, 17(1), 84-84.
[http://dx.doi.org/10.1186/s12951-019-0516-9] [PMID: 31291944]
[32]
Nelson, B.C.; Johnson, M.E.; Walker, M.L.; Riley, K.R.; Sims, C.M. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine. Antioxidants (Basel), 2016, 5(2), 15.
[http://dx.doi.org/10.3390/antiox5020015] [PMID: 27196936]
[33]
Kabir, M.S.; Munroe, P.; Gonçales, V.; Zhou, Z.; Xie, Z. Structure and properties of hydrophobic CeO2−x coatings synthesized by reactive magnetron sputtering for biomedical applications. Surf. Coat. Tech., 2018, 349, 667-676.
[http://dx.doi.org/10.1016/j.surfcoat.2018.06.031]
[34]
Canaparo, R.; Foglietta, F.; Limongi, T.; Serpe, L. Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles. Materials (Basel, Switzerland); , 2020, 14, . (1)
[35]
Liu, J.; Du, P.; Liu, T.; Córdova Wong, B.J.; Wang, W.; Ju, H.; Lei, J. A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement and feedback. Biomaterials, 2019, 192, 179-188.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.018] [PMID: 30453214]
[36]
Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med. Sci., 2009, 24(2), 259-268.
[http://dx.doi.org/10.1007/s10103-008-0539-1] [PMID: 18247081]
[37]
Pan, X.; Wang, W.; Huang, Z.; Liu, S.; Guo, J.; Zhang, F.; Yuan, H.; Li, X.; Liu, F.; Liu, H. MOF-Derived Double-Layer Hollow Nanoparticles with Oxygen Generation Ability for Multimodal Imaging-Guided Sonodynamic Therapy. Angew. Chem. Int. Ed., 2020, 59(32), 13557-13561.
[http://dx.doi.org/10.1002/anie.202004894] [PMID: 32374941]
[38]
Wang, W.; Lin, L.; Ma, X.; Wang, B.; Liu, S.; Yan, X.; Li, S.; Tian, H.; Yu, X. Light-Induced Hypoxia-Triggered Living Nanocarriers for Synergistic Cancer Therapy. ACS Appl. Mater. Interfaces, 2018, 10(23), 19398-19407.
[http://dx.doi.org/10.1021/acsami.8b03506] [PMID: 29781276]
[39]
Cui, Q.; Wang, J.Q.; Assaraf, Y.G.; Ren, L.; Gupta, P.; Wei, L.; Ashby, C.R., Jr; Yang, D.H.; Chen, Z.S. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat., 2018, 41, 1-25.
[http://dx.doi.org/10.1016/j.drup.2018.11.001] [PMID: 30471641]
[40]
Chen, Y.; Cai, Y.; Yu, X.; Xiao, H.; He, H.; Xiao, Z.; Wang, Y.; Shuai, X. A photo and tumor microenvironment activated nano-enzyme with enhanced ROS generation and hypoxia relief for efficient cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(39), 8253-8262.
[http://dx.doi.org/10.1039/D1TB01437D] [PMID: 34515282]
[41]
Alili, L.; Sack, M.; Karakoti, A.S.; Teuber, S.; Puschmann, K.; Hirst, S.M.; Reilly, C.M.; Zanger, K.; Stahl, W.; Das, S.; Seal, S.; Brenneisen, P. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials, 2011, 32(11), 2918-2929.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.056] [PMID: 21269688]
[42]
Alili, L.; Sack, M.; von Montfort, C.; Giri, S.; Das, S.; Carroll, K.S.; Zanger, K.; Seal, S.; Brenneisen, P. Downregulation of Tumor Growth and Invasion by Redox-Active Nanoparticles. Antioxid. Redox Signal., 2012, 19(8), 765-778.
[http://dx.doi.org/10.1089/ars.2012.4831] [PMID: 23198807]
[43]
Sack, M.; Alili, L.; Karaman, E.; Das, S.; Gupta, A.; Seal, S.; Brenneisen, P. Combination of Conventional Chemotherapeutics with Redox-Active Cerium Oxide Nanoparticles—A Novel Aspect in Cancer Therapy. Mol. Cancer Ther., 2014, 13(7), 1740-1749.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0950] [PMID: 24825856]
[44]
Giri, S.; Karakoti, A.; Graham, R.P.; Maguire, J.L.; Reilly, C.M.; Seal, S.; Rattan, R.; Shridhar, V. Nanoceria: A Rare-Earth Nanoparticle as a Novel Anti-Angiogenic Therapeutic Agent in Ovarian Cancer. PLoS One, 2013, 8(1), e54578.
[http://dx.doi.org/10.1371/journal.pone.0054578] [PMID: 23382918]
[45]
Ribeiro, F.M.; de Oliveira, M.M.; Singh, S.; Sakthivel, T.S.; Neal, C.J.; Seal, S.; Ueda-Nakamura, T.; Lautenschlager, S.O.S.; Nakamura, C.V. Ceria Nanoparticles Decrease UVA-Induced Fibroblast Death Through Cell Redox Regulation Leading to Cell Survival, Migration and Proliferation. Front. Bioeng. Biotechnol., 2020, 8
[http://dx.doi.org/10.3389/fbioe.2020.577557] [PMID: 33102462]
[46]
Peloi, K.E.; Contreras Lancheros, C.A.; Nakamura, C.V.; Singh, S.; Neal, C.; Sakthivel, T.S.; Seal, S.; Lautenschlager, S.O.S. Antioxidative photochemoprotector effects of cerium oxide nanoparticles on UVB irradiated fibroblast cells. Colloids Surf. B Biointerfaces, 2020, 191, 111013.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111013] [PMID: 32380386]
[47]
Peloi, K.E.; Ratti, B.A.; Nakamura, C.V.; Neal, C.J.; Sakthivel, T.S.; Singh, S.; Seal, S.; de Oliveira Silva Lautenschlager, S. Engineered nanoceria modulate neutrophil oxidative response to low doses of UV-B radiation through the inhibition of reactive oxygen species production. J. Biomed. Mater. Res. A, 2021, 109(12), 2570-2579.
[http://dx.doi.org/10.1002/jbm.a.37251] [PMID: 34173708]
[48]
Dowding, J.M.; Song, W.; Bossy, K.; Karakoti, A.; Kumar, A.; Kim, A.; Bossy, B.; Seal, S.; Ellisman, M.H.; Perkins, G.; Self, W.T.; Bossy-Wetzel, E. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ., 2014, 21(10), 1622-1632.
[http://dx.doi.org/10.1038/cdd.2014.72] [PMID: 24902900]
[49]
Olowe, R.; Sandouka, S.; Saadi, A.; Shekh-Ahmad, T. Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy., 2020, 9(10), 990.
[50]
Batandier, C.; Fontaine, E.; Kériel, C.; Leverve, X.M. Determination of mitochondrial reactive oxygen species: methodological aspects. J. Cell. Mol. Med., 2002, 6(2), 175-187.
[http://dx.doi.org/10.1111/j.1582-4934.2002.tb00185.x] [PMID: 12169203]
[51]
Valgimigli, L.; Pedulli, G.F.; Paolini, M. Measurement of oxidative stress by EPR radical-probe technique. Free Radic. Biol. Med., 2001, 31(6), 708-716.
[http://dx.doi.org/10.1016/S0891-5849(01)00490-7] [PMID: 11557308]
[52]
Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res., 2018, 37(1), 266.
[http://dx.doi.org/10.1186/s13046-018-0909-x] [PMID: 30382874]
[53]
Reczek, C.R.; Chandel, N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol., 2017, 1(1), 79-98.
[http://dx.doi.org/10.1146/annurev-cancerbio-041916-065808]
[54]
Zhou, D.; Shao, L.; Spitz, D.R. Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res., 2014, 122, 1-67.
[http://dx.doi.org/10.1016/B978-0-12-420117-0.00001-3] [PMID: 24974178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy